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Abstract—Airports plan their resources well in advance based
on anticipated traffic. Currently, the only traffic information
accessible in the pre-tactical phase are the flight schedules and
historical data. In practice, however, flights do not always depart
or arrive on time for a variety of reasons, such as air traffic flow
management or reactionary delay. Because neither air traffic
flow management regulations nor aircraft rotations are known
during the pre-tactical phase, predicting the precise arrival and
departure delay of individual flights is challenging given current
technologies. As a result, probabilistic flight delay predictions are
more plausible. This paper presents a machine learning model
trained on historical data that learned the various quantiles
of the departure and arrival delay distributions of individual
flights. The model makes use of input features available during
the pre-tactical phase, such as the airline, aircraft type, or
expected number of passengers, to provide predictions of the
delay distribution several days before operations. The perfor-
mance of the model trained on operational data from Geneva
airport is compared to a statistical baseline, providing evidence
that machine learning is superior. Furthermore, the contribution
of the various input features is quantified using the Shapely
method, stressing the importance of the expected number of
passengers. Finally, some examples are presented to illustrate
how such a model could be applied in the pre-tactical phase.

Keywords—Flight delay; machine learning; quantile regres-
sion

I. INTRODUCTION

Flight delay is commonly defined as the difference between
actual and scheduled times of departure or arrival of a flight
from or to an airport, respectively1. As a result of the crisis
related to the COVID-19 pandemic, aviation activities drasti-
cally dropped in 2020 [1]. However, the last few months have
recorded a recovery of air traffic, characterised by increasing
flight delays. During the 3rd quarter of 2022, the average delay
per flight in the European Civil Aviation Conference (ECAC)
area was 23 min, the highest value recorded in the last 5
years [2]. Flight delay is one of the key performance indicator
of air transportation since it can impact negatively the airline
and airport management as well as the level of passengers’

1Throughout this paper, departure time refers to off-block time, whereas
arrival time refers to in-block time.

satisfaction [3]. Better prediction of flight delays could aid in
the implementation of mitigation measures before they occur.

Machine learning algorithms have proven to be effective in
predict flight delays during the tactical phase (i.e., during the
day of operations) [4], [5], when both aircraft rotations and
air traffic flow management (ATFM) measures are fully (or
partially) available to assist the models. A critical aspect when
developing machine learning models is the type and quality
of data that are available at the time horizon of interest. From
the Network Manager (NM) and airports point of view, the
only data available during the pre-tactical phase (i.e., several
days before operations) are the flight schedules, as aircraft
rotations and exact ATFM measures are still unknown. In such
an uncertain time horizon, it is more reasonable to approach
the flight delay prediction problem with probabilistic models
capable of providing not only the expected value of the delay
(arrival or departure) but also its probability distribution.

From the airline perspective, the duty manager in charge
of monitoring and manage the fleet decides whether a flight
should be cancelled or revised [6]. In order to perform this
task, he/she needs to access information about the costs of
different alternatives, which are non-linear with respect to the
(uncertain) delay values [7]. Capturing not only the expected
values of the flight delay but also its likelihood might improve
the decision-making process of the duty managers.

From the airport perspective, airport management implies
decision making under uncertainty, which becomes critical
especially for long look-ahead times [8]. As an example,
strategic airport capacity planning is typically not sufficiently
accurate because of the inherent uncertainty of weather fore-
casts [9]. Although flight schedules provide an indication on
when aircraft might depart from or arrive at an airport, this
information always carries a certain amount of uncertainty
which makes airport planning operations very challenging
(e.g., to decide where and when to allocate the ground
handling resources, or to efficiently plan the shifts for the
staff), especially several days before the day of operations.

This paper presents a probabilistic model that utilises
historical flight data to predict arrival and departure flight
delays several days in advance. The model is based on multi-



quantile regression, which is a method for estimating how
the different quantiles of a distribution (in this context, the
departure and arrival delay distribution) change as a function
of a set of predictors. It should be noted that all predictors
used in this paper (also known as features in the machine
learning jargon) are available during the pre-tactical phase.
The predictions in the test set, which includes observations
never seen by the model during training, are compared to a
dummy baseline that assumes flights will depart and arrive
on time, as well as a baseline based on standard statistics.

