
Fourteenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2021)

Protocol-Based Congestion Management for
Advanced Air Mobility

Christopher Chin, Karthik Gopalakrishnan, Hamsa Balakrishnan
Massachusetts Institute of Technology

Cambridge, MA, USA
{chychin, karthikg, hamsa}@mit.edu

Maxim Egorov, Antony Evans
Airbus UTM

Sunnyvale, CA, USA
{maxim.egorov, tony.evans}@airbus-sv.com

Abstract—Advanced air mobility operations (e.g., air taxis and
drone deliveries) are expected to significantly increase the
demand for limited airspace resources. Two key characteristics
of these operations are that flights will be scheduled with short
lead times, and operators may be unable or reluctant, for reasons
of privacy, to share flight intent information. Consequently,
there is a need for congestion management algorithms that are
efficient and fair in dynamic, reduced-information settings. In
this paper, we address these challenges by designing a protocol
that determines the “rules-of-the-road” for airspace access under
these settings. The proposed protocol centers on the construction
of priority queues to determine access to each congested volume
of airspace. We leverage the concepts of backpressure and
cycle detection to avoid gridlock and promote efficiency, and
present several flight- and operator-level prioritization schemes.
We evaluate the impacts of the prioritization schemes on system-
wide and operator-level efficiency and fairness through extensive
simulations of three scenarios: random flight patterns, cross-
flows, and hub-based operations. In all scenarios, we find that
backpressure prioritization yields the most efficient solution, and
that accrued delay or dominant resource prioritization is the
most fair depending on the user’s choice of fairness metric.

Keywords—Advanced air mobility, UAS traffic management,
congestion control protocols, efficiency, fairness

I. INTRODUCTION

We study the problem of congestion management for
autonomous aircraft operations, with the goal of supporting
advanced aerial mobility services including urban air mobility
(UAM) and unmanned aircraft systems (UAS) [1]. The basic
premise is that for safe operations, a minimum separation
must be maintained between any two vehicles when in flight.
To ensure that minimum separation requirements are not
violated, it is common to define three-dimensional volumes
of airspace, or sectors, with capacities that limit the number
of vehicles that simultaneously occupy the sector [2]. The
capacity of a sector is determined by several factors, such
as the size and shape of the sector, separation requirements,
coordination capabilities of vehicles flying in the sector, and
typical traffic flow patterns within the sector. Our objective
is to design a control algorithm that ensures sector capacity
constraints are satisfied. This algorithm can be implemented
as a traffic management service (e.g., through a UAS Service

This work was supported in part by A3 (by Airbus) under contract
number 40008574 and the NASA University Leadership Initiative (grant
#80NSSC20M0163). This article solely reflects the opinions and conclusions
of its authors and not any NASA entity.

Supplier [3], a U-Space Service Provider [4], or a Provider of
Services for UAM [5]) that helps facilitate safe and efficient
airspace utilization.

Congestion and sector capacity constraints in air traffic
management have traditionally been addressed by solving
a centralized traffic flow optimization problem [6]. In this
paradigm, the schedules and desired trajectories of all flights
being planned are known in advance (as is the case with
commercial aviation), and an optimization problem is solved
to obtain revised schedules that ensure compliance with air-
port and sector capacities. Traffic management for advanced
aerial mobility applications is likely not compatible with
this approach for three main reasons. First, many of these
applications are for on-demand services, with the demand
for a flight materializing with little advance notice, making
long-term aggregate planning impossible. Second, because of
competitive factors, operators may not want to share the entire
planned trajectory of their flights. Third, a fully centralized
architecture is not expected to scale sufficiently to support the
expected levels of demand. A federated architecture, in which
multiple service suppliers support the traffic management of
unmanned aircraft through coordination, has therefore been
proposed [7]. Such coordination, however, requires the spec-
ification of a protocol for resource allocation. We therefore
revisit the problem of airspace congestion management with
a focus on developing protocols that enable large-scale, effi-
cient and fair operations with dynamic demand and reduced
information sharing. There are four properties that we desire
of our proposed congestion management protocol:

1) Efficiency: The total delays experienced by the vehicles
should be low.

2) Reduced Information Sharing: Vehicles should only
need to share their intent for some subsequent pre-
specified time-interval, and not for their entire flight.

3) Scalability: The protocol should be easy to implement
at-scale in a federated architecture.

4) Fairness: The protocol should consider fairness across
vehicles and operators, to incentivize user adoption.

A. Prior work

Congestion control protocols have been studied in sev-
eral contexts, including communication networks [8], sur-
face transportation [9], and air traffic management [10].
The solution approaches proposed in literature range from

queue-length management protocols [11] to dynamic traffic
routing, demand management [12], backpressure algorithms
[13], [14], and optimal network flow management [6], [15]. A
major focus of prior work has been on improving efficiency,
i.e., increasing system throughput, or maximizing resource
utilization. Furthermore, the decentralized nature of many of
these approaches makes applications to large-scale systems
(e.g., internet or road networks) tractable, while limiting the
amount of information shared with a centralized agent.

Fair congestion control has been studied in the context of
routing packets in communication networks [16]. The simpli-
fying assumptions typically made, such as infinite buffers at
congested resources, high traffic volumes that can be approxi-
mated as fluid flows, and the presence of only one congested
resource in the path of a packet, are rarely satisfied in air
traffic networks. As a result, fairness in air traffic management
has generally only been evaluated either through first-come-
first-served simulations [17], or in centralized settings with
full information sharing [18], [19]. By contrast, we aim to
explicitly incorporate fairness preferences into the design of
a congestion management protocol.

The idea of distributed protocols for air traffic management
is not a new one [20], [21]; researchers have proposed rules-
of-the-road style protocols [22], Markov decision process
models [23], and speed control algorithms [24]. Our contribu-
tion is the incorporation of fairness and reduced information
sharing to this class of algorithms that has historically focused
only on safety and efficiency.

B. Contributions and findings

We develop a congestion management protocol to ensure
that airspace sector capacity constraints are not violated. The
key contribution of our work is a framework that uses priority
queues at sectors, using user-specified priority functions to
determine which flights can access constrained sectors. This
framework a) identifies cycles in a distributed manner to
avoid gridlock, b) prioritizes the resolution of conflicts at
sectors with a high “backpressure” to minimize downstream
congestion or gridlocks, c) only requires sharing of the
trajectory information for the next time step with neighboring
sectors to improve scalability and reduce information sharing,
and d) supports a wide variety of fairness objectives, for both
individual flights and their operators.

Our main findings are as follows:
1) Intra-operator deconfliction (i.e., an operator deconflicts

its own flights from each other before filing trajectory
requests), results in lower system-wide efficiency and
fairness. In other words, it is preferable to allow the
protocols to perform any necessary deconfliction by
considering all operators.

2) Prioritizing flights based on the backpressure metric
maximizes efficiency (i.e., minimizes total delays).

3) Prioritizing flights based on the accrued delay metric
maximizes one notion of system-wide fairness (i.e.,
minimizes the standard deviation of flight delays).

4) Dominant resource fairness (DRF) prioritization
achieves fairness as defined by a metric that considers
excess and expected operator delays. Furthermore,

DRF results in lower delay for the operator whose
flights impose less externality (defined as the expected
delay when it is the sole operator) on the system.

C. Paper outline

We formulate the congestion management problem in Sec-
tion II. We present the general framework of our protocol
in Section III, and discuss specific prioritization schemes in
Section IV. We evaluate the performance of our protocol
using three traffic patterns in Section V and discuss notions
of operator fairness. Finally, we conclude with a summary
and directions for future work in Section VI.

II. PROBLEM SETUP

We consider a setting where there are no reroutes, and the
only congestion management action that can be taken is when
to allow a vehicle to enter a sector. Once a vehicle is in a
sector, it cannot be forced to leave the sector. We consider
a discrete-time setting, where each vehicle can only occupy
one sector at any time. We use the following notation:

T : Set of time periods {1, . . . , t, . . . , T}
S : Set of sectors {1, . . . , Nsectors}
O : Set of operators {1, . . . , Noperators}
V : Set of vehicles {1, . . . , Nvehicle}
Vo : Set of vehicles operated by o ∈ O
Va : Set of active vehicles, i.e., ready to depart or

currently airborne
C(s, t) : Capacity of sector s ∈ S at time t ∈ T
orig(i) : Origin of vehicle i ∈ V
dest(i) : Destination of vehicle i ∈ V
d(i) : Scheduled departure time of vehicle i ∈ V
a(i) : Scheduled arrival time of vehicle i ∈ V

x(i, t) : Sector for vehicle i ∈ V at time t ∈ T
x̂(i, t) : Intended sector at time t+ 1 for vehicle i ∈ V

based on information at t
x(t) : Sectors for all vehicles i at time t
x̂(t) : Intended sectors for all vehicles i at time t+1

based on information at t
G : Vehicles that can proceed to their next sector
H : Vehicles that must hold in their current sector

del(i) : Total delay assigned to vehicle i
del(i, t) : Binary variable representing the delay assigned

to vehicle i in time-step t
µsyst : Mean system delay, 1

|V|
∑
i del(i)

µopero : Mean system delay for operator o ∈ O,
1
|Vi|

∑
j∈Vi del(j)

σsyst : Standard deviation of delays for all vehicles in
the system,

√
Vari∈V [del(i)]

We explore efficiency and fairness on flight- and operator-
levels. At the flight-level, high system efficiency corresponds
to low µsyst, and high system fairness corresponds to low
σsyst. For operators, high efficiency corresponds to low µoperi .
Fairness across operators is more nuanced, as it is a function
of the mean delays they experience (measured by µoperi) and
the baseline congestion contributed by their operations. This
is discussed in further detail in Section V.D. Lastly, we define
a safe congestion management protocol to be one that ensures
C(s, t) is not violated ∀ x(t).

We are interested in developing a safe congestion man-
agement algorithm that maximizes efficiency and fairness for
vehicles as well as operators. One approach would be to set up
an optimization problem with x(t), x̂(t), and C(s, t) at every
time instant t to determine which vehicles can proceed (i.e.,
determine del(i, t)). However, this requires that all vehicles
share their current location and intent with a central authority
that will then solve the optimization problem. Instead, we
seek to reduce information sharing by solving this problem
with minimal information at each sector to determine which
vehicles can access it in the next time-step.

We now describe our information exchange constraints
in greater detail. We assume that each vehicle i conveys
its intent to use sector x̂(i, t) to that sector. Recall that if
x̂(i, t) = x(i, t), then by definition, the vehicle is allowed
to stay in that sector. We further allow each sector i to
communicate with all sectors j adjacent to i the identity of
vehicles that want to access sector i. Crucially, sector i only
shares the identity of these vehicles, but not the position. This
is necessary for sectors to identify cycles (Section III.C). In
addition, we allow sector i to signal a scalar value indicative
of upstream congestion (i.e., the length of built-up queue) to
its neighboring sector j (Section III.D). For example, sector i
can convey to sector j that it has a queue of length 7 which is
blocked by the vehicle wanting to proceed from i into j, but
it does not reveal the location of these 7 vehicles. We assume
that all sectors convey this information truthfully. An analysis
of the incentive-compatibility of this mechanism is beyond the
scope of this paper. We refer to this set of communication
rules between sectors as the information sharing constraints.

In summary, our goal is to develop a congestion manage-
ment protocol that is safe, efficient, fair, and satisfies our
information sharing constraints.

III. CONGESTION MANAGEMENT PROTOCOL

In this section we develop the congestion management
protocol, discuss a key feature that ensures that gridlocks
are avoided, and present canonical approaches that serve as
baseline prioritization schemes.

A. Setup

We make two simplifying assumptions. First, we set the
capacity of each sector to one (although our approach gener-
alizes to capacities greater than one). This can be realized in
practice by defining a sector as a sufficiently small volume of
airspace. Second, we assume that every vehicle either intends
to a) stay in its current sector, or b) move to an adjacent sector.
In practice, this means that the time discretization is small
enough to capture the resource utilization of the vehicles.

Fig. 1 presents a simple visualization of the setup. Each
grid cell is a sector with capacity 1. The tail and head of each
arrow correspond to the present location x(i, t) and intended
location x̂(i, t) of each vehicle. The congestion management
algorithm needs to determine which vehicles can move along
the direction of the arrow. In other words, if a vehicle i ∈ V
has del(i, t) = 1, it means that it cannot travel to its intended
sector and must try again in the next time period. In practice,
vehicle i could absorb this delay with airborne holding, a

speed change, or a path stretch, as long as it stays within
x(i, t). By contrast, a vehicle with del(i, t) = 0 is assigned
no delay and can proceed to its next intended sector x̂(i, t).

Figure 1: A simple example of the system state at time t,
showing the current and intended sectors of all vehicles, with
an example of a cycle in green.

We make a few observations about this problem setup.
First, if there is a sector into which only one vehicle wants
to enter, then the optimal—and trivial—solution would be to
set del(i, t) = 0 for that vehicle. Case (a) in Fig. 1 shows
an example of this. Second, in the scenario described in Case
(b), we notice that vehicles with their trajectory intent marked
in green form a “cycle”. This means that either all of them
are allowed to move, or none of them can. Furthermore,
there is no feasible way in which any additional vehicle
attempting to access the sectors occupied by the cycle can be
allowed to do so while the cycle exists, because of capacity
constraints. For example, the vehicles marked in blue that are
incident on the green cycle cannot proceed while the green
cycle exists. Third, Case (c) highlights a scenario in which
there are multiple “connected” sectors where vehicles need
to be deconflicted. A deconfliction decision at one of these
sectors can have cascading effects on the decisions for the
other sectors, so the order in which sectors are deconflicted
is important.

B. Overview of the protocol

While being cognizant of the three observations on Fig. 1,
we present the framework for our congestion management
protocol, which is run at every time-step. We divide our
protocol into six steps, with references to the appropriate line
numbers in Algorithm 1.

Step 1: Initialization (Lines 1-3). We initialize two lists,
a hold list H and a go list G. Vehicles in H will be forced
to hold and stay in the same sector in the next time-step,
whereas vehicles in G will be allowed to proceed to their
desired next sector. We update the list of active vehicles Va
by removing vehicles that have arrived at their destination
and adding vehicles that are scheduled to take off.

Step 2: Identify and prioritize cycles (Lines 4-7). From
Case (b) in Fig. 1, we know that cycles need to be identified

and prioritized as soon as they appear. Until a cycle is cleared,
it will block all sectors that it occupies. We identify vehicles
in cycles (Vc) and add them to G. To make way for vehicles
in Vc, we add vehicles incident on cycles to H and force them
to hold (i.e., their next sector is set to their current sector).

Step 3: Compute sector prioritization (Lines 8-9). Now
that the cycles have been resolved (for this time-step at least),
we need to decide the order in which to deconflict sectors.
Case (c) in Fig. 1 shows an example of the dependencies
between sectors. We calculate the backpressure at each sector
and will deconflict the sector with the highest backpressure
first. We will formalize the notion of backpressure in Section
III.C, but it provides a measure of the queue build-up incident
on a sector.

Step 4: Loop through sectors (Lines 10-12). Based on
the order determined in step 3, we complete steps 4-6 for
each sector. For the highest priority sector yet to be managed,
we split the vehicles that want to use this sector in the next
time-step into two categories: undecided vehicles (Vu) and
decided vehicles (Vd). Vu contains vehicles that the sector is
undecided on whether to allow them to enter the sector, and
Vd contains vehicles for whom actions are decided (i.e., they
are in either G or H). Now, one of the two scenarios will
occur:

Step 5a: Case of capacity exceeds demand (Lines 14-15).
If the sector capacity is sufficiently high to allow all inbound
traffic, then we add Vu to G.

Step 5b: Case of demand exceeds capacity (Lines 17-
21). If there is insufficient capacity to allow all vehicles, then
we use one of several prioritization schemes to pick which
vehicle gets to proceed. These prioritization schemes can be
on a vehicle-level or operator-level and are described in detail
in Section III.E and IV. These vehicles are removed from Vu
and added to Vd and G. We keep prioritizing vehicles until
all capacity is used or there are no more vehicles in Vu.

Step 6: Delay all unassigned vehicles (Lines 24-25). If
capacity is fully used and there are still vehicles in Vu, we
add all Vu to H and force them to hold at their current sector.

Two main components of this algorithm are the FINDCY-
CLES and CALCULATEBACKPRESSURE functions, which we
will describe next. A key requirement in designing these func-
tions is that they satisfy the information-sharing constraints.

C. Computing cycles

The goal is for sectors to share limited information and
identify vehicles incoming into it that are in cycles. We use
an adapted Rocha-Thatte cycle detection distributed algorithm
[25]. We have a finite directed graph G := (S, E) where the
vertices are the set of sectors S and the edges are defined with
tail x(i, t) and head x̂(i, t), ∀i ∈ V . Under our assumptions,
each sector is only aware of incoming and outgoing vehicles.
We use rounds of “bulk synchronous message passing” to
identify cycles. For each sector, we define three sets. The
first is the set of incoming vehicles V−s = {i ∈ Va |
x̂(i, t) = s}. Next, we define a sector’s in-neighbors as
N−s = {x(i, t), ∀i ∈ V−s }. These are adjacent sectors that
want to hand-off a vehicle to s. Similarly, we define a sector’s
out-neighbors as N+

s = {x̂(i, t), ∀v ∈ Va | x(i, t) = s}.

Algorithm 1 PROTOCOL(x, x̂, Va, S, C)

1: H ← {}, G ← {}
2: Va ← Va \ (i ∈ V | x(i) = dest(i))
3: Va ← Va ∪ (i ∈ V | d(i) = t)
4: Vc ←FINDCYCLES(x, x̂)
5: G ← G ∪ Vc
6: H ← H∪ (i ∈ V | ∃ g ∈ G | x̂(i, t) = x̂(g, t))
7: x̂(i, t) = x(i, t) ∀ i ∈ H
8: B ←CALCULATEBACKPRESSURE(x, x̂,Va,S)
9: SORT S IN ORDER OF B

10: for s ∈ S do
11: Vu ← i ∈ V | x̂(i, t) = s and ∼ (i ∈ G or i ∈ H)
12: Vd ← i ∈ V | x̂(i, t) = s and (i ∈ G or i ∈ H)
13: if C(s, t+ 1) > |Vd| then
14: if |Vu| ≤ C(s, t+ 1)− |Vd| then
15: G ← G ∪ Vu
16: else
17: while C(s, t+ 1) > |Vd| do
18: p← PRIORITIZEVEHICLE(x, x̂,Vu)
19: G ← G ∪ p
20: Vu ← Vu \ p, Vd ← Vd ∪ p
21: end while
22: end if
23: end if
24: H ← H ∪ i ∈ Vu
25: x̂(i, t) = x(i, t) ∀ i ∈ H
26: end for
27: return x, x̂

In each round, each sector s passes a message to its out-
neighbors. That is, messages are passed along the edges E,
between sectors. In the first round, this message contains the
incoming vehicles into s, V−s . In subsequent rounds, each
sector appends V−s to each message that they received in the
previous round and passes it along. A sector s knows that one
of its incoming vehicles v ∈ V−s is part of a cycle if it sees v
in a received message. Consider the example cycle shown in
green in Fig. 2. The vehicles are labeled, with v2 currently in
f2 and wanting to proceed into g2. In the first round, sector
g2 sends the identity (but not position) of v2 to sector g1
and receives the identity of v1 from sector f2. In the next
round, sector g2 sends a message with v2 and v1 to sector
g1. Once sector g2 receives a message containing v2, it knows
that v2 is part of a cycle and can prioritize it. While sector
g2 can determine the identity of all the vehicles in the cycle,
it cannot extrapolate the precise location of each vehicle for
cycles longer than four vehicles. Moreover, it cannot identify
the position of any vehicle in incoming messages that is not
part of a cycle. This achieves the goal of finding cycles under
our information sharing constraints.

D. Computing backpressure

We use backpressure to determine the order in which
to deconflict sectors S. To motivate why this is necessary,
consider what would happen if sector d2 was deconflicted
first, followed by e3 in Fig. 2. Sector d2 may choose to allow
the vehicle from d1 to enter. This would block vehicles in

Figure 2: Example of system state with cycle in green (with
vehicle IDs labeled) and non-cycle vehicles in other colors
(with integers representing the backpressure).

b2 and c2, and force the vehicles in d2 and e2 to proceed.
Note that the need to force vehicles out of currently occupied
sectors would add additional communication overhead. When
sector e3 is deconflicted, it would not get to choose between
prioritizing vehicles in e2 and f3, because the vehicle in e2
must proceed to avoid gridlock from sector d2’s deconfliction.
This would lead to a suboptimal solution, as at most 3 non-
cycle vehicles (occupying d1, d2, and e2) would be allowed
to proceed, compared to possibly 5 non-cycle vehicles (occu-
pying f3, g3, h3, h2, and i2). It would in fact be optimal to
deconflict sector e3 first, followed by sector d2. Computing
backpressure will allow us to do that.

In road networks, backpressure for a traffic movement can
be the number of vehicles in a queue [13]. Queues with large
build-ups are generally prioritized. We adapt similar logic to
determine the order in which sectors are deconflicted. As with
cycle detection, each sector s passes a message to its out-
neighbors, N+

s . There are no rounds of messages, however.
The message is a modified backpressure metric equal to the
maximum number of vehicles that could proceed as a direct
consequence of allowing v to proceed to out-neighbor r where
x(i, t) = s and x̂(i, t) = r. For example, in Fig. 2, sector
e2 sends a backpressure value of 4 to e3 because at most
4 vehicles could proceed if the vehicle at e2 is permitted
to enter e3. Note that sectors that are part of cycles do
not pass backpressure messages. To compute backpressure,
we start with sectors that do not have any in-neighbors but
have some out-neighbors (e.g., a1, b2, d1, and i2). They
pass a backpressure value of 1 to out-neighbors. Once a
sector has received backpressure values from all of its in-
neighbors, it sends the max(bq) + 1, ∀q ∈ N−s to all sectors
r ∈ N+

s . For example, sector d2 sends a backpressure value
of max(2, 1)+1 = 3 to sector e2. This process continues until
all sectors with in-neighbors have received a backpressure
value. With this heuristic, sector e3 would be deconflicted
before d2, which gives the opportunity for the highest number
of vehicles to proceed.

E. Baseline prioritization schemes

The most flexible and modular component of our algorithm
is the PRIORITIZEVEHICLE function. The key characteristics
of a sector-prioritization protocol is deciding the number of
queues (e.g., one for each adjacent sector or one for each
operator), the prioritization scheme used within a queue (e.g.,
time spent in queue or current delay of vehicle), and the logic

for selecting a queue in case of multi-queue architectures
(e.g., round-robin or random). Three candidate queue network
architectures are presented in Fig. 3. Thus, a PRIORITIZEVE-
HICLE function requires that we specify the queue architecture
(either (a), (b), or (c)), the queue selection logic, and the
priority scheme for each queue.

We first present two intuitive baselines, which will be used
for benchmarking the performance of our other schemes. Note
that some of the schemes can be implemented differently de-
pending on whether we are focused on vehicle-level efficiency
and fairness or operator-level efficiency and fairness.

Random prioritization: We create a merged priority queue
and assign a random priority score (αi in Fig. 3(b)) to each
of the vehicles.

Round-Robin prioritization: We use a sector-specific
priority queue with first-come-first-served prioritization (i.e.,
highest priority for the vehicle which has been in the queue
the longest). The queues are selected in a round-robin fashion
with one vehicle allowed per queue per round. Round-robin
prioritization can also be performed on an operator-level,
whereby operator-specific priority queues are selected in a
round-robin fashion as shown in Fig. 3(c).

Figure 3: Potential queue prioritization schemes for imple-
menting the PRIORITIZEVEHICLE function.

IV. PRIORITIZATION SCHEMES

In this section we present four implementations of the PRI-
ORITIZEVEHICLE function. The impact of these algorithms
on efficiency and fairness will be discussed in Section V.

Backpressure prioritization: The backpressure metric is
computed for each vehicle. When considering system-level
performance, we use a merged priority queue, with the prior-
ity score equal to the backpressure for each vehicle. Backpres-
sure prioritization can also be performed on an operator-level.
In that case, we use a merged operator-specific queue. The
queue corresponding to the operator with the highest total
backpressure across all of its vehicles is chosen. Intuitively,
the idea of this prioritization is to prioritize vehicles that have
a higher potential to clear upstream congestion.

Backpressure prioritization can be shown to minimize
the total system delays at that time-step (i.e., to minimize

∑
i del(i, t)) among all possible solutions at time t. We do

not include this proof here for brevity.
Accrued delay prioritization: Accrued delay is the delay

that each vehicle has accumulated up to that point [26]. It
can include delay accumulated during the current trip, as well
as delay accumulated in previous trips operated by the same
vehicle. Accrued delay prioritization orders vehicles based on
their accrued delay, in descending order. More formally, this
approach uses a merged priority queue, where the priority
score for vehicle i, αi = (Accrued delay)i. The goal is
to minimize additional delay for vehicles that have already
been delayed. Accrued delay prioritization can be applied
at the vehicle-level as described above, or at the operator
level. In this case, a merged operator-specific priority queue
architecture is employed, with the queue corresponding to the
operator i with higher

∑
j∈Vi αj being prioritized.

Reversals prioritization: In this approach, a fair solution is
one in which the relative ordering of arrivals at any resource is
preserved according to the unimpeded schedule. Each vehicle
keeps track of how many times it has encountered a resource
in which its relative ordering was not preserved; this is called
a reversal. For example, if vehicle A was originally scheduled
to arrive at a resource before vehicle B, but instead vehicle
B arrives before A, we count this as one reversal for A (and
zero for B, since it benefited). Each vehicle keeps track of how
many reversals it has experienced so far along its trajectory,
so reversals may not necessarily have occurred at the current
sector. Now, we set the priority score for vehicle i, αi =
(reversals)i. For flight-specific prioritization, we use a merged
priority queue, and when implementing an operator-specific
algorithm, we use merged operator-specific priority queues.

Dominant resource fairness prioritization: Dominant Re-
source Fairness (DRF) is a solution for fair resource allocation
with several desirable properties, like information sharing
incentives and strategy-proofness [27]. For each operator and
at each sector, we compute the resource share Ro(s, t) that
has been allocated to Operator o at sector s up through time t.
When computing resource share, we account for resource al-
location in the last Tb time-steps, with Tb = 10 assumed. If we
define Uo(s, t) as the capacity allocated to operator o in sector
s at time t, resource share Ro(s, t) =

∑
i∈[t−Tb,t]

Uo(s,i)
C(s,i) .

The dominant share of an operator is the largest proportion
of a resource that it consumes among all of the resources
it uses (Do(t) = max(Ro(s, t) ∀s ∈ S). The dominant
resource is the resource corresponding to the dominant share.
The assumption with DRF is that equalizing dominant share
among operators is fair. Thus, with each resource allocation,
DRF prioritizes the operator with the lowest dominant share.
In this paper, we consider DRF prioritization on an operator-
level (not on a vehicle-level). We set the priority score for
operator o to be αo = 1/Do(t), and use a merged operator-
specific priority queue.

V. NUMERICAL EVALUATION OF PROTOCOLS

We evaluate our protocol using three traffic scenarios:
a) random flight patterns, b) cross-flows, and c) hub-based
operations. We also discuss the impacts of intra-operator de-
confliction before the protocol is run. Finally, we present the

impacts on efficiency and fairness of flight-level prioritization
and operator-level prioritization.

A. Scenario descriptions

Random flight trajectories (Scenario A): We generate
a random scenario with two operators with 62 flights each
departing across 50 time-steps, indexed by t. We define
13×13 square-shaped enroute “high” sectors, and the same
number of sectors at ground-level (“low” sectors) to represent
vertiports. Each low sector is assigned a random relative
weight ∈ (0, 1). The sum of all relative weights is equal to
1. The origin and destination of each vehicle is randomly
chosen based on the relative weights, simulating the fact
that certain sectors will be more popular origins/destinations
than others. Each vehicle’s desired trajectory is assumed to
be the shortest path trajectory from its origin to destination.
Further, we assume that each vehicle transitions from the low
sector to the high sector immediately after departure and from
the high sector to the low sector upon arrival. We randomly
sample the departure time based on a bi-modal distribution
with the highest peak at t = 40 and another peak at t = 20.
Based on the shortest path trajectory, we identify the sectors
that each flight must cross. We assume a travel time greater
than or equal to the number of sectors a vehicle traverses. A
visualization of the traffic pattern is shown in the left side of
Fig. 4(a). The ticks on the edge of the figure denote the size
of the sector.

Cross-flow flight trajectories (Scenario B): We generate
a scenario with two crossing flows. Operator 1 has 60 flights
traveling in the east-west direction, whereas Operator 2 has 40
flights traveling north-south. Each operator has five possible
origins and five possible destinations to achieve appropriately-
oriented flows. Assumptions on sector geometry, departure
time, and travel time remain the same as in Scenario A.
This scenario helps evaluate our the performance of our
protocol in unbalanced, cross-flow traffic. A visualization of
the corresponding traffic pattern is shown on the left side of
Fig. 4(b).

Hub-based trajectories (Scenario C): We use a hub-
based package delivery scenario where four operators have
warehouses on the outskirts of the city and make deliveries
in locations randomly distributed around the city [28]. The
demand is generated using a Poisson process. Operator 1 has
hubs in the North and West with 66 flights, and Operator 2
has hubs in the South and East with 58 flights. A visualization
of the traffic pattern is shown in the left side of Fig. 4(c).

In all three scenarios, each vehicle is required to transmit
its current sector and its desired next sector to its next sector.
If queried, vehicles also share fairness metrics, like accrued
delay. We assume that each vehicle does not share other
information, conforms to its route, and complies with the
protocol, holding or proceeding as dictated. Recall that there
are six prioritization schemes that we evaluate. Three of the
six prioritizations (round robin, accrued delay, reversals) can
be applied on a flight-level or operator-level; random and
backpressure are only applied on a flight-level; and dominant-
resource fairness (DRF) is only applied on an operator-level.

We conduct 100 trials for each prioritization scheme to
account for the inherent randomness in the protocols. If all
conflicting vehicles either a) belong to the same operator, or b)
have the same priority according to the prioritization scheme
(e.g., same accrued delay value), then backpressure is used as
the tie-breaker for prioritization. We default to backpressure
when fairness considerations are equal, since backpressure
is expected to result in the minimum delay. However, if the
fairness metric and backpressure of conflicting vehicles are
the same, the sector randomly chooses to prioritize one of
the vehicles. Such random tie-breaking usually happens in
early time-steps and can have far-reaching and unpredictable
downstream impacts on fairness and efficiency. We therefore
conduct multiple trials for any given prioritization scheme and
report the average values in the figures.

B. Intra-operator deconfliction

We assume that each operator has the full desired 4-D
trajectory (three spatial dimensions plus time) of its vehicles
before the start of the simulation. An operator may choose
to deconflict its flights before the protocol (“intra-operator
deconfliction”. We use an unmanned traffic management
flow (UTFM) optimization formulation to model the intra-
operator deconfliction. We solve this model assuming the
same capacity constraints, but without knowledge of other
operators’ flights. UTFM outputs a modified trajectory for
each vehicle, and minimizes system total delay cost (TDC).
TDC is the weighted sum of ground delay cost and airborne
delay cost, where ground delay is preferred. Ground delays
result in later departure times for vehicles, while airborne
delays lead to longer occupancy times in sectors. The details
of the optimization formulation to solve this strategic problem
can be found in [18]. The original trajectory of these vehicles
is still used for computing delay and fairness metrics.

With intra-operator deconfliction by Operator 1, if there
were no other operators, there would be no conflicts (and
no need for the protocol). With the addition of Operator
2, there will be conflicts, but fewer than there would have
been without intra-operator deconfliction, since vehicles of
Operator 1 will have fewer conflicts among their trajectories.
Conflicts between vehicles of Operator 1 may still occur
with intra-operator deconfliction, due to delays resulting
from inter-operator conflicts. That is, even though Operator
1 deconflicted its vehicles in advance, further delays will
be required to deconflict with vehicles of other operators,
putting them in conflict with their own vehicles that they were
initially deconflicted with.

We compared the results of each prioritization scheme
with/without intra-operator deconfliction. We present the re-
sults on random flight trajectories scenario (Scenario A) with
flight-level prioritization. We assume that both Operator 1 and
Operator 2 independently conduct intra-operator deconfliction
(“with” case), or neither of them do (“without” case). With
intra-operator deconfliction, the operators added a total of 47
minutes of delay prior to the start of the simulation. Table
I shows the percentage change in a) total delay, b) standard
deviation of flight delay, and c) number of conflicts when
applying intra-operator deconfliction. In every prioritization

mechanism tested, applying intra-operator deconfliction re-
duced the number of conflicts by around 30%, but increased
total delay and standard deviation by 6-12%. This implies
that the delay saved due to the reduced number of conflicts
did not make up for the initial 47 minutes of delay applied.
Flight accrued delay is particularly affected because intra-
operator deconfliction increases accrued delay of some flights
before the simulation. Then, the accrued delay prioritization
expedites these delayed flights at the expense of others.

TABLE I. Percentage change with intra-operator deconfliction
relative to without intra-operator deconfliction for Scenario A.

Prioritization Total Delay Std. Deviation Conflicts
Round Robin 8.8% 8.2% -29.8%

Accrued Delay 11.8% 7.8% -29.5%
Reversals 6.3% 10.5% -31.0%

DRF 6.1% 11.8% -27.7%
Back-pressure 11.8% 12.8% -25.7%

It may be counter-intuitive that intra-operator deconfliction
deteriorates the final solution. However, intra-operator decon-
fliction is inefficient in this case because the operator does
not have sufficient information about other operators to make
informed decisions. These simulations do not represent the
approaches to strategic deconfliction proposed in the literature
that include discovery and synchronization of intent informa-
tion from other operators [7]. Instead, in these simulations
operators do not have any incentive to share flight information
to other operators because of competitive or privacy concerns.
Thus, it is better for operators to send their vehicles out at
their originally scheduled times and rely on the deconfliction
protocol. In optimization problems, it may be better to solve
a global problem rather than several sub-problems. This is the
case for these protocols as well.

C. Fairness and efficiency of flight-level prioritizations

We first discuss the results of flight-level prioritization,
shown in the second column of Fig.4. From this point on,
we assume no intra-operator deconfliction, as we have shown
how it reduces system efficiency and fairness. We use mean
standard deviation of flight delay (henceforth referred to as
“standard deviation”) as a metric for fairness, and mean
total system delay (“total delay”) as a metric for efficiency.
(Recall that we show the mean because we ran 100 trials
for each prioritization scheme.) We show the results of five
prioritization schemes. Note that DRF is not shown in the
center panels of Fig. 4 because we only consider DRF on an
operator-level.

Some initial observations are that Scenario B with cross-
flow trajectories has by far the highest delay and standard
deviation across all prioritizations, even though it has the
fewest number of flights. This is because it has the highest
number of conflicts, particularly in the center. Scenario C
with hub-based trajectories has the next highest total delay
and standard deviation, because it has more conflicts than
Scenario A.

We now consider the best and worst performers in terms
of fairness and efficiency. There is a pattern consistent across
all scenarios in terms of relative efficiency and fairness

Figure 4: Efficiency and fairness of our flight-level and operator-level protocols for three traffic scenarios.

ordering between the prioritization schemes. Prioritizing by
accrued delay (red square) leads to the lowest standard
deviation across all scenarios. This makes sense given that
this approach can balance final delay values by holding
flights with little accrued delay and prioritizing flights with
high accrued delay. Back-pressure (teal diamond) has the
lowest total delay across all scenarios, and therefore highest
efficiency, which is expected given its proven properties in
other settings. Prioritizing randomly is the least fair and least
efficient outcome, which matches our expectations. Round-
robin prioritization leads to more fair and efficient solutions
than random prioritization, but still worse than the other four

prioritizations. Reversals prioritization (purple triangle) is in
between backpressure and accrued delay in terms of total
delay and standard deviation. We hypothesize that there is
a Pareto frontier of different prioritizations that lie between
the solutions of backpressure prioritization and accrued delay
prioritization, and reversals is one of them.

D. Fairness and efficiency of operator-level prioritizations

We now consider the performance of operator-level pri-
oritization, shown in the third column of Fig. 4. We show
the results of six prioritization schemes. Note that random
and backpressure are shown for reference even though they

are prioritized on the flight-level. As with flight-level prior-
itization, we evaluate efficiency with total delay, shown in
green on the right-hand side axis. The trends in total delay
with operator-level fairness are similar to those with flight-
level fairness. Backpressure prioritization remains the most
efficient, whereas random and round-robin prioritizations are
the least efficient. Reversals, DRF, and accrued delay prior-
itizations have similar efficiency, with accrued delay having
the highest total delay.

For evaluating operator-level fairness, we do not show the
standard deviation of flight delays, since prioritizations occur
on an operator level. We instead show mean operator delay
and mean expected delay, which we use to present three
possible notions of operator fairness below:

1) Equal mean operator delay: The idea is to equalize
µopero across operators o ∈ O.

2) Equal mean excess operator delay: The idea here is
that equal mean delays for operators might not capture
the fact that one operator might have an original sched-
ule that has significantly more inherent delays than the
other. For example, in scenario (b), clearly Operator
1 has more flights that cause congestion, even in the
absence of Operator 2. We define the mean expected
delay as the average delay experienced by an operator,
if it were the only user of the system. Denote by µexpo

the mean expected delay of operator o. We define the
mean excess delay as µexco = µopero −µexpo . Excess delay
is philosophically similar to the concept of time-order
deviation introduced in [29], but for multiple flights and
operators instead of multiple congested resources. Thus,
one notion of fairness could be equalizing the excess
delay across operators.

3) Target excess delay ratio: We may want to link the
excess operator delay ratio with the expected operator
delay ratio. Suppose µexp

1

µexp
2

> 1. For each protocol and
scenario, we can construct the relation between excess
delay ratio and expected delay ratio as µexc

1

µexc
2

= α
µexp
1

µexp
2

.
We can choose values of α to target. A value of α < 1
implies that the protocol deemphasizes imbalances in
the expected delays when assigning excess delays. By
contrast, α = 1 means that excess delays were assigned
in proportion to the expected delays, and α > 1 implies
that the imbalances in the expected delays were further
exacerbated when assigning excess delays.

The fairness of prioritization schemes depends on the met-
ric used. For example, with backpressure prioritization with
the cross-flow scenario shown in Fig. 4(b), Operator 1 and
Operator 2 have nearly identical mean delays, which satisfies
operator fairness notion 1. On the other hand, Operator 2
may feel that this is unfair given that Operator 1 has 50%
more flights and 63% more expected delay. Thus, Operator 2
may prefer fairness notions 2 or 3. Note that in all scenarios,
Operator 2 has lower mean expected delay than Operator
1 (and in Scenarios B and C, fewer flights). Because DRF
tries to equalize resource allocation between operators, in all
scenarios, Operator 2 receives the lowest delay with DRF.

Fig. 5 shows the three notions of operator fairness across

the six prioritizations and the three scenarios. Backpressure
generally has the most equal mean operator delay and mean
excess operator delay. The next best two prioritizations in
terms of these two notions of operator fairness are accrued
delay then reversals. DRF has disparate mean operator and
mean excess operator delays (particularly in Scenario B),
but it has α values closest to 1. This indicates that DRF
could be appealing in situations where excess delays should
be assigned in proportion to expected delays. Note that in
Scenario C, DRF has α = 1.12 > 1, indicating that the excess
delay ratio exceeded the expected delay ratio.

There is an inherent trade-off between efficiency (total
delay) and operator fairness. For example, backpressure pri-
oritization leads to the lowest delays but also low α values,
which may be unfair depending on the target. At the other
extreme, DRF has α values close to 1, but higher total delays.
On both counts, accrued delay and reversals fall in-between
backpressure and DRF.

Figure 5: Operator notions of fairness across prioritizations
for Scenarios A-C. The notion of operator fairness is indicated
on top of each plot and on the y-axis label.

VI. CONCLUSIONS

This paper explored the concept of reduced-information
and fair congestion management algorithms for efficient ad-
vanced air mobility operations. Such algorithms are critical to
the development of a traffic management infrastructure that
can support dynamic, low lead-time operations such as drone
deliveries and urban air mobility. Our key contribution lies in
developing reduced-information decentralized protocols that
avoid gridlocks, a frequent pitfall of approaches that do not
rely on centralized coordination. Our protocol is also flexible

and supports a wide variety of user-specified priorities to help
achieve the desired balance between efficiency and fairness
at an operator- or system-wide level.

Our work is the first step in understanding the interplay
between information exchange, efficiency, and fairness in
traffic coordination. In this regard, our analysis is also of
relevance to the problem of coordination and control of road
traffic, especially with the increasing deployment of con-
nected autonomous vehicles. We believe that there are several
directions for future work. First, our analysis in this paper
is largely simulation-based, and there is significant scope
for deriving theoretical guarantees on their performance. For
example, we have been able to prove that the backpressure
algorithm is indeed the minimal myopic (one-step) delay
solution. Operators and flights can easily manipulate the
protocols by misreporting their current state or strategically
filing for particular routes or at specific times to minimize
their overall delays. Identifying robust, strategy-proof, and
incentive-compatible congestion management protocols is
therefore of practical interest. Finally, adding more realism
by incorporating reroutes and simultaneously handling both
on-demand and scheduled aircraft operations will improve the
practical application of the proposed approaches.

REFERENCES

[1] National Academies of Sciences, Engineering, and Medicine,
Advancing Aerial Mobility: A National Blueprint. Washington,
DC: The National Academies Press, 2020. [Online]. Avail-
able: https://www.nap.edu/catalog/25646/advancing-aerial-mobility-a-
national-blueprint

[2] A. Majumdar, W. Y. Ochieng, J. Bentham, and M. Richards, “En-route
sector capacity estimation methodologies: An international survey,”
Journal of Air Transport Management, vol. 11, no. 6, pp. 375–387,
2005.

[3] J. Rios, I. Smith, P. Venkatesan, J. Homola, M. Johnson, and J. Jung,
“UAS Service Supplier Specification: Baseline requirements for provid-
ing USS services within the UAS Traffic Management System,” NASA,
Tech. Rep., 2019.

[4] K. Balakrishnan, J. Polastre, J. Mooberry, R. Golding, and P. Sachs,
“Blueprint for the Sky: The roadmap for the safe integration of
autonomous aircraft,” Airbus UTM, Tech. Rep., 2018.

[5] Federal Aviation Administration, “Urban Air Mobility: Concept of
Operations v1.0,” FAA, Tech. Rep., 2020.

[6] D. Bertsimas and S. S. Patterson, “The air traffic flow management
problem with enroute capacities,” Operations research, vol. 46, no. 3,
pp. 406–422, 1998.

[7] P. Kopardekar, J. Rios, T. Prevot, M. Johnson, J. Jung, and J. E. Robin-
son, “Unmanned aircraft system traffic management (utm) concept of
operations,” in AIAA aviation forum, 2016.

[8] S. H. Low, F. Paganini, and J. C. Doyle, “Internet congestion control,”
IEEE control systems magazine, vol. 22, no. 1, pp. 28–43, 2002.

[9] A. Atta, S. Abbas, M. A. Khan, G. Ahmed, and U. Farooq, “An adaptive
approach: Smart traffic congestion control system,” Journal of King
Saud University-Computer and Information Sciences, 2018.

[10] H. Khadilkar and H. Balakrishnan, “Network congestion control of air-
port surface operations,” Journal of Guidance, Control, and Dynamics,
vol. 37, no. 3, pp. 933–940, 2014.

[11] A. Eryilmaz and R. Srikant, “Fair resource allocation in wireless
networks using queue-length-based scheduling and congestion control,”
IEEE/ACM transactions on networking, vol. 15, no. 6, pp. 1333–1344,
2007.

[12] S. Badrinath, M. Z. Li, and H. Balakrishnan, “Integrated surface–
airspace model of airport departures,” Journal of Guidance, Control,
and Dynamics, vol. 42, no. 5, pp. 1049–1063, 2019.

[13] J. Gregoire, X. Qian, E. Frazzoli, A. De La Fortelle, and T. Wong-
piromsarn, “Capacity-aware backpressure traffic signal control,” IEEE
Transactions on Control of Network Systems, vol. 2, no. 2, pp. 164–173,
2014.

[14] X. Sun and Y. Yin, “A simulation study on max pressure control of
signalized intersections,” Transportation research record, vol. 2672,
no. 18, pp. 117–127, 2018.

[15] M. W. Levin and D. Rey, “Conflict-point formulation of intersection
control for autonomous vehicles,” Transportation Research Part C:
Emerging Technologies, vol. 85, pp. 528–547, 2017.

[16] S. Lu, V. Bharghavan, and R. Srikant, “Fair scheduling in wireless
packet networks,” IEEE/ACM Transactions on networking, vol. 7, no. 4,
pp. 473–489, 1999.

[17] A. D. Evans, M. Egorov, and S. Munn, “Fairness in Decentralized
Strategic Deconfliction in UTM,” in AIAA Scitech 2020 Forum, 2020,
p. 2203.

[18] C. Chin, K. Gopalakrishnan, M. Egorov, A. Evans, and H. Balakrish-
nan, “Efficiency and fairness in unmanned air traffic flow management,”
IEEE Transactions on Intelligent Transportation Systems, pp. 1–13,
2021.

[19] D. Bertsimas and S. Gupta, “Fairness and collaboration in network
air traffic flow management: an optimization approach,” Transportation
Science, vol. 50, no. 1, pp. 57–76, 2015.

[20] M. Ribeiro, J. Ellerbroek, and J. Hoekstra, “Review of conflict resolu-
tion methods for manned and unmanned aviation,” Aerospace, vol. 7,
no. 6, p. 79, 2020.

[21] E. D’Amato, M. Mattei, and I. Notaro, “Distributed reactive model
predictive control for collision avoidance of unmanned aerial vehicles
in civil airspace,” Journal of Intelligent & Robotic Systems, vol. 97,
no. 1, pp. 185–203, 2020.

[22] I. Hwang, J. Kim, and C. Tomlin, “Protocol-based conflict resolution
for air traffic control,” Air Traffic Control Quarterly, vol. 15, no. 1, pp.
1–34, 2007.

[23] H. Y. Ong and M. J. Kochenderfer, “Markov decision process-based
distributed conflict resolution for drone air traffic management,” Journal
of Guidance, Control, and Dynamics, vol. 40, no. 1, pp. 69–80, 2017.

[24] E. Cruck and J. Lygeros, “A mathematical framework for subliminal air
traffic control,” in AIAA Guidance, Navigation and Control Conference
and Exhibit, 2007, p. 6693.

[25] R. Rocha and B. Thatte, “Distributed cycle detection in large-scale
sparse graphs,” in Proceedings of the Simposio Brasileiro de Pesquisa
Operacional Pernambuco, Brazil. Sobrapo, 2015, pp. 25–28.

[26] H. Idris, C. Chin, and A. D. Evans, “Accrued delay application in
trajectory-based operations,” in USA/Europe Air Traffic Management
R&D Seminar, 2019.

[27] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types.” in Nsdi, vol. 11, no. 2011, 2011, pp. 24–24.

[28] M. Egorov, V. Kuroda, and P. Sachs, “Encounter aware flight planning
in the unmanned airspace,” 2019 Integrated Communications, Naviga-
tion and Surveillance Conference (ICNS), 2019.

[29] C. Barnhart, D. Bertsimas, C. Caramanis, and D. Fearing, “Equitable
and efficient coordination in traffic flow management,” Transportation
science, vol. 46, no. 2, pp. 262–280, 2012.

AUTHOR BIOGRAPHIES

Christopher Chin is a PhD Candidate in the Department of
Aeronautics and Astronautics at MIT. His research interests include
optimization and protocols in air traffic management, as well as
crew/airline scheduling.

Karthik Gopalakrishnan is a PhD Candidate in the Department
of Aeronautics and Astronautics at MIT. He is interested in the
modeling, optimization, and control of air transportation networks.

Maxim Egorov is a research scientist at Airbus UTM where he
works on research and development of novel software technologies
for the next generation of air traffic management.

Antony Evans is the Traffic Management System Architect at
Airbus UTM where he works on the system design of digital
traffic management solutions for the next generation of aircraft and
operations.

Hamsa Balakrishnan is the William E. Leonhard (1940) Profes-
sor of Aeronautics and Astronautics at MIT. Her research interests
are in the design, analysis, and implementation of control and op-
timization algorithms for large-scale cyber-physical infrastructures,
with an emphasis on air transportation systems.

