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Abstract—This paper presents details of a novel hardware and 
software architecture for locally and automatically recording air traffic 
operations  data at general aviation airports, including those that 
primarily serve smaller aircraft and may not have any other means, 
such as control towers, to collect such data.  The platform is based on 
ADS-B data collected at 1090 and 978 MHz. We describe its 
deployment on the Amazon Web Services cloud computing 
environment. Various pre-processing and filtering stages are 
demonstrated to clean up the data. Some techniques for dealing with 
unreliable data are described. Finally, we show how to use the resulting 
data to compile air traffic performance metrics of interest for small 
airports, including aircraft approach speeds and runway occupancy 
times. These metrics may then be used to support enhanced models of 
airport capacity for these facilities. 
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I.  INTRODUCTION  

A. Introduction 
This paper describes a methodology for assessing the 
performance of air traffic operating within the vicinity of general 
aviation airports via the local collection and analysis of ADS-B 
data. Such airports typically lack automatic data collection 
capabilities, yet they would still like to be able to make an 
unbiased case for funding support for capacity improvement 
projects. Our methodology consists of collecting aircraft 
location and performance data at local airport environments 
from aircraft equipped with Automated Dependent 
Surveillance–Broadcast (ADS-B) technology, processing the 
data to determine and classify flights by aircraft and operational 
type using neural network learning models, and assessing 
elements of the operational performance of these aircraft to 
include aircraft speeds and runway occupancy times.  These and 
other operational performance characteristics  are known to be 
important contributors to the capacity of airports serving these 
operations. 

B. Motivation 
More than 13,000 public and private use airports in the United 
States accommodate the operations of fixed wing aircraft. While 
approximately 500 of these airports are designed to serve 
primarily commercial service aircraft, the remaining 12,500 
serve almost exclusively smaller general aviation aircraft. More 
than 3,000 of these airports are supported by federal funding 
through the Federal Aviation Administration’s (FAA) National 
Plan of Integrated Airport Systems (NPIAS) [1]. As such, 
understanding the facilities needs of these airports, and potential 
funding required to maintain appropriate levels of operational 
capacity at these facilities, is a critical infrastructure issue. 
Determining facility requirements, such as runway and taxiway 
infrastructure, depend on an understanding of the performance 
of aircraft operating these airports.  

Compared to the comprehensive knowledge of operations at 
airports serving primarily larger commercial service aircraft, 
there is little current knowledge of aircraft performance in the 
vicinity of general aviation airports, particularly those airports 
serving small aircraft. As opposed to commercial service aircraft 
operations which operate in highly controlled and predictable 
environments, general aviation aircraft activity is much more 
variable in terms of aircraft performance and operations. For 
example, while commercial service aircraft follow strict arrival 
and approach procedures as dictated by the local air traffic 
control environment, a small aircraft at a general aviation airport 
may approach to land at an airport in a nearly ad-hoc manner, 
based solely on pilot judgement and visual perception. Small 
aircraft often perform various types of takeoffs or landings, or 
perform multiple “touch-and-go” operations for training 
purposes. In particular, the understanding of aircraft 
performance within the airport environment is critical to 
estimating an airport’s operational capacity.  

C. Background: Historical Airport Capacity Models 
Guidance on estimating airport capacity analysis has been 
provided by the Federal Aviation Administration since the early 
1980’s with the publication of FAA Advisory Circular AC 
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150/5060- 5 Airport Capacity and Delay [2]. As of 2021, the 
FAA has yet to publish an update to this advisory circular, 
although portions of the document are under review for an 
update. The AC in its current published state describes methods 
for estimating the hourly operational capacity, annual service 
volume, and operational delays given various levels of demand, 
types of operations (ie. landings and takeoffs), runway 
configuration, certain meteorological conditions, and the aircraft 
fleet mix. Much of the modeling is focused on the use of 
nomographs and approximation charts, although some early 
design computer programs such as SIMMOD and ADSIM (both 
Federal Aviation Administration developed products) are 
described, as well. High level categorizations of inputs including 
aircraft types into four weight classes, two primary 
meteorological-based aircraft flight rules (VFR and IFR), and 
various runway configuration templates, provide coarse 
estimates of operational capacity. While technically applicable 
to all airports, the primary use of the advisory circular has been 
targeted to airports serving larger aircraft, typically in a 
commercial aviation environment. For airports serving primarily 
smaller aircraft, these models are far less robust [3]. 

One reason for the lack of robustness is lack of data for 
which to create richer models. Most airports that accommodate 
general aviation activity do not have air traffic control towers 
nor historically are equipped with other traffic surveillance 
technologies. As a result, it has been difficult to collect the data 
required to assess aircraft performance at these facilities. 

D. Automated Dependent Surveillance – Broadcast (ADS-B) 
With the recent widespread adoption of new ADS-B technology, 
the required data to understand aircraft performance around 
these airports is becoming widely available. This is supported by 
the FAA’s mandate to require all U.S. registered aircraft be 
equipped with ADS-B technology when flying in controlled 
airspace, which includes many airport environments without air 
traffic control towers, as of January, 2020.  

One benefit of ADS-B technology is the ability to capture 
raw ADS-B transmissions from aircraft in a local environment 
using inexpensive equipment. Using the methods described 
within this paper, the authors constructed and installed such 
equipment and designed an associated software architecture to 
collect and process the data to provide insights into air traffic 
performance on a variety of metrics. The assessment of these 
data is intended to be applied to enhanced airport capacity 
models that focus on these airports. Specifically, work 
performed through the U.S. National Academies’ Airports 
Cooperative Research Program [4], developed spreadsheet-
based models that may be adopted for smaller general aviation 
airport capacity estimation.  

II. PREVIOUS RESEARCH 

A. Airport capacity modeling  
Previous attempts have been made regarding methods that 
would produce operation counts or the aircraft mix of an airport, 
data necessary for capacity estimation. A 2011 patent [5] claims 

to achieve low-cost aircraft detection in areas where ground 
surveillance radars do not exist or are limited. The system takes 
advantage of the acoustic emissions of the aircraft and translates 
them to “positional” and “aircraft type” information. A strong 
advantage, and at the same time disadvantage, of the system is 
that it does not require any additional equipment to be carried by 
the aircraft, since it relies solely on the acoustic emissions, 
meaning that any information collected is estimated and not 
communicated by the aircraft.  

Newer research from Rashidi & Markovic (2020) proposes 
automated image-based aircraft tracking and record-keeping for 
airports [6]. The two main steps of this process include motion 
detection, which could provide operation counts, and aircraft 
recognition, to identify the aircraft mix. This method can reliably 
detect aircraft movements, especially for aircraft performing a 
single takeoff or a single landing. However, General Aviation 
airports often experience more complex aircraft activity, 
especially from training aircraft.  

A mutual drawback of these two patents is that they can only 
provide information for the number of operations occurring at 
an airport and possibly the type of aircraft. Capacity estimation 
requires a combination of inputs to provide accurate results. 
Some of them are related to the airport characteristics, such as: 

• Runway configuration, 

• Control Tower Availability, and 

• Runway Exits and Parallel Taxiway Availability. 

Other required inputs are directly related to the airport activity 
and need to be carefully extracted and compute, to ensure trusted 
results. Some of these essential metrics are: 

• Approach Speeds, 

• Runway Occupancy Times (ROTs), 

• Aircraft Separations, 

• Touch-and-go operations, and 

• Aircraft fleet mix. 

Therefore, the use of ADS-B data was deemed the most 
appropriate method that would provide the necessary 
information. ADS-B messages transmit position, altitude, and 
speed data, as well as unique identification codes for each 
aircraft, which may be used to reference aircraft registry data to 
retrieve the aircraft’s make, model, engine type, and other 
relevant information.  

B. Use of ADS-B data 
ADS-B data have been used in previous research for flight phase 
identification or for extraction of aircraft performance 
parameters. In 2016 Sun et al. approached the challenge of 
identifying and categorizing ADS-B data to create tools that 
would help handling these large amounts of data. The data get 
categorized in full or partial flight paths, based on the collected 
samples, with the use of clustering algorithms. Additionally, 
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because of the diversity of the data and the various traffic control 
procedures and aircraft characteristics, fuzzy logic was applied. 
Fuzzy logic allows the further clustering of the paths into flight 
phases which is an important part for understanding and 
modeling aircraft performance. Therefore, at the end of this two-
step process the collected flight data are converted into 
meaningful clusters that will allow further research [7].  

Later, the same team of researchers approached the modeling 
of aircraft performance parameters. Using ADS-B data from 
common commercial aircraft types, performance parameters 
were extracted from different flight phases. An aircraft performs 
differently in each phase and the different need to be clustered 
accordingly. The parameters studied include, but are not limited 
to, takeoff distance, average acceleration, vertical rate, cruise 
altitude, approach speed, rate of descent, and breaking distance. 
All of these provide an overall view of each aircraft’s 
performance and create the basis for further modeling [8].  

This research proposes a procedure for organizing the 
decoded ADS-B into flights, clustering the flights into phases, 
and extracting metrics useful for capacity estimation in small 
General Aviation airports.  

III. ADS-B DATA COLLECTION  
For this project, the research team has developed custom ADS-
B data collection units based on the Raspberry Pi platform. This 
section describes the data collection hardware platform, the 
supporting software, and the database architecture. 

A. Data Collection Apparatus 
ADS-B messages are broadcast using pulse-position modulation 
(PPM) on a known, fixed frequency; hence, this is an open 
communication protocol that can be understood by any 
appropriately configured receiver. The most common 
configuration used in practice is a software-defined radio (SDR), 
which uses digital signal processing to complete all the 
necessary steps of tuning, demodulation, etc. Each of our units 
consists of the Raspberry Pi for processing, data storage, and 
communications, coupled with the SDR, a physical antenna, and 
a bandpass filter. To maximize the quantity of incoming data, 
we collect both 1090 Extended Squitter (1090ES) data at 1090 
MHz and UAT data at 978 MHz. Since we are collecting both 
types of data, we install two nearly identical devices at each 
subject airport, one for each frequency. Externally, they look 
identical, but the SDR in each is tuned to its respective 
frequency, and the data formats for 1090ES and UAT are 
slightly different, so the internal processing is determined 
accordingly. A schematic of the broad data collection platform 
is shown in Figure 1. 

 

 
Figure 1: ADS-B system architecture 

ADS-B receivers can collect aircraft data from any equipped 
aircraft that is detected within range. The gain on each radio is 
adjustable, and we have found that some trial and error is 
necessary to get the right value. When the gain is too high, too 
many messages are received, resulting both in extraneous data 
but also excessive corrupted messages due to message collision. 
Alternatively, when the gain is too low, aircraft of interest to the 
study, like those on final approach to the airport, cannot be 
detected at sufficient range. 

The recorded ADS-B messages contain the following 
information:  

• Aircraft Identification: 24-bit address assigned by the 
International Civil Aviation Organization (ICAO). 

• Position: aircraft report their position twice per second, 
although not all messages are received. Aircraft position is 
provided in geodesic frame (WGS84). Position information 
includes latitude, longitude, Pressure Altitude and NUC, 
which indicates the integrity of the associated horizontal 
position data.  

• Velocity: in east-west and north-south velocity and vertical 
rate. 

• Some aircraft may broadcast status messages (e.g., 
emergencies, priority, capability, navigation accuracy 
category, operational modes etc.). 

To ensure high quality ADS-B reception, the antenna must have 
good line of sight. When mounted inside a building, it is 
common for there to be blind spots in the reception coverage 
area. When this cannot be avoided, it is recommended to install 
in such a way that none of the arrival and departure paths are 
occluded by the blind spot. 
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B. Data Collection Software 
The software system designed for the Raspberry Pi units allows 
them to run autonomously – once the units are running, no 
intervention is required by any personnel local to the airport. The 
units run on the Raspberry Pi OS operating system, which is a 
variant of Linux. The software is coded in a combination of 
BASH shell, C, C++, and Python programs. The software has 
the following features: 

1. A configuration script that allows the user to select the 
airport, lat/long coordinates, altitude, and frequency of the 
receiver. The system automatically boots to these 
parameters and resumes normal operation in the event of a 
power interruption. 

2. Data are decoded and stored on the local machine. Data are 
transmitted to an Amazon Web Services (AWS) portal in 
real time over the MQTT protocol, to support real-time 
mapping and flight display applications. Message failures 
in this protocol are tolerable, because the data are not 
archived and are only used for situational awareness. 

3. Complete logs of system events, message transactions, etc., 
are recorded and stored locally. 

4. Once an hour, any recent data and log files are uploaded via 
SCP to an AWS EC2 computing instance, and subsequently 
archived on the local computer, where they are retained for 
a month. In the event of a communications malfunction, this 
operation is re-attempted at every hourly upload event until 
it is successful. Files older than a month are deleted from 
local storage, because by this time they have been uploaded 
to AWS and stored in several places. 

5. The system monitors real-time communications coming 
from AWS through the MQTT protocol, which allows 
researchers to ping the machines, remotely reboot them, 
tunnel into them to provide terminal window access, and 
change the gain levels on the radios. 

6. A comprehensive upgrade engine has been implemented. 
During each hourly upload event, the units also check a 
database on the AWS server for system upgrades. If one is 
present, it is downloaded, installed, and the system is then 
rebooted. In this way, systematic upgrades to all working 
units can be initiated centrally, and the upgrades themselves 
occur automatically. 

Figure 2 shows the overall system architecture. The devices are 
shown on the left, with their MQTT and DCP connections to the 
AWS Cloud. The rest of the project software is deployed at the 
AWS Cloud level. 

The AWS Cloud software includes the following 
components: 

1. An EC2 computing instance. This is where the data and logs 
files are initially uploaded. From here, the data files are 
decoded, filtered, and populated into a PostGreSQL 
database. The filtering step removes data too far from the 
subject airports to be informative for capacity estimation 
purposes. Some error-checking on altitude data also occurs 

here, and various flags are set to label the quality of the data. 
Individual records are consolidated into flights, and flight-
level data are also sent to the Postgres database. Some 
summary statistics are gathered and sent to a Dynamo 
database, which drives a dashboard web page that users use 
to track system status. 

2. Lambda functions. 

a. One processes the MQTT data submissions and 
populates a Dynamo DB with the last 5 minutes of real 
time data for the mapping and flight list web pages. 

b. One processes PULL requests from the mapping, flight 
list, and dashboard web pages, and invokes the AWS 
API to send responses to the associated HTTP requests. 

3. S3 bucket. This is used as the final archive for all decoded 
message strings. It is also the project web server, hosting the 
mapping, flight list, and dashboard web pages, as well as a 
project information web page meant for research 
dissemination. 

4. Cloudwatch. This process watches various system functions 
and issues alerts. This helps optimize the storage and 
processing levels, and warns project staff of possible remote 
unit malfunctions.  

 
Figure 2: AWS system architecture 

C. Data Collection Environments 
The data collection units were deployed at three airports, the 
College Park Airport in College Park, Maryland (KCGS), The 
Ohio State University Airport in Columbus, Ohio (KOSU), and 
Republic Airport in Farmingdale, New York (KFRG). KCGS, 
illustrated in Figure 3, is a single runway airport serving 
approximately 30,000 general aviation operations annually. 
KOSU, illustrated in Figure 4, has three runways and serves 
approximately 100,000 operations annually. KFRG, illustrated 
in Figure 5, has two intersecting runways and serves 
approximately 200,000 operations annually. These airports, 
particularly KFRG and KOSU, serve high traffic volumes of 
small aircraft operations, including flight training, and hence 
made excellent locations for this research.  
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Figure 3: College Park Airport, MD (KCGS) 

 

 
Figure 4: The Ohio State University Airport (KOSU) 

The ADS-B receivers were placed in locations within 
administrative buildings at each airport, within line of sight to 
the airfield. At each of these locations, ADS-B data was captured 
from aircraft operating within a 7 nautical mile radius of the 
airport.  

IV. DATA PROCESSING AND ANALYSIS 
Over the initial 8-month period of system placement, 
approximately 30M individual ADS-B messages representing 
approximately 20,000 individual flights were captured. A subset 
of this data, specifically those data associated with flights with 
one or more operations at the airport, such as a takeoff or a 
landing, were entered into a “messages” table in the 
PostGreSQL database on the AWS EC2 instance for processing 
and analysis. 

 

 
Figure 5: Republic Airport, NY (KFRG) 

Data within each message relevant to assessing aircraft 
performance include the following: 

• DateTime: Message Date Time stamp given in Unix epoch 
time. 

• ICAO:  Unique aircraft ICAO identifier of the aircraft 
transmitting the message. 

• Location:  Airport from which the ADS-B message was 
received. 

• Lat:  Latitude position from where the message was 
transmitted 

• Long:  Longitude position from where the message was 
transmitted 

• Alt:  Mean Sea Level altitude (ft)  

• GS:  Ground Speed (nm/hr) 

• TRK: Tracking direction of the aircraft (in degrees) 

• ROC: Rate of Climb (ft/min) 

The messages are grouped into flights based on the unique 
aircraft ICAO identifier present in the messages, as well as a 
time window filter to assure that two separate flights of a given 
aircraft are not combined into one flight. Specifically, if there is 
a difference of time of more than 600 seconds in between two 
consecutive messages with a given ICAO, the message is 
considered to be a part of a separate subsequent flight by the 
aircraft. Each flight is recorded with a given unique Flight ID 
into a separate “flights” table within the PostGreSQL database. 
A JSON string of flight parameters from each message 
associated with the flight is added to each flight record. This 
string of information was then used to further investigate the 
performance of flights in the database. 
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A. Categorizing into operations using the LSTM Neural 
Network Modeling Framework 

At a small airport, a given flight can perform various operations. 
A flight may have one operation, such as a takeoff or a landing, 
two operations, such as a takeoff, followed by a landing, or 
multiple operations, including multiple touch and go (landing 
followed by immediate subsequent takeoff) operations.  

The process of categorizing flights into operations was a 
major focus of this study. The process began with creating 
various tools based on the QGIS geographic information system 
software platform to visualize and analyze the relevant 
performance characteristics of individual flights and manually 
classify the flights into operations. For example, Figure 6 
illustrates a flight with a series of touch and go operations 
operating at KOSU. Figure 7 illustrates the changes in aircraft 
altitude, ground speed, and rate of climb, over the course of the 
flight. Figures 8 and 9 represent similar illustrations for an 
example aircraft landing at KOSU, Figures 10 and 11 represent 
similar illustrations for an example aircraft taking off at KOSU. 

 

 
Figure 6: Sample flight path during touch and go operations 

 

Figure 7: Touch and go parameters 

 
Figure 8: Sample flight path during landing at KOSU  

 

 
Figure 9: Landing parameters 

 

   
Figure 10: Sample takeoff at KOSU airport  

 
Figure 11: Takeoff parameters  
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Close inspection of Figures 5, 7, and 9 shows that there are some 
messages missing, creating possible gaps in a sequence of 
messages. This phenomenon occurs due ot the line of sight of 
the receiver or antenna pointing in another direction. 

The clustered message of given flight is represented in a 
sequence of values of altitude, rate of climb, ground speed. 
Visual inspection of these values will help in classifying the 
data. Since visual inspection requires manual labor, a novel 
approach was developed in this research. This approach 
involved applying neural network to classify the flight 
sequences captured using the ADS-B receiver.  

Long short-term memory (LSTM) [9] is a deep learning 
model based on recurrent neural networks, that is used for 
classification and prediction of time series data. The flight data 
captured from the ADS-B receivers can also be viewed as a 
sequence of values over a period. This attribute of the flight data 
made us pick the LSTM model to identify the sequences.  

The dataset for training the LSTM network was manually 
classified by analyzing the graphs of parameters altitude, ground 
speed and rate climb. A total of 7651 flights were manually 
classified by visually analyzing the parameters. Table I shows 
the distribution of the labels across the dataset. 

The LSTM model was used to train the model using 
TensorFlow.  The model consisted of 4 hidden LSTM layers. 
The activation function softmax was used in the last layer since 
we were classifying 8 different types of operations. While 
training, categorical cross-entropy  and rmsprop were used as the 
loss function and optimizer, respectively. Since the total number 
of messages can vary between flights, the model was trained 
with batch size set to 1 and adapted for a varying length of the 
sequences.  

TABLE I.  DATASET DISTRIBUTION BY OPERATION TYPE 

Code Operation Type  # Flights 

0 No Operation  76 

1 Touch and go  521 

2 Low approach  1 

3 Landing and then take off  55 

4 Take off and then landing  202 

5 Landing  2791 

6 Take off  3150 

7 Taxiing  855 

 

 
 

 

TABLE II. CONFUSION MATRIX OF LSTM BASED OPERATION 
CLASSIFICATION OF FLIGHTS 

 Predicted operation (Code) 

A
ct

ua
l O

pe
ra

tio
n 

(C
od

e)
 

 0 1 2 3 4 5 6 7 

0 0 0 0 0 0 0 0 3 

1 0 5 0 0 1 5 1 0 

2 0 0 0 0 0 0 0 0 

3 0 0 0 1 0 0 0 0 

4 0 0 0 0 1 0 0 0 

5 0 0 0 0 0 116 0 2 

6 0 0 0 1 0 0 117 3 

7 0 0 1 0 1 1 1 26 

 

An accuracy level of 94% was achieved during the training 
stage, and the test accuracy was 92.9%. The test data had also 
been manually classified, but none of them were included in the 
training set. As shown in the resulting confusion matrix 
illustrated in Table II, reduced accuracies were primarily found 
for touch and go operations being misclassified as landings or 
takeoffs. Specifically, the model would fail to classify a flight 
with a single touch and go. Instead, it was classified as a landing 
or a takeoff, depending on the final stage of the flight. It should 
be possible to increase the accuracy by identifying specific 
canonical operations in the data set and ensuring that they are 
included that they included in the training dataset.  

B. Handling unreliable altitude data  
During our analysis of the flights, it was observed that some of 
the aircraft were broadcasting incorrect altitude readings, or at 
least that these data were being received or demodulated 
incorrectly. The flight parameters shown in Figure 12 
demonstrate such a case. After analyzing the speed and rate of 
climb parameters it can be concluded that the flight is taking off. 
However, the altitude data is not accurate and would be 
detrimental if downstream classification efforts were made 
without rectifying this situation. 

After analyzing the various flight data, we concluded that a 
good test for unreliable altitude data is to check for flights with 
calculated absolute rates of climb greater than 7500 ft/ minute. 
In these cases, we replace the actual (flawed) altitude data with 
estimated data constructed by numerical integration of the rate 
of climb data. Figure 13 shows the result of this process for the 
same flight as before, and it is clear that the aircraft is taking off.  
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Figure 12: Invalid altitude reading.  

  
Figure 13: Integrated alitude using rate of climb data 

C. Measuring performance 
Having identified the different aircraft operations, the analysis 
of the data focused on  estimating flight performance metrics to 
support capacity estimation. Approach Speed and Runway 
Occupancy Time (ROT) were the first metrics to be investigated, 
being two of the most important to capacity modeling. The 
results shown are for the KOSU (Ohio State University) and the 
KFRG (Republic Airport at Farmingdale) airport. Both are 
General Aviation airports with significant activity, and at the 
same time with different type of operations. KOSU has 
considerable training activity, with aircraft performing 
continuous touch-and-go’s and an often-changing pattern, while 
KFRG accommodates both training aircraft and jet services and 
maintains a rather steady pattern, with aircraft landing mostly on 
runway 32. 

1) Approach Speed: Approach speed is the ground speed 
that aircraft have before approaching the runway to land (i.e. 
during their final approach) and varies based on the aircraft type. 
To measure the approach speed all messages from aircraft 
heading to the runway (based on their track), and with a 
decreasing altitude (and negative rate of climb) are captured and 
averaged by runway and aircraft type. The overal results for each 

runway used for landing and for the different aircraft types 
operating at these airports, are summarized in Table III.  

TABLE III.  AVERAGE APPROACH SPEED  

Airport 

Runwa
y used 

for 
landin

g 

Avg. Approach Speed per aircraft type (knots) 

Fixed wing single 
engine Fixed wing multi engine 

KOSU 9L 66 62.5 

 9R 71 68 

 27R 70 69.5 

 27L 71 73 

 5 58 63 

 23 59 60 

KFRG 14 62 82 

 32 68 83 

 

The results are slightly higher for the longer runway at KOSU 
(9R/27L) since this runway serves larger aircraft which tend to 
approach at a higher speed. This is also the case at KFRG, where 
multi-engine aircraft approach with a significantly higher speed. 
Lower approach speeds are found on runways accommodating 
solely the smaller single engine  aircraft (KOSU 9L) and aircraft 
operating on crosswind runways when headwinds tend to be 
greater (KOSU 5/23). 

2) Runway Occupancy Time (ROT): ROT is defined as the 
time that an aircraft is occupying the runway.  For arriving 
aircaft this time starts from the moment an aircraft crosses the 
runway threshold upon landing to the time it exits the runway.  

ROT is an increased limitation to runway capacity and holds an 
important role in an airport’s capacity estimation. Therefore, 
collecting accurate data and carefully minimizing ROT will 
increase the runway’s capacity. It has been observed that ROT 
is largely affected by the exit used, the aircraft type, the approach 
speed, and the distance from the following approaching 
aircraft[10][11]. The results collected for ROT, based on airport, 
runway and exit used and divided by aircraft type, are collected 
in Table III. Blank spaces indicate that either the runway or the 
exit is not used by that aircraft type. The blank cells of the table 
indicate that either the runway is not frequently used by that 
aircraft type (multi engine aircraft do not operate on short 
runways), or the exit cannot be used by that aircraft type. 
Specifically, multi engine aircraft will not use the exit closer to 
the runway threshold and single engine aircraft rarely taxi to the 
end of the runway if there is a sooner exit. Figures 14 and 15 
indicate the different runways and different exit locations at the 
two airports.  
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TABLE IV.  RUNWAY OCCUPANCY TIME (ARRIVALS) 

Airport Runway used  Exit Used 
Runway Occupancy Time (sec) 

Fixed wing 
single engine 

Fixed wing 
multi engine 

KOSU 9L End of runway 43 -- 

 9R C 34 -- 

 9R D 48 34 

 9R End of runway -- 64 

 27R End of runway 49 67 

 27L D 28 -- 

 27L C 45 30 

 27L End of runway -- 98 

 5 End of runway 82 -- 

 23 End of runway 80 -- 

KFRG 14 B 29 -- 

 14 G 32 36 

 14 A5 -- 50 

 32 A5 29 30 

 32 A4 33 34 

 32 B 42 40 

 

 
Figure 14: KOSU runway exit and taxiway locations 

The results for the ROT were mostly anticipated. The further the 
exit used from the threshold, the more time required on the 
runway. However, while expected to have lower values in the 
case of multi-engine aircraft, since as seen previously they 
approach with a higher speed and therefore would cover the 
distance in less time, it was not confirmed. After examining the 
case of multi-engine aircraft closer, it was observed that even 
though the aircraft touch the runway at a higher speed, in many 
cases they slow down more abruptly and then taxi at a low speed 
until the exit.  

 

 

 
Figure 15: KFRG runway exit and taxiway locations 

V. FINDINGS 
Overall findings from this research to date reveal that leveraging 
ADS-B data to further understand the performance of general 
aviation aircraft operating within the airport environment is a 
feasible and productive exercise. Data collected from equipment 
built at relatively low expense and stored onto cloud-based 
database and computing infrastructure provide the ability to 
collect and store rich volumes of data from several locations 
quite efficiently. Furthermore, the data collected provide highly 
accurate information for all phases of flight, including aircraft 
surface movements. As third-party sources of ADS-B data 
generally are not available in raw form down to the airport 
surface, the build out of the project’s exclusive equipment was 
found to be an essential part of the data collection process. 

In addition, initial performance measures of aircraft 
approach speeds and runway occupancy times appear to be 
highly valid.  

VI. FUTURE RESEARCH 
From these initial findings the research is motivated to deepen 
this analysis by investigating performance characteristics based 
on each of the specific runway operating environments, for 
specific aircraft types, and by specific meteorological conditions 
such as wind direction and speed, and cloud ceiling and visibility 
conditions. 

In addition, to study various features of a small airport, the 
flight speeds during landing and takeoff will aide in 
understanding airport capacity. Some preliminary work has been 
done on dividing the flights into various phases using the 
density-based clustering algorithm DBSCAN. DBSCAN 
clustered various messages according to their altitude, ground 
speed, rate of climb and track value. Even though this technique 
clustered the various phases of flight as shown in Figure 16, 
more work is required for it to reliably classify the phases of 
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flights for a wide variety of flight patterns. In our future work 
we will develop technique to recognize various phases of flight 
[12].  

 

  
Figure 16. Clustering phases of landing operation 

This work will continue to further understand the performance 
characteristics of aircraft operating within these study airports. 
In addition, the study will deploy data collection equipment to 
other airports to gain further insight on how various runway 
configurations and other characteristics of the airport 
environment may impact aircraft performance.  The ultimate 
findings from this work are planned to be used to further develop 
models for estimating the operating capacity of airports 
accommodating small general aviation aircraft.  

ACKNOWLEDGMENT  
This work has been sponsored under the by the Federal Aviation 
Administration’s Office of Airports via the Administration’s 
university consortium for Aviation Operations Research 
(NEXTOR III). This work is part of the FAA’s larger effort to 
enhance operational capacity models for airports serving 
primarily smaller aircraft. The authors would like to 
acknowledge Mr. Kent Duffy, National Resource Expert for 
Airport / Airspace Capacity, FAA for his support of this work. 

REFERENCES 
[1] Federal Avsation Administation, National Plan of Integrated Airport 

Systems (NPIAS), 2021-2025, Published by the Secretary of 
Transportation Pursuant to Title 49 U.S. Code, Section 47103 on 
September 30, 2020. 

[2] Fereral Aviation Administration, Advisory Circular 150/5060-5 Airport 
Capacity and Delay, September 23, 1983, Change 2 ver. December 1, 
1995.  

[3] Robert Horonjeff; Francis X. McKelvey; William J. Sproule; Seth B. 
Young. Planning and Design of Airports, Fifth Edition (McGraw-Hill 
Education: New York, Chicago, San Francisco, Athens, London, Madrid, 
Mexico City, Milan, New Delhi, Singapore, Sydney, Toronto, 2010). 

[4] National Academies of Sciences, Engineering, and Medicine 2012. ACRP 
Report 79: Evaluating Airfield Capacity. Washington, DC: The National 
Academies Press. https://doi.org/10.17226/22674. 

[5] Lee J.S., Nielsen R.O., Davis H.H. and Dunholter P.H., 2011, “Acoustic 
Airport Surveillance System”, Patent No. US 8,059,489 B1, United States 
Patent. 

[6] Rashidi A. and Markovic N., 2020, “Automated Image-Based Aircraft 
Tracking and Record-Keeping for Utah Airports”, University of Utah. 

[7] Sun, J., Ellerbroek, J., & Hoekstra, J., 2016, “Large-Scale Flight Phase 
Identification from ADS-B Data Using Machine Learning Methods”, In 
D. Lovell & H. Fricke (Eds.), 7th International Conference on Research 
in Air Transportation, Philadelphia, USA. 

[8] Sun, J., Ellerbroek, J., & Hoekstra, J., 2017, “Modeling Aircraft 
Performance Parameters with Open ADS-B Data”, 12th Air Traffic 
Management Research and Development Seminar (ATM2017), USA.   

[9] Hochreiter, S. & Schmidhuber, J"urgen, 1997. Long short-term 
memory. Neural computation, 9(8), pp.1735–1780. 

[10] Meijers, N.P. & Hansman R.J., 2019, “A Data-Driven Approach to 
Runway Occupancy Time”, AIAA Aviation 2019 Forum, Dallas, Texas, 
USA. 

[11] Kumar V., Sherry L. & Kicinger R.., 2009, “Runway Occupancy Time 
Extraction and Analysis using Surface Track Data”, George Mason 
University, USA 

[12] Sun, J., Ellerbroek, J., & Hoekstra, J., 2017, “Flight Extraction and Phase 
Identification for Large Automatic Dependent Surveillance-Broadcast 
Datasets”, Journal of Aerospace Computing, Information and 
Communication, DOI: 10.2514/1.I010520, the Netherlands 

 

AUTHORS’ BIOGRAPHIES 
Danae Mitkas is a graduate research associate at the University 
of Maryland, graduating with her MS in Civil Engineering in 
May 2021. 
 
David J. Lovell is Professor of Civil and Environmental 
Engineering at the University of Maryland, College Park. He 
holds a joint appointment with the Institute for Systems 
Research, and he is the Director of the Gemstone Honors 
Program. He is also Director of the NEXTOR III Aviation 
Operations Research Consortium led by the University of 
Maryland.  
 
Sandeep Venkatesh is a graduate research associate at The 
Ohio State University, graduating with his MS in Computer 
Science in May 2021. 
 
Seth B. Young is the McConnell Chair of Aviation at the 
Center for Aviation Studies, and Associate Professor of Civil, 
Environmental and Geodetic Engineering at The Ohio State 
University.  Dr. Young is a co-Director of the NEXTOR III 
Aviation Operations Research Consortium.   
 
 

 

 

https://doi.org/10.17226/22674

	I.  INTRODUCTION
	A. Introduction
	B. Motivation
	C. Background: Historical Airport Capacity Models
	D. Automated Dependent Surveillance – Broadcast (ADS-B)

	II. PREVIOUS RESEARCH
	A. Airport capacity modeling
	B. Use of ADS-B data

	III. ADS-B DATA COLLECTION
	A. Data Collection Apparatus
	B. Data Collection Software
	C. Data Collection Environments

	IV. DATA PROCESSING AND ANALYSIS
	A. Categorizing into operations using the LSTM Neural Network Modeling Framework
	B. Handling unreliable altitude data
	C. Measuring performance
	1) Approach Speed: Approach speed is the ground speed that aircraft have before approaching the runway to land (i.e. during their final approach) and varies based on the aircraft type. To measure the approach speed all messages from aircraft heading t...
	2) Runway Occupancy Time (ROT): ROT is defined as the time that an aircraft is occupying the runway.  For arriving aircaft this time starts from the moment an aircraft crosses the runway threshold upon landing to the time it exits the runway.


	V. FINDINGS
	VI. FUTURE RESEARCH
	Acknowledgment
	References
	Authors’ Biographies