This paper is organised as follows: a literature review on
flight delay prediction, with a particular focus on probabilistic
models, is performed in Section II; Section III provides the
description of the generic multi-quantile regression model
that was tailored to the departure and arrival flight delay
prediction problem at Geneva Airport (GVA); the details of
the experiment and the results are presented in Sections IV
and V, respectively; Section VI provides a discussion of the
results and an overview of the implementation at GVA.

II. LITERATURE REVIEW

In recent years, along with the development of sophisticated
machine learning models, there has been a lot of interest
in probabilistic flight delay prediction. The emergence of
probabilistic flight delay prediction models is also likely due
to the fact that point predictions are not sufficiently accurate
given the uncertainty of the air transportation system, in which
many agents interact (passengers, ground handlers, air traffic
controllers, flight dispatchers, etc.) in addition to the weather.

For example, [10] used random forest (i.e., an ensemble of
decision trees trained with the bagging method) and clustering
algorithms to predict departure delays at US airports with a
look-ahead time up to 24 hours. Promising results revealed
that combining clustering and ensembles of decision trees is
effective at predicting flight delays several hours in advance.

The effectiveness of alternative machine learning models
has also been investigated. For instance, [11] compared the
performances of random forest and recurrent neural networks
(RNNs) when predicting the flight delay at Chinese airports.
The authors also approached the flight delay prediction prob-
lem as a classification task, in which the model learns the
probability of the delay falling into one of several predefined
categories rather than forecasting the precise delay in minutes.

RNNs were also used by [4] to predict the arrival delay
propagation along a sequence of flights (i.e., rotation) op-
erated by an aircraft along the day. Specifically, the model
was trained to predict the parameters of the arrival delay
distribution, which was modelled as a Gaussian function for
the sake of simplicity. The proposed model requires rotations
data to propagate the (predicted) delay, which, as previously
stated, are not available during the pre-tactical phase.

In parallel, [5] also addressed the probabilistic flight delay
prediction problem. The authors presented a machine learning
model to categorise flight departure times as early, on-time, or
delayed. Similar to [4], however, the proposed model requires
knowledge on the prior flight operated by the same aircraft,
and thus cannot be used during the pre-tactical phase.

Recently, [12] developed two probabilistic models for in-
dividual flight delay prediction model using mixture density
networks (MDN) and random forest, respectively. In reality,
however, the generic random forest model was designed to
perform point predictions, not probabilistic. In order to obtain
the flight delay distribution from a random forest, the predic-
tions of the individual decision trees of the ensemble were
not averaged, but collected, and a kernel density estimation
(KDE) was performed. Using this approach, however, the
model is still trained to minimise a loss function designed
for point predictions, like the mean absolute error (MAE).

Regarding the MDN proposed by [12], it comprises a
neural network that predicts the parameters for each Gaussian
component in the mixture. The parameters (i.e., weights and
biases) of the neural network are trained to minimise the
negative log-likelihood. Consequently, the MDN assumes that
the delay can be represented by a multi-modal Gaussian
distribution. On the other hand, the model proposed in this
paper does not make any specific assumptions regarding the
shape of the delay distribution. Furthermore, it is important
to note that neither the random forest nor the MDN proposed
by [12] could used several days before operations since
they rely on weather information at the destination or origin
airport, which is only available 24 hours before operations.

In a similar vein, [13] explored probabilistic flight delay
predictions using Bayesian artificial neural networks (ANNs)
to predict aggregate flight delays in the United States, broken
down by airport. Their study highlights the difficulty of
predicting even aggregate-level flight delays, underscoring the
importance of uncertainty quantification. Similar to [12], the
model requires weather features (e.g., visibility, temperature)
that are not available several days before operations.

Finally, [14] assessed the performance of various machine
learning models for probabilistic flight delay prediction, in-
cluding ANNs, random forest and gradient-boosted decision
trees (GBDTs). Like [4], the authors assumed a Gaussian
distribution that was fitted to the flight delays. The various
machine learning models were then trained on historical data
to predict the parameters of the distribution. For the GBDTs
instance, two models were trained: one to predict the mean
and the other to predict the standard deviation. Different
from [4], [12] and [13], the features used by the models are
available in the pre-tactical phase.

III. GENERIC MODEL

Unlike classical regression models, which estimates the
conditional mean of the target (i.e., the output) across features
(i.e., the inputs) using the least squares approach, quantile
regression determines the relationship between the features
and a quantile (or quantiles) of the target distribution. It
should be noted that, in contrast to previous works that pa-
rameterised the presumed delay distribution and then learned
its parameters using machine learning [4], [14], quantile
regression makes no assumptions about the distribution of
the target and is robust to the influence of outliers.

There are various machine learning models that can be
extended to quantile regression tasks. Gradient descent-based



learning algorithms, such as ANNs, can learn a specific quan-
tile by switching from the classical MAE or mean squared
error (MSE) loss to the mean pinball error (MPE):

MPE =
1

ntrain

ntrain∑
i=1

PE (yi, ŷi, α) , (1)

where ntrain is the number of training observations, yi and
ŷi are the actual and predicted target for the ith observation,
respectively, α ∈ [0, 1] is the quantile to be learned, and

PE (y, ŷ, α) = αmax(y− ŷ, 0)+ (1−α)max(ŷ− y, 0) (2)

is the pinball error (PE) for one observation.
In many practical applications, the goal is to determine

not just one, but several quantiles. There are two methods
for accomplishing this goal. The first approach involves
training a separate model for each quantile. Because the
models corresponding to the different quantiles are trained
independently, the consistency of the predictions cannot be
guaranteed [15]. Furthermore, this strategy necessitates the
development and maintenance of many models, making it a
time-consuming and inefficient option in practise.

The second approach consists of training just one model
with a outputs, each one associated to one quantile, to
minimise the mean multi-quantile pinball error (MMQPE):

MMQPE =
1

ntrain

ntrain∑
i=1

a∑
j=1

PE (yi, ŷi, αj) . (3)

Many machine learning models can be configured to handle
multi-quantile regression tasks. The generic model proposed
in this study is based on ensemble methods, which produce
a strong learner from a group of weak learners. Boosting is a
well-known ensemble method that involves training a series of
weak learners (e.g., rudimentary decision trees) sequentially.
The training observations for the next learner in traditional
adaptive boosting (AdaBoost) [16] are weighted based on how
well the previous learners performed, i.e., observations that
correspond to wrong predictions are assigned more weight in
order to concentrate the model’s attention on correcting them.
Gradient boosting differs from AdaBoost in that, instead of
assigning weights to observations based on performance, a
new learner is trained at each iteration to fit the residual errors
of the preceding learners. The ensemble is known as GBDTs
model when decision trees are used as weak learners.

GBDTs can outperform ANNs in many practical applica-
tions, notably on tabular datasets where each row corresponds
to one observation and each column represents a feature [17].
Furthermore, GBDTs are easier to interpret than ANNs and
have very attractive properties such as the ability to handle
missing data and categorical features with high cardinality.
The GBDTs model was chosen for the problem addressed in
this study because of the numerous benefits it provides.

Sections III-A and III-B list the features that compose the
observation vector x and define the target y of the generic
model developed during this research, respectively. It should
be emphasised that this generic model could be trained using

any of the traditional GBDTs algorithms (e.g., lightGBM,
CatBoost, XGBoost) on historical data gathered by any air-
port. Section IV will present the specific GBDTs algorithm
used to train the model as well as the dataset. Furthermore,
two independent GBDTs models were trained: one to predict
the quantiles of the arrival delay distribution and the other to
predict the quantiles of the departure delay distribution. The
set of features used by these models, however, is similar.

A. Input features

There are various limitations on the set of features that
can be incorporated when building a model for usage during
the pre-tactical phase. Predictions cannot, of course, be made
using information from the future. For example, the majority
of ATFM regulations are defined either the day before op-
erations (so-called pre-tactical regulations) or tactically the
same day. As a result, this information is unknown several
days or weeks in advance. Similarly, the sequence of flights
operated by each aircraft (i.e., registration number) must be
known in order to anticipate rotational reactionary delays. The
registration number that is going to operate a certain flight is
only known when the airline submits the flight plan to the
Network Manager (NM). Airlines, however, tend to wait for
the most accurate weather and network information before
submitting the flight plan. As a result, several days or weeks
in advance, only the aircraft type that will be used for a flight
can be speculated, but not which will be the inbound flight.

Based on the preceding discussion, it is understandable that
the set of (more or less certain) features available for making
predictions in the pre-tactical phase is rather limited. The
model proposed in this paper uses the following 14 features:
(1) airline, (2) handling agent who will process the flight, (3)
destination (resp. origin) airport for departures (resp. arrivals),
(4) aircraft type (e.g., A320), (5) flight service type, (6) type
of flight (e.g., scheduled), (7) whether or not is a Schengen
flight, (8) hour of the day, (9) day of the week, (10) month
of the year, (11) great circle distance (GCD), as well as (12)
the number of departures and (13) arrivals scheduled in the
same hour. The last feature of the model is the expected
number of passengers, which is estimated based on historical
load factors2 according to a model executed by the operations
performance & forecasting department of GVA.

It is worth noting that the notion that circular features, such
as the hour of the day, day of the week, or month of the year,
always require transformation using sine and cosine functions
is often misunderstood. While this transformation is com-
monly used in neural networks to capture periodicity, decision
tree-based algorithms, such as random forest and GBDTs,
can effectively handle circular features without the need for
explicit transformation. The authors conducted experiments
using both approaches and found that the categorical approach
generally yields superior results.

Furthermore, it may seem that GCD and airport are highly
correlated and provide duplicate information, but this is not
the case. Different airports may have different operating

2The load factor is an aviation industry indicator that represents the
proportion of available seating capacity that has been filled with passengers.



methods, leading to different contributions to the predictions.
Meanwhile, the GCD feature was included to allow the model
to learn the correlation between delay and the length or
duration of the flight. Additionally, observations with airports
that have few observations and are not representative in the
training set could benefit from the more generic GCD feature.

B. Output target

The departure (resp. arrival) delay prediction model outputs
multiple quantiles of the predicted departure (resp. arrival)
delay distribution. Specifically, the models were trained to
minimise the MMQPE and predict the 5th, 25th, 50th (i.e., the
median), 75th and 95th quantiles of their respective targets.
The quantiles were selected to represent the entire delay
distribution, including both regular and extreme events.

It should be noticed that during the training phase, the
model generates five values (one for each quantile) for each
training observation but only requires one ground truth y (the
actual delay) to compute the multi-quantile pinball error.

IV. EXPERIMENT

This section describes the experiment carried out in this
research to evaluate the performance of probabilistic models
in predicting departure and arrival delays during the pre-
tactical phase. Section IV-A describes the datasets used for the
experiment, while Section IV-B covers the specific GBDTs
algorithm as well as the hyper-parameters of the models.

A. Specific dataset

A dataset is a collection of n observations X := (x, y)
n

used to train a model and assess its performance. In this
work, two datasets were created: one for departures and one
for arrivals, with each observation belonging to one flight
departing from or arriving to GVA from the 28th of October
2018 to the 11th of December 2022, respectively. It should
be noted that the traffic from March, 1st 2020 to July, 1st

2021 was excluded from the dataset because it was strongly
affected by the COVID-19 pandemic. The raw data used to
generate the features and target of each observation were
kindly provided by GVA. A portion of the data, such as the
predicted number of passengers per flight, is confidential and
therefore cannot be publicly disclosed.

Table I lists and describes the features that compose the
observation vector x in the two datasets. The columns of this
table show basic statistics computed on the entire datasets,
including both train and test sets. For each categorical (i.e.,
discrete) feature, like the departure airport, Table I shows
the number of unique values, the most frequent value (Top)
as well as its frequency (Freq.). For each numerical (i.e.,
continuous) feature, like the great circle distance (GCD), three
quartiles are presented: 25th (Q1), median (Q2) and 75th (Q3).

It is worth noting that the model presented in this paper
does not incorporate weather features since it is designed to be
used several days before operations, when weather forecasts
are often inaccurate. However, a variant of this model could be
designed for use one day before operations, when Terminal
Area Forecasts (TAF) for the next 24 hours are available.
This variant could incorporate features such as visibility,

cloud ceiling, wind speed and direction, gusts, and significant
weather phenomena like thunderstorms, fog, and snow. With
these additional features, this variant could better capture the
effect of weather on departure and arrival delays.

Furthermore, The model does not incorporate features
related to reactionary delay because the sequence of flights
operated by each aircraft is only known on the day of
operations when airlines submit their flight plans to the NM.
Nonetheless, the authors of this paper encourage the air
traffic management (ATM) research community to explore
the possibility of developing a model that can predict the
rotations of a particular aircraft days in advance based on its
recent history. The predicted rotations could be incorporated
as additional information into the model presented herein,
likely improving the quality of the model’s predictions.

In many applications, dataset splitting is done randomly
by taking 80% of the data for training and using the rest
for assessing the performance on unseen data (i.e., testing).
When dealing with time-related and dynamically changing
environments, such as the air transportation system, it is
preferable to employ time-based splitting to provide statis-
tically robust model evaluation and better imitate real-life
scenarios. Accordingly, the first 80% of the flights (ordered
by time) where used for training, and the rest for testing.

B. Specific algorithm

In this paper, the CatBoost implementation of the GBDTs
model by Yandex [18] was used. CatBoost has gained more
momentum than other GBDTs implementations (e.g., XG-
Boost and LightGBM) mainly because its native ability to
handle high-cardinality categorical features like the departure
and destination airports, as well as the use of ordered boosting
and symmetric trees, which help to overcome over-fitting.

Many hyper-parameters can be used to optimise the Cat-
Boost model, which allow to control the entire ensemble
(e.g., the number of decision trees) as well as individual
decision trees (e.g., the maximum depth). In the experiment
conducted in this study, only the maximum depth and the
number of decision trees were optimised because they were
found to have the most significant impact on the loss function.
The learning rate was determined automatically using the
CatBoost framework’s heuristic, which is dependent on the
dataset attributes and the number of decision trees.

A widely used procedure to assess the performance of a
model given a combination of hyper-parameters is the cross-
validation (CV). The most basic k-fold CV, for instance,
consists of splitting the train set into k subsets, also known
as folds. Then, the following procedure is applied to each of
the k folds: a copy of the model is trained using the other
k − 1 folds as train set, while the fold in hand is used as
test set to compute a performance score. The average of the
k scores is the CV score of the model using the combination
of hyper-parameters under consideration. In this paper, the
CV procedure was performed by respecting the temporal
order of the observations with a TimeSeriesSplit [19].
Specifically, this variation returns first (order by time) i folds
as train set and the (i + 1)th fold as validation set (with
i ∈ {1, k − 1}), and averages the resulting k − 1 scores.



TABLE I. Input features and statistics on the entire dataset (train & test)

Type Name Departures (170K observations) Arrivals (170K observations)
Unique Top Freq (%) Unique Top Freq (%)

Categorical

Airline 159 EZS 23 153 EZS 23
handling agent 2 SWISSPORT 74 2 SWISSPORT 74
Airport 266 LHR 6 267 LHR 6
Arctyp 68 A320 42 68 A320 42
Flight service type 14 J 97 14 J 97
Type of flight 7 S 55 5 S 54
Schengen flight 2 Y 66 2 Y 66
Dayofweek 7 6 15 7 4 15
Hour 19 9 8 20 8 7
Month 12 12 10 12 12 10

Q1 Q2 Q3 Q1 Q2 Q3

Numerical

Pax total (#) 82 123 155 83 123 156
Hourly arrivals (#) 6 10 13 8 11 15
Hourly departures (#) 9 12 15 7 10 14
Great Circle Distance, GCD (km) 532 754 1309 532 754 1309

There exist several methods to search the hyper-parameter
space for the best CV score. The most popular method
is the GridSearchCV [19], which consists of exhaus-
tively evaluating all the possible candidates (i.e., combi-
nations of hyper-parameter) and returning that minimis-
ing the CV score. In this study, a more refined method
called HalvingGridSearchCV [19] was used. The
HalvingGridSearchCV consists of evaluating all pos-
sible candidates with a small amount of resources at the
first iteration. In the second iteration, only some of these
candidates are selected for the next iteration, which will be
allocated more resources, and so on. In this paper, the number
of decision trees in the ensemble was used as resource. The
reader should keep in mind that when using the number of
decision trees (also known as estimators) as resource, this
hyper-parameter cannot be included in the search grid. It
is optimised intrinsically by the HalvingGridSearchCV
method, and including it in the search grid (which would be
incorrect) will result in an exception being thrown.

For both departure and arrival delay prediction models, the
best maximum depth and number of decision trees were found
to be 9 and 1K, respectively.

V. RESULTS

This section presents the results of the experiment de-
scribed in Section IV. Specifically, Section V-A compares the
performance metrics of the model with those of two baselines.
Then, Section V-B unravels the attribution of the features
according to the Shapley values computed with the trained
models. Finally, Section V-C shows illustrative examples.

A. Performance

The performance of the proposed models must be compared
to some reference values, i.e., the baseline. The simplest base-
line is to assume that all flights will depart and arrive on time
at their scheduled departure and arrival time, respectively.
That is, regardless of the values in the observation vector
x, the predicted quantiles are zero for all observations in the
test set. For the remainder of the paper, this baseline will
be referred to as the ‘zero delay’. This baseline is practical

because it is extremely simple, and it also nearly replicates
the current system when delays are completely disregarded.

A more principled baseline consists of predicting the
quantiles of the delay distribution based on historical data.
In this paper, flights in the train set were grouped by sea-
son (winter, spring, summer or autumn), period of the day
(morning, afternoon, evening, late or late night) as well as
airport (departure or destination depending on the model).
For each one of these groups, the various quantiles of the
departure and arrival delay distributions were computed, and
these quantiles were used as predictions for the observations
in the test set belonging to the same group. It is worth
mentioning that groups with fewer than 250 observations
were declared underrepresented, implying that the predicted
quantiles are not statistically significant. Observations in the
test set that were missing predictions because their group was
underrepresented in the train set were assigned the quantiles
of the delay distribution resulting from grouping by season
and period of year, omitting the airport. For the remainder of
the paper, this baseline will be referred to as the ‘statistics’.

The authors selected these two rather naive baselines be-
cause, to the best of their knowledge, none of the models
proposed in the literature, except for [14] - who also used
a GBDTs model, but assumed a Gaussian distribution - are
able to perform probabilistic predictions several days before
operations due to the need for weather data, information about
aircraft rotations, and/or ATFM regulations.

Table II shows the performance metrics on the test set for
the two baselines and the machine learning models. Results
indicate that the statistics baseline outperforms the zero delay
baseline, particularly for the high quantiles. It reduces the 95th

quantile’s MPE of the departure and arrival delay distributions
by 11.1 min (64%) and 9.6 min (63%), respectively. However,
the performance is very similar at the low quantiles. The
statistics baseline reduces the MMQPE of the zero delay
baseline by 15.9 min (33%) and 15 min (31%) for the
departure and arrival delay predictions, respectively.



TABLE II. Performance metrics on the test set (min)

Operation Model MPE for the various quantiles MMQPE
5th 25th Median 75th 95th

Departures
Zero delay 1.9 5.3 9.6 13.9 17.4 48.1
Statistics 1.3 5.3 8.9 10.3 6.3 32.2
CatBoost 1.2 4.9 7.9 8.7 5.2 28.0

Arrivals
Zero delay 4.2 6.6 9.7 12.8 15.3 48.6
Statistics 1.8 6.3 9.7 10.2 5.7 33.6
CatBoost 1.6 5.8 8.8 9.2 5.0 30.3

The machine learning models proposed herein perform
even better. It should be noted, however, that the performance
gap between the statistics and zero delay baselines is higher
than the performance gap between the CatBoost regressor
and the statistics baseline, indicating that relatively simple
statistical methods can indeed deliver decent predictions.

Specifically, the CatBoost model reduces the MMQPE of
the zero delay baseline by 20.1 min (42%) and 18 min (38%)
for the departure and arrival delay prediction tasks, respec-
tively. The relative benefit in comparison to the statistical
baseline, however, is not that extraordinary: the MMQPE
for the departure delay prediction task improves by 4.2 min
(13%), whereas the improvement is about 3.3 min (11%) for
the arrival delay prediction task. In any instance, the machine
learning approach yields more reasonable estimates for all
individual quantiles, particularly for the high quantiles.

The reader should be aware that the interpretation of the
MMQPE may be misleading, since it is simply the sum over
all the individual quantile’s MPE. Adding more quantiles
would increase each of the MMQPE values accordingly, (po-
tentially) leading to more dramatic differences across models.

B. Feature attribution

Principles from game theory can be used to interpret the
prediction of a model for a given observation vector x,
assuming that each one of the d features is a player and the
model output ŷ is the payout. Let us consider the following
scenario: all features participate in the game (i.e., contribute
to the model output), and the features enter the room where
the game is played in a random order. The contribution of
a feature could be calculated as the average change in the
payout received by the coalition already in the room when the
corresponding player (feature) joins them. This contribution
measure is commonly known in the literature as the Shapley
value. Specifically, the Shapley value ϕi(x) of the feature i for
a given observation vector x represents the average marginal
contribution of i on the output of the model across all possible
combinations of features. It can be proven that the Shapley
value is the only contribution measure that simultaneously
satisfy local accuracy, consistency, and missingness [17].

In practical applications, however, Shapley values can only
be approximated because computing them precisely is an
NP-hard problem. TreeExplainer is a novel explanation
method for tree-based models (including GBDTs) that allows
for the tractable computation of Shapley values in polynomial
time [17]. The TreeExplainer was used in this paper.

Figures 1 and 2 aggregate Shapley values for all the fea-
tures and observations in the test sets, which were computed

by using the TreeExplainer with the trained models.
Because each model produces five outputs (the various quan-
tiles of the predicted delay distribution), Shapley values can
be computed independently for each quantile. Only the 5th,
median and 95th quantiles are examined for the sake of clarity.

In Figs. 1 and 2, the vertical axis indicates the name of the
features, in order of importance from the top to the bottom
in terms of mean absolute Shapley value. Each dot in the
horizontal axis shows the Shapley value of the associated
feature on the prediction for one observation, and the colour
indicates the magnitude of that feature: red indicates high,
while blue indicates low. Note that colour has no meaning for
categorical features such as the airline or the aircraft type.

According to Fig. 1a, the most influencing feature when
predicting the 5th quantile of the departure delay distribution,
in terms of mean absolute Shapley value, is the (expected)
number of passengers. Results indicate that the higher the
number of passengers, the greater the output of the model. It
is important to remember that the expected value (i.e., mean)
of the target in the train set plus the Shapley values of the
individual features equals the model’s output. As a result,
a positive Shapley value indicates that the corresponding
feature is influencing the model’s output to be greater than
the expected value in the train set. The month of the year and
the aircraft type are closely followed by the airline, hour of
the day and airport in the list of the most relevant features.

Figure 1b shows how the feature ranking changes when
predicting the median. The findings indicate that calendar
features are extremely important for higher quantiles.

The preceding statement is further supported by Fig. 1c,
which shows that the most important features when predicting
extreme departure delays are the hour, the month and the
airline. Figure 1 reveals that there is no dominant feature
(also known as golden feature) in the model, and that multiple
features contribute to the output with about the same impact.

Another conclusion that can be derived from Fig. 1 is that,
as expected, the higher the number of hourly departure opera-
tions (a proxy for airport congestion), the greater the predicted
departure delay, albeit with a relatively minor contribution.

Curiously, Fig. 2 shows that the most important features
of the arrival delay prediction model are ranked differently.
Specifically, Fig. 1a indicates that the departure airport plays
the most important role when predicting the 5th quantile of the
arrival delay distribution, while the number of passengers is
placed 3rd in terms of mean absolute Shapley value. Similar to
Fig. 1, Fig. 2 indicates that calendar features are increasingly
crucial at higher quantiles, and that the higher the number of
arrival operations, the greater the predicted arrival delay.

Last but not least, Figