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Abstract—In this paper, a control method that combines model
reference adaptive control (MRAC) and iterative learning con-
trol (ILC) is applied to aircraft trajectory tracking. ILC is
intended for repetition-invariant system dynamics, in which
the nominal dynamic model of the aircraft is assumed to be
known. However, in real operations, this requirement is not
met, as different aircraft perform consecutive flights along the
same trajectory. To address this limitation, a multi-aircraft
transfer learning strategy is proposed, which allows the learned
trajectory knowledge to be transferred to dynamically different
aircraft at each iteration. In order to achieve this, the aircraft’s
baseline controller is augmented with an MRAC, which drives
the system’s performance close to that of a reference model,
and an ILC, which serves as a high-level adaptation scheme
to compensate for repetitive disturbances. According to the
preliminary results obtained from experiments carried out with
various simulated aircraft, taking into account model uncer-
tainties, disturbances, and changing dynamics, the performance
of the ILC in combination with the MRAC augmentation of a
baseline controller is superior to that of the baseline controller
without MRAC augmentation. After a few iterations, a signifi-
cant reduction in the trajectory tracking error is observed, with
only small fluctuations occurring throughout the subsequent
iterations. As a result, the MRAC- ILC combination makes the
ILC applicable to real operations, improves the predictability
of aircraft trajectories, and enhances the efficiency of the air
traffic management system.

Keywords—Aircraft trajectory tracking, iterative learning
control, model reference adaptive control, transfer learning,
trajectory predictability.

I. INTRODUCTION

Air Traffic Management (ATM) is experiencing a transfor-

mation to adapt the air navigation system to the increasing air

traffic demand. This new ATM paradigm is built on trajectory-

based operations (TBO), in which the trajectories are opti-

mized based on the preferences of the airlines. Trajectory pre-

dictability, namely the correspondence between the planned

and flown trajectories, is key to implementing TBOs, which

require high precision in aircraft trajectory tracking. Higher

trajectory predictability implies better traffic synchronization,

which results in an improvement in the safety, efficiency,

and capacity of the ATM system. However, due to multiple

random factors, such as wind and temperature forecast errors
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or unpredictable weather events (mainly storms), some level

of uncertainty remains, hindering precision and resulting

in deviations from the planned trajectory that can neither

be predicted nor compensated by usual aircraft trajectory

tracking controllers.

This article presents the preliminary results of a multi-

aircraft transfer learning method in which Model Reference

Adaptive Control (MRAC) and Iterative Learning Control

(ILC) are combined to achieve precise aircraft trajectory

tracking. In [1], an optimization-based ILC scheme is applied

to trajectory tracking for commercial aircraft, demonstrating

the effectiveness of this approach to compensate for distur-

bances in the presence of operational constraints when con-

secutive flights are carried out by identical aircraft. However,

in a realistic scenario, additional difficulties arise because con-

secutive flights are generally performed by different aircraft.

For instance, in airport departure and arrival procedures, it

is typical for different aircraft to follow very similar routes.

Furthermore, the dynamic models of these aircraft may not be

fully known since the estimation of certain parameters, such

as the aircraft’s initial mass, may not be accurate. Therefore,

a realistic assumption is that different dynamical systems

perform each iteration, whereas the basic ILC scheme requires

the system dynamics to be repetition-invariant. This drawback

is overcome in this article by using an underlying adaptive

controller that forces the aircraft to behave close to a specified

reference model. In the experiments described in this article,

the chosen reference model is the same aircraft model as

the one for which the trajectory to be followed is designed,

which is an A320. In particular, an MRAC is combined

with the aircraft’s preexisting trajectory tracking controller, in

this case, a Linear Quadratic Regulator (LQR) Proportional

Integral (PI) controller, enhancing its performance through

direct adaptation. The introduction of the MRAC in ILC

allows learned trajectory knowledge to be transferred among

different systems. In the context of this article, the knowledge

to be transferred includes the reference trajectory and the

estimated disturbances.

A. Previous approaches

The transfer learning method proposed here, combining

adaptive control and learning control, has been explored in

other works. In [2], a model reference adaptive ILC strategy is



presented for single-input single-output linear time-invariant

robot manipulators with unknown parameters, performing

repetitive tasks, through a discrete-type parametric adapta-

tion law that refines the transient response from iteration

to iteration. ILC is combined with an MRAC strategy in

[3] to design a control parameter adaptive law, in which

the parameters of the control systems at each iteration are

adapted based on the results of previous iterations. In [4], a

reinforcement learning-based flight control system is designed

to improve the transient response performance of a closed-

loop model reference adaptive control system. A combination

of L1 adaptive feedback control with parallel ILC is proposed

in [5], where the combination of L1 and ILC is successfully

applied to a simulated system. In this work, ILC ensures that

the plant uncertainty is sufficiently small for the L1 controller,

which is in charge of precision motion control, to compensate

for parametric uncertainties. In [6], experimental results are

reported for a serial combination of L1 adaptive control

and ILC for quadrotor trajectory tracking under changing

dynamics. The knowledge acquired by the ILC algorithm over

iterations is transferred across different systems, since the L1

adaptive controller copes with the underlying changes in the

system dynamics.

In this paper, a serial MRAC-ILC architecture is proposed,

in which an MRAC augmentation of a baseline controller is

used as an underlying controller to achieve robust, repeatable

behavior, whereas the ILC acts as a high-level adaptation

scheme and compensates for repetitive disturbances. This

approach is based on the L1-ILC method presented in [7], in

which it is proven that this technique enables transfer learning

between dynamically different systems, where the experience

gained by one system serves another system to achieve high

accuracy in trajectory tracking.

The experiments presented in this paper show the behavior

of the MRAC-ILC scheme when the aircraft are affected by

model uncertainties and changing dynamics between itera-

tions, but also disturbances that cause them to deviate from

the planned trajectory. The ILC compensates for the repetitive

disturbances that are too severe for the MRAC to correct.

In these experiments, these strong disturbances represent the

wind, assuming it remains constant throughout the iterations.

A more general approach to addressing this problem within

the ILC can be found in [8], where recursive Gaussian process

regression is introduced in the ILC algortihm to estimate

and predict repetitive disturbances even if they vary between

iterations, including the horizontal wind.

B. Contributions of the paper

In this paper, an MRAC augmentation of a feedback

baseline controller robust to disturbances is combined with

ILC, showing its ability to improve trajectory tracking by

learning from previous iterations and, at the same time,

transfer the knowledge acquired in the previous iterations

among dynamically different aircraft, since the MRAC forces

them to behave in a similar way, whereas the ILC improves

the tracking performance even in the presence of repetitive

disturbances.

Therefore, the transfer learning method proposed in this

paper is able to improve the tracking performance of commer-

cial aircraft in following their planned trajectories. Trajectory

predictability is thus enhanced, facilitating the implementation

of TBOs in busy airports and reducing the number of alter-

ations when following the planned trajectories, which entails

an increase in the efficiency of the ATM system, resulting in

a reduction of costs and emissions.

C. Organization of the paper

A general overview of the optimization-based ILC method

is given in Section II. In Section III the design of the MRAC

augmentation of an LQR PI controller for a commercial

aircraft is described. Section IV presents the learning-based

controller, in which the ILC is used in combination with the

MRAC. The results of the numerical experiments reported

in Section V show that the MRAC-ILC combination is able

to transfer the learned trajectory knowledge to dynamically

different aircraft, achieving high-accuracy trajectory tracking.

Finally, in Section VI some conclusions are drawn, and

possible future lines of research are outlined.

II. ITERATIVE LEARNING CONTROL

In this section, following [1], the optimization-based ILC

scheme presented in [9] is summarized.

The ILC problem is solved in two steps, both relying

on a nominal model of the aircraft, in which input and

state constraints are explicitly taken into account. The first

step consists in the estimation of the model errors and

external disturbances affecting the flight of an aircraft along

a trajectory using a time-varying Kalman filter. In the second

step, optimization techniques are employed to determine an

updated control input for the following aircraft, which opti-

mally compensates for the recurrent disturbances in tracking

the same trajectory.

It is assumed that an approximate model of the system is

known in the form

ẋ(t) = f(x(t),u(t), t),

y(t) = h(x(t),u(t), t),
(1)

where x(t) ∈ R
nx and ẋ(t) ∈ R

nx are the state and the

state’s derivative, respectively, u(t) ∈ R
nu is the control

input, y(t) ∈ R
ny is the output, and f(·) and h(·) are assumed

to be continuously differentiable in x and u.

The output, state, and input signals are discretized and the

deviations with respect to the desired output trajectory and its

corresponding state and input, ỹ(t) = y(t) − yd(t), x̃(t) =
x(t) − xd(t), and ũ(t) = u(t) − ud(t), are then lifted as

stacked vectors of all discretization time-steps ( [10], [11]),

obtaining the triple of lifted vectors (x,u,y).

xj = Fuj + dj ,

yj = Gxj +Huj,
(2)

where the subscript j indicates the j−th execution of the

desired task, dj captures the repetitive disturbances along

the reference trajectory, including model errors and the free

response of the system to the initial deviation, and the



constant matrices F , G, and D are derived from the nominal

model.

The disturbances dj are initially unknown and need to be

estimated based on measurements from previous iterations to

compute the predicted disturbances for the following iteration,

d
p
j+1. As in [9], an iteration-domain Kalman filter is used here

to compute the estimate of the vector dj , which is assumed

to experience only slight random changes between iterations.

The updated input that minimizes the deviation from the

desired trajectory in the following iteration, uj+1, is com-

puted solving an optimization problem. The update rule can

be expressed as

min
uj+1

‖Fuj+1 + d
p
j+1‖ℓ + α‖Duj+1‖ℓ,

subject to: Luj+1 ≤ qmax,

where vector qmax and matrix L have appropriate dimensions

and capture the system constraints. α ≥ 0 and D are

introduced to penalize the input or approximations of its

derivatives in order to enforce the smoothness of the optimal

problem solution.

As explained in the introduction, an indirect ILC approach

is used since a new reference trajectory is computed and

fed into the system’s underlying trajectory tracking controller

rather than a control input. In the experiments in Section V,

the underlying controller is an MRAC augmentation of an

LQR PI controller, which converts the reference trajectory

into the system control inputs. The new reference trajectory

is obtained as

xr = Fuj+1 + xd,

yr = Gxr +Huj+1 + yd,

where xr ∈ R
Nnx and yr ∈ R

Nny are, respectively, the new

reference state and output lifted vectors, and xd ∈ R
Nnx and

yd ∈ R
Nny are, respectively, the desired state and output

vectors also in a lifted form. The reference trajectory, rj+1

to be fed to the MRAC augmentation of the baseline LQR PI

controller in the following iteration can be obtained from the

unlifted representation form of xr and yr.

III. MRAC AUGMENTATION OF A BASELINE CONTROLLER

In the experiments in Section V, an LQR PI + MRAC con-

troller is designed to be implemented into the flight simulator

of a commercial aircraft. The LQR baseline controller with PI

action stabilizes the aircraft dynamics and regulates the speed

and altitude of the aircraft under nominal conditions, and the

MRAC acts as an augmentation control signal to mitigate the

system uncertainties. The extended architecture used in this

paper is identical to the one proposed in [12, Chap. 11.5]. This

augmentation approach enables the use of adaptive control,

improving the performance of the aircraft’s baseline feedback

controller, in this case, the LQR PI baseline controller, instead

of replacing it.

A MIMO nonlinear uncertain system is considered in the

form
ẋp = Apxp +BpΛ (u+ f(xp)) ,

y = Cpxp,
(3)

with

f(xp) = ΘTΦ(xp), (4)

where xp ∈ R
np is the system state vector, u ∈ R

m is the

control input, and yp ∈ R
m is the system regulated output.

Bp ∈ R
np×m and Cp ∈ R

m×np are known and constant

matrices, Ap ∈ R
np×np is an unknown and constant matrix,

and Λ ∈ R
m×m is a constant diagonal unknown matrix with

positive diagonal elements. The pair (Ap,BpΛ) is assumed

to be controllable. f(x) ∈ R
m is the matched uncertainty,

where Θ ∈ R
N×m is the matrix of unknown and constant

parameters, and Φ(xp) ∈ R
N is a known regressor vector,

whose components are locally Lipschitz-continuous functions

of xp.

The control goal is to design a control input, u, such

that the system regulated output tracks any bounded time-

varying command, r(t) ∈ R
m, with bounded errors and in

the presence of the system uncertainties {Ap,Λ,Θ}.

Introducing the system output tracking error, ey = y(t)−
r(t), into (3) yields to the extended open-loop dynamics

ẋ = Ax+BΛ
(
u+ΘTΦ(xp)

)
+Bmr,

y = Cx,
(5)

in which the integrated output tracking error

eyI(t) =

∫ t

0

ey(τ)dτ (6)

is appended to the state vector, whose dimension becomes

n = np+m. The extended state vector is x =
(
eTyI xT

p

)T
∈

R
n. The extended open-loop system matrices in (5) are then

A =

(
0m×m Cp

0np×m Ap

)
, B =

(
0m×m

Bp

)
,

Bm =

(
−Im×m

0np×m

)
, C =

(
0m×m Cp

)
.

(7)

Since nominal operating conditions are assumed for the

extended system, namely Λ = Im×m and Θ = 0N×m, the

control law is

ubl = −KT
xx = −KIeyI −KPxp, (8)

in which the gain matrix Kx is partitioned into the integral

gain KI and the proportional gain KP and designed using

an optimal control technique, namely an LQR.

The tracking performance of the LQR PI controller may

deteriorate in the presence of the system uncertainties. An

augmented adaptive controller is designed in order to re-

store the expected behavior. The design entails defining the

reference model, formulating the tracking dynamics, and

determining the adaptive laws. The design of the augmented

adaptive controller is explained in [12, Sec. 10.3]. The main

steps are reported here for convenience.

Given a reference Hurwitz matrix Am and an unknown

positive-definite diagonal constant matrix Λ, it is assumed

that there exists a constant and possibly unknown gain matrix

Kx ∈ R
n×m, such that

Am = A+BΛKT
x . (9)



The reference model representative of the baseline closed-

loop system dynamics is

ẋm = Amxm +Bmr,

ym = Cxm,
(10)

so that the extended system dynamics in (5) can be expressed

as

ẋ = Amx+BΛ
(
u−KT

xx+ΘTΦ(xp)
)
+Bmr. (11)

The control input is then the sum of the baseline compo-

nent, ubl, and its adaptive augmentation, uad,

u = −KT
xx+ uad = ubl + uad. (12)

Substituting (12) into the system dynamics (11) yields

ẋ = Amx+BΛ
(
uad + Θ̄T Φ̄(ubl,xp)

)
+Bmr, (13)

where the regressor vector and the matrix of unknown param-

eters are redefined as

Φ̄(ubl,xp) =
(
uT
bl ΦT (xp)

)T
, Θ̄ =

(
KT

u ΘT
)T

,

(14)

with KT
u = Im×m −Λ−1. The adaptive control component

is designed to compensate for the system uncertainty

uad = − ˆ̄ΘT Φ̄(ubl,xp), (15)

where ˆ̄Θ ∈ R
(N+n)×m is the matrix of adaptive parameters.

Substituting (15) into (13) yields

ẋ = Amx−BΛΘ̃T Φ̄(ubl,xp) +Bmr, (16)

with Θ̃ = ˆ̄Θ− Θ̄.

Given the state tracking error e = x − xm, the tracking

error dynamics are

ė = Ame−BΛΘ̃T Φ̄. (17)

Considering the positive-definite adaptation rate matrix

Γ
Θ̄

= ΓT
Θ̄

> 0, the adaptive law is obtained through the

Lyapunov function candidate

V = eTPe+Tr
(
Θ̃TΓ−1

Θ̄
Θ̃Λ

)
, (18)

where P = P T > 0 is the solution of the algebraic Lyapunov

equation

PAm +AT
mP = −Q, (19)

for some Q = QT > 0. The time derivative of V is then

V̇ = −eTQe+ 2Tr

(
Θ̃T

[
Γ−1
Θ̄

˙̄̂
Θ− Φ̄eTPB

]
Λ

)
. (20)

To prove the uniform ultimate boundedness of (e, Θ̃), the

adaptive laws are selected as

˙̄̂
Θ = Γ

Θ̄
Φ̄(ubl, xp)e

TPB, (21)

leading to

V̇ (e, Θ̃) = −eTQe ≤ 0. (22)

The adaptive laws in (21) can be written in terms of the

original parameters as

˙̂
Ku = Γuuble

TPB,

˙̂
Θ = ΓΘΦ(xp)e

TPB,
(23)

where Γu and ΓΘ are the rates of adaptation for the

uncertainties corresponding to x and Φ(xp), with Γ
Θ̄

=(
Γu 0n×m

0N×m ΓΘ

)
. The total control input can also be ex-

pressed as

u = ubl+uad = −KT
xx+

[
−K̂T

uubl − Θ̂ΦT (xp)
]
. (24)

IV. COMBINED MRAC-ILC METHOD

As said earlier, the objective of the MRAC-ILC method

is to force the controlled system to behave in a repeatable

and reliable way, while achieving precise trajectory tracking

despite the presence of model uncertainties, disturbances and

changing dynamics. The MRAC makes the system perfor-

mance repeatable, forcing it to behave close to a reference

model, even if it is affected by model uncertainties and

changing dynamics. However, the MRAC by itself may not

suffice to drive the system along a desired trajectory if the

model errors and disturbances affecting the system move

it away from this trajectory. These disturbances represent

the environmental conditions, such as wind. In this case,

the ILC gradually compensates for repetitive disturbances

improving the tracking performance of the controlled system

over multiple executions of the task.

The transfer learning scheme is shown in Figure 1. Given

two different closed-loop control systems, both equipped with

an MRAC augmentation of a baseline controller with the same

reference model, the objective of the second control system

is to precisely track a desired trajectory, yd, based on the

experience gained by the first control system. At iteration j,

a previously computed commanded reference signal, rj , is

fed to the adaptive controller of system 1, which generates a

control action that, due to unmodelled dynamics and external

disturbances, drives the system through an output signal

y1,j that may be deviated from the desired trajectory. The

ILC estimates this deviation and optimally generates a new

reference signal for the following iteration, rj+1. Since the

adaptive controllers of the systems are designed using the

same reference model, the signal rj+1 can be directly intro-

duced into the controller of control system 2. The resulting

output signal y2,j+1 incorporates the corrections determined

by the ILC given the experience gathered by control system 1,

achieving high performance on tracking the desired trajectory.

V. EXPERIMENTAL RESULTS

In this section, the results of the application of the MRAC-

ILC method to different trajectory tracking problems that

involve different commercial aircraft are described.

The simulated performances of three different aircraft are

considered in the numerical experiments, namely an Air-

bus A320-231 (A320), a Boeing 767-300ER (B767), and

an Embraer ERJ 190-200 IGW (E195), which belong to
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Figure 1: MRAC-ILC transfer learning block diagram. The

closed-loop systems 1 and 2 are controlled by an MRAC

augmentation of their baseline controllers with the same

reference model. The ILC improves the trajectory tracking

performance of system 2 by learning from the deviations

suffered by system 1.

different classes, being a mid-sized aircraft, a large-to-mid-

sized aircraft, and a mid-to-light-sized aircraft, respectively.

In this paper, a common 3-DOF dynamic model is con-

sidered, which describes the point variable-mass motion of

the aircraft over a non-rotating flat earth model, in which

the acceleration of gravity is constant and perpendicular to

the surface of the earth, that is considered an approximate

inertial reference frame. In particular, a symmetric flight is

used. Thus, it is assumed that there is no sideslip and all

the forces, namely propulsive, aerodynamic, and gravitational

forces, lie in the plane of symmetry of the aircraft, which

is a conventional jet airplane with fixed engines [13]. Only

the vertical profile of the trajectories followed by the aircraft

has been taken into account since the mission profiles for

which airplanes are designed are primarily in the vertical

plane. Therefore, the motion of the aircraft is limited to a

vertical plane, namely with constant course and thus constant

heading angle, which, without loss of generality, is assumed

to be zero. In particular, a leveled-wing flight is considered,

thus the bank angle is also zero. Additionally, it is assumed

that there are no actions out of the vertical plane, and the wind

component perpendicular to the plane of motion is zero.

Therefore, the equations of motion of the aircraft are:

V̇ (t) =
T (t)−D(he(t), V (t), CL(t))−m(t) · g · sin γ(t)

m(t)
,

γ̇(t) =
L(he(t), V (t), CL(t))−m(t) · g · cos γ(t)

m(t) · V (t)
,

ẋe(t) = V (t) · cosγ(t) +Wx(xe(t), he(t)), (25)

ḣe(t) = V (t) · sin γ(t),

ṁ(t) = −T (t) · η(V (t)),

where V is the true airspeed, γ is the flight path angle, xe

is the horizontal position, he is the altitude, m is the aircraft

mass, T is the engine thrust, and CL is the lift coefficient.

The lift, L = CLSq̂, and the drag, D = CDSq̂, are the

components of the aerodynamic force. Parameter S is the

reference wing surface area, and q̂ = 1
2ρV

2 is the dynamic

pressure. A parabolic drag polar CD = CD0 +KC2
L and an

International Standard Atmosphere (ISA) model are assumed.

The lift coefficient CL is a known function of the angle

of attack α and the Mach number. Parameter η is the fuel

efficiency coefficient. Further details on the aircraft equations

of motions and flight envelope can be found in [1]. The

performance parameters of each aircraft have been obtained

from the Eurocontrol’s Base of Aircraft Data (BADA) [14].

The aim of the aircraft’s underlying controller, namely

the MRAC augmentation of the baseline LQR PI con-

troller, is that two components of the output variables track

those of a command signal r(t) = (Vcmd(t), he,cmd(t)).
Therefore, the output variables considered by the underlying

controller are yuc(t) = (V (t), he(t)). The extended state

vector of the underlying aircraft controller is xuc(t) =
(VI(t), heI(t), V (t), γ(t), he(t)), where VI(t) and heI(t) are

the integrated output tracking errors of the speed and the alti-

tude, respectively, defined as in (6). The engine thrust, T , and

the lift coefficient, CL, are the control variables for the LQR

PI controller, thus the control vector is u(t) = (T (t), CL(t)).
The thrust is commanded by the engine throttle, and the lift

coefficient can be considered linearly related to the angle of

attack, which is commanded by the elevator trims.

The reference signal is computed at each

iteration by the ILC in such a way that

all the components of the output of

the plant follow a desired trajectory

yd(t) = (Vd(t), γd(t), xe,d(t), he,d(t),md(t)). At each

iteration, the ILC estimates the deviations of the actual

output trajectory of the plant from the desired output

trajectory using a Kalman filter. The ILC takes into account

all the state variables of the plant model (25), namely

x(t) = (V (t), γ(t), xe(t), he(t),m(t)), which are assumed

to be directly measurable, thus the output vector of the plant

used by the ILC is y(t) = x(t).
The following errors are used to evaluate the performance

of both the underlying controller and the ILC:

• The state tracking error measures the performance of the

MRAC augmentation of the LQR PI in following the

reference model. The norm of the state tracking error at

each time step is calculated as the norm of the difference

between the states of the plant model and the reference

model, namely as ‖xuc−xm‖2, being xm the extended

state of the reference aircraft model.

• The weighted state error characterizes the performance

of the MRAC-ILC method in following the desired

trajectory at each iteration, scaled by a weighting matrix

S, that is

ews,j = ‖Syj‖2,

where yj is the lifted output error vector of the ILC at

iteration j. The weighted scaling matrix, S, is used to

assign larger weights to the output errors of the position

variables of the aircraft to achieve better precision in

these output variables.



A. Numerical results

The following three trajectory tracking experiments are

carried out.

1) Experiment 1: MRAC augmentation of a baseline LQR

PI controller with a mismatch between reference and plant

models: The goal of this experiment is to demonstrate the

capability of the MRAC to force different aircraft to behave

as a common reference model. The reference model in the

MRAC controller is that of an A320 aircraft with a baseline

LQR PI controller. The plant model is that of a B767 aircraft,

which is assumed to be not affected by external disturbances.

Since external disturbances do not affect the plant, only the

first iteration of the ILC is executed. This amounts to not

using the ILC controller and testing only the closed-loop

control system 1 in Figure 1. The reference signal r1 is

composed of a series of steps of different magnitude for both

the speed and altitude of the B767 aircraft. This trajectory

does not correspond to any phase of a real flight operation.

It has been chosen to demonstrate the effectiveness of the

method in a fictitious yet feasible operation as a preliminary

result to be further investigated on more realistic trajectories.

In Figure 2, the black dashed lines represent the reference

speed and altitude to be tracked, the dotted gray lines repre-

sent the outputs of the reference model, which is that of an

A320 aircraft, and the blue lines represent the outputs of the

plant model, which is that of a B767 aircraft, using the MRAC

augmentation of the baseline LQR PI controller. Finally, the

orange lines represent the outputs of the plant model when

only the baseline LQR PI controller is employed. As expected,

since the baseline controller is designed for an A320 aircraft,

its tracking performance on the plant model, which is a B767

aircraft, shows significant deviations when the MRAC is not

used. On the contrary, when the MRAC is used, its tracking

performance on the plant model is similar to the performance

of the baseline LQR PI controller on the reference model.

Figure 3 shows the norms of the state tracking errors

observed at each time step using the MRAC augmentation

of the baseline LQR PI controller and the LQR PI baseline

controller without MRAC augmentation. The norm of the

state tracking error confirms that the state tracking error

is considerably higher when only the baseline controller is

active, as compared to the state tracking error when using the

MRAC augmentation of the baseline controller.

The results of this experiment serve as the basis for the fol-

lowing experiments, in which external disturbances affecting

the plant are considered. Therefore, the whole MRAC-ILC

method is applied, in which the ILC iteratively compensates

for the external disturbances and the MRAC allows the

iterations to be carried out by different aircraft.

2) Experiment 2: MRAC-ILC with transfer learning be-

tween two aircraft: The goal of this experiment is to test

the effectiveness of the whole MRAC-ILC method in Fig-

ure 1 when two different aircraft perform each iteration

of the tracking task, wherein the iterations correspond to

the consecutive flights undertaken by the aircraft trying to

follow the planned trajectory. The reference model in the

MRAC is that of an A320 aircraft with a baseline LQR PI
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Figure 2: Experiment 1: Output tracking performances of

the plant using the MRAC augmentation of a baseline LQR

PI controller and the LQR PI controller without MRAC

augmentation. The reference model of the MRAC is an A320

aircraft and the plant model is a B767 aircraft.

controller. In this experiment, the plant model is assumed to

be affected by external disturbances. Specifically, horizontal

wind and measurement errors are introduced. Since external

disturbances affect the plant, several iterations of the ILC

are executed. This amounts to using the whole MRAC-ILC

method in Figure 1.

To make the scenario of this experiment more realistic,

since successive flights on the same flight route are operated

by different aircraft, the plant model is assumed to change

during the iterations of the ILC. Specifically, the plant model

is that of an A320 aircraft for the first nine iterations of the

ILC. Afterwards, it changes to that of a B767 aircraft for the

last eleven iterations of the ILC.

The ultimate goal of this experiment is to prove that the

deviations from the desired output trajectory experienced by

the plant due to repetitive disturbances can be amended by

the ILC over iterations, learning from the deviations observed

in previous executions of the tracking task, even if they are

performed by two different aircraft.

In this experiment, the desired trajectory to be followed

by the plant, yd(t), is the feasible trajectory flown by the
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Figure 3: Experiment 1: Norms of the state tracking errors

observed using the MRAC augmentation of a baseline LQR PI

controller and the LQR PI baseline controller without MRAC

augmentation. The reference model of the MRAC is an A320

aircraft and the plant model is a B767 aircraft.

reference aircraft, which is the A320 aircraft, in Experiment 1,

in the absence of wind. The corresponding desired speed and

altitude components are the command signals for the MRAC

augmentation of the baseline LQR PI at the first iteration,

namely r1(t) = (Vd(t), he,d(t)). In the subsequent iterations,

the command signals are updated by the ILC.
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Figure 4: Experiment 2: Evolution of the path xe − he of the

plant from iteration 1 to 9, before the plant model switch,

using the ILC in combination with the MRAC augmentation

of a baseline LQR PI controller and the LQR PI controller

without MRAC augmentation.

Figures 4 and 5 show the evolution of the path xe − he

over iterations using the ILC in combination with the MRAC

augmentation of a baseline LQR PI controller and the LQR

PI controller without MRAC augmentation. In Figure 4, only

the results of the first nine iterations are reported, for which

both control schemes show similar behavior since there is

a concordance between the reference and the plant models.

Figure 5 shows the results obtained using both schemes from

iteration 10 on, when the plant model switches to that of a
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Figure 5: Experiment 2: Evolution of the path xe − he of

the plant from iteration 10 on, after the plant model switch,

using the ILC in combination with the MRAC augmentation

of a baseline LQR PI controller and the LQR PI controller

without MRAC augmentation.

B767. It can be seen that the path followed by the aircraft

differs depending on the control strategy, remaining closer to

the desired path when the baseline controller is augmented

with the MRAC.

Figures 6 and 7 show the evolution of the altitude and

the speed of the plant over the first nine iterations and the

remaining eleven iterations, respectively, using the ILC in

combination with the MRAC augmentation of a baseline LQR

PI controller and the LQR PI controller without MRAC aug-

mentation. As shown in Figure 6, the plant exhibits a similar

behavior in the first iterations when the plant and the reference

models coincide. At the first iteration, the tracking of the

speed is quite accurate, but due to the greater importance

given to precision in position than precision in speed in the

ILC algorithm, the precision in tracking the desired speed

is sacrificed in favor of the precision in tracking both the

horizontal position and the altitude. It can be observed in

Figure 6 that only the latter tends to the desired altitude over

the iterations, whereas the speed remains below the desired

value. It can be observed in Figure 7 that from iteration 10,

the behavior in speed and altitude tracking differ depending

on the control strategy. The flown altitude is closer to the

desired one when using the MRAC augmentation of a baseline

LQR PI controller than without MRAC augmentation, and the

speed is similar in both cases since precision in the position

variables takes precedence over precision in the rest of the

variables.

Figure 8 shows the evolution of the weighted state error

over iterations using the ILC in combination with the MRAC

augmentation of the baseline LQR PI controller and the

LQR PI baseline controller without MRAC augmentation.

As explained before, the weighted state error represents the

difference between the desired and actual trajectories, where

each component of the error vector is multiplied by a corre-

sponding weight factor. Taking into account the magnitude of

the output variables, the precedence of the position variables
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Figure 6: Experiment 2: Time evolution of the speed and

altitude of the plant from iteration 1 to 9, before the plant

model switch, using the ILC in combination with the MRAC

augmentation of a baseline LQR PI controller and the LQR

PI controller without MRAC augmentation.
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Figure 7: Experiment 2: Time evolution of the speed and

altitude of the plant from iteration 10 on, after the plant

model switch, using the ILC in combination with the MRAC

augmentation of a baseline LQR PI controller and the LQR

PI controller without MRAC augmentation.

over the speed, and the observed system behavior, the chosen

weight factors are 0.48 for the speed, 0.002 for the horizontal

position, and 0.01 for the altitude. Using the MRAC-ILC

method, the initial output tracking error caused by the external

disturbances is reduced in a few iterations of the ILC. The

same occurs if the ILC is used in combination with the

baseline LQR PI controller. This is due to the fact that during

the first nine iterations there is a concordance between the

reference and plant models, which in both cases is that of

an A320 aircraft. However, after iteration 10, in which the

plant model switches to that of a B767 aircraft, and there

is a mismatch between reference model and plant model,

using the MRAC-ILC method, a small increase in the output

tracking error is observed after the plant model switch. On the

contrary, using the LQR PI-ILC combination, a significantly

larger output tracking error is observed after the plant model

switch. It is interesting to point out that, in both cases,

the ILC remains effective after the plant model switch, and

the learning process continues until its convergence to the

lower bound for the achievable weighted state error. The only

difference is that the MRAC-ILC method is faster than the

LQR PI-ILC combination, which requires more iterations to

converge.
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Figure 8: Experiment 2: Evolution of the weighted state error

over iterations, using the ILC in combination with the MRAC

augmentation of a baseline LQR PI controller and the LQR PI

baseline controller without MRAC augmentation. During the

first nine iterations, there is a concordance between reference

and plant models, which in both cases is that of an A320. At

iteration 10, the plant model switches to that of a B767.

3) Experiment 3: MRAC-ILC with transfer learning among

multiple aircraft with mismatch from the first iteration: In

this experiment, the whole MRAC-ILC method in Figure 1

is tested again when several different aircraft perform each

iteration of the tracking task. As in Experiment 2, the refer-

ence model in the MRAC is that of an A320 aircraft with a

baseline LQR PI controller, and the plant model is assumed to

be affected by external disturbances, namely horizontal wind

and measurement errors. The experiment is conducted in a

demanding scenario where the successive iterations involve

aircraft of different type and different initial mass are within

a wide range. The goal of the experiment is to prove the

effectiveness of the method in such an extreme case, so it can

be assumed that it will also perform well in scenarios where

the aircraft are not so different. Specifically, at each iteration

starting from the first iteration, the plant model randomly

changes to that of an A320, a B767, or an E195 with a

random weight within their performance limits. Table I shows

the sequence of aircraft and their weights performing each

iteration. The desired trajectory and the command vector in

the first iteration are the same as in Experiment 2.

The ultimate goal of this experiment is to prove that the

deviations from the desired output trajectory experienced by

the plant due to external disturbances can be amended by the

ILC over iterations, learning from the deviations observed

in previous executions of the tracking task, even if they are



performed from the very beginning by a random sequence

of three different aircraft having random weights within their

performance limits.

Iteration Aircraft Mass (t)

1 B767 173.29
2 B767 109.39
3 A320 55.66
4 B767 135.64
5 E195 48.94
6 E195 51.69
7 A320 69.14
8 A320 54.70
9 B767 147.97

10 A320 43.60
11 B767 130.47
12 A320 55.79
13 B767 118.17
14 E195 43.88
15 B767 134.38
16 B767 142.70
17 B767 162.24
18 B767 118.82
19 E195 48.87
20 E195 40.72

TABLE I. Experiment 3: Random sequence of aircraft and

the corresponding random weights used at each iteration in

the MRAC-ILC method.

Figure 9 shows the evolution of the path xe−he of the plant

along all 20 iterations using the ILC in combination with the

MRAC augmentation of a baseline LQR PI controller and

the LQR PI controller without MRAC augmentation. Since

the plant model switches at each iteration, starting from the

first one, the path flown by the aircraft experiences variations.

It can be observed that these variations are smaller, and the

actual path of the plant remains closer to the desired path

when the MRAC augmentation is active. In addition, since

there is not a series of initial iterations with concordance be-

tween reference and plant models, as in Experiment 2, before

switching the plant model, the path followed by the aircraft

at the first iterations is more precise with the MRAC than

without it. After the first iteration, the path followed by the

aircraft gets closer to the desired path at each iteration with

both control strategies. However, this progressive approach

towards the desired path is faster with the MRAC-ILC scheme

than with the LQR PI-ILC scheme.

Figure 10 shows the time evolution of the altitude and

the speed of the plant along all 20 iterations using the

ILC in combination with the MRAC augmentation of a

baseline LQR PI controller and the LQR PI controller without

MRAC augmentation. As in the previous experiments, greater

importance is given in the ILC algorithm to precision in

position than precision in speed. Therefore, the precision

in tracking the desired speed is sacrificed in favor of the

precision in tracking the horizontal position and the altitude.

As a consequence, the speed is driven below the desired

values despite being quite accurate in the first iteration, so the

altitude can get closer to the desired values at each iteration.

As in the previous figure, although there is variability in the

flown trajectories due to the random change in the plant model

at each iteration, the actual altitude is closer to the desired
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Figure 9: Experiment 3: Evolution of the path xe − he of the

plant, the model of which randomly switches at each iteration,

using the ILC in combination with the MRAC augmentation

of a baseline LQR PI controller and the LQR PI controller

without MRAC augmentation.

one for the most part of the trajectory when using the MRAC

augmentation of a baseline LQR PI controller than without

MRAC augmentation, whereas the actual speed is similar in

both cases, although it experiences more variability with the

LQR PI-ILC scheme.
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Figure 10: Experiment 3: Time evolution of the speed and

altitude of the plant, the model of which randomly switches at

each iteration, using the ILC in combination with the MRAC

augmentation of a baseline LQR PI controller and the LQR

PI controller without MRAC augmentation.

Finally, Figure 11 shows the evolution of the weighted state

error over iterations using the ILC in combination with the

MRAC augmentation of the baseline LQR PI controller and

the LQR PI baseline controller without MRAC augmentation.

It can be observed that the initial weighted state error is

lower when using the ILC with the MRAC augmentation

of the baseline controller since there is no concordance

between the reference model and the plant model. In addition,

the reduction of this error is faster with the MRAC-ILC

scheme than with the LQR PI-ILC. The weighted state error



experiences variations with both control strategies. However,

these variations are more pronounced when using the LQR

PI-ILC than with the MRAC-ILC, in particular when the

B767 aircraft is randomly selected since the performance

characteristics of this aircraft are substantially different from

those of both the A320 and the E195 aircraft.
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Figure 11: Experiment 3: Evolution of the weighted state error

over iterations, using the ILC in combination with the MRAC

augmentation of a baseline LQR PI controller and the LQR PI

baseline controller without MRAC augmentation. The plant

model randomly switches at each iteration.

a) Statistical analysis of the performance of the MRAC-

ILC.: To statistically characterize the tracking performance of

the ILC used in combination with the MRAC augmentation

of the baseline LQR PI controller, the experiment described

above is repeated 30 times and the average and the standard

deviation of the weighted state error are computed. The

results are compared with those obtained using the ILC in

combination with the LQR PI baseline controller without

MRAC augmentation.
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Figure 12: Experiment 3: Evolution of the average weighted

state error and its standard deviation across 30 sets of itera-

tions, using the LQR PI baseline controller and the MRAC

adaptive controller. The plant randomly switches at each

iteration.

Figure 12 shows the evolution of the average weighted state

error and its standard deviation calculated across the 30 sets

of 20 iterations with the ILC used in combination with the

MRAC augmentation of the baseline LQR PI controller and

the LQR PI controller without MRAC augmentation. Since

there is not a series of initial iterations with concordance

between reference and plant models before switching the

plant model, the LQR PI-ILC is slower than the MRAC-

ILC, reaching the convergence level several iterations after

the MRAC-ILC, on average. The variations with respect

to the average error are noticeably higher with the LQR

PI-ILC approach. On the contrary, the MRAC-ILC scheme

shows much smaller standard deviations consistently along

all iterations.

These results demonstrate that the proposed MRAC-ILC

scheme successfully reduces the external deviations affect-

ing the flights by learning from previous executions of the

same trajectory. Each iteration can be performed by different

aircraft, with different performance parameters and weights,

and the knowledge acquired can still be transferred to the

following aircraft with small variations in the tracking error.

As a consequence, the predictability of trajectory tracking

is improved, making the proposed architecture suitable for

real operation, where, in general, different aircraft perform a

planned trajectory in the presence of disturbances.

VI. CONCLUSION

The preliminary results of the experiments demonstrate the

capability of the proposed MRAC-ILC method to improve

the precision in tracking aircraft trjaectories consisting of a

series of steps of different magnitude for both the speed and

altitude, by learning from previous iterations. The MRAC

forces the dynamically different aircraft to behave close

to a similar reference model. This way, the ILC perceives

them as a repetition-invariant dynamic system, enabling the

learned trajectory knowledge to be transferred among differ-

ent aircraft at each iteration, compensating for the recurrent

disturbances affecting the flight. Higher precision in tracking

the reference trajectory is achieved when using the MRAC

augmentation of an LQR PI baseline controller as compared

to the performance of the baseline controller without MRAC

augmentation. Additionally, the former results in smoother

variations in the output error, enhancing the predictability of

the flown trajectory.

These encouraging results suggest that the MRAC-ILC

could be successfully employed in tracking aircraft trajec-

tories in realistic operational procedures, such as continuous

climb and descent operations. Exploring this possibility is

subject of current research.

The proposed method addresses one limitation of the ILC,

which requires the system to be repetition-invariant, allowing

different aircraft with different system dynamics to execute

each consecutive flight. However, it does not solve the other

limitation of the ILC, which also requires the trajectory to

follow to be repetition-invariant. This aspect will be addressed

in future research.
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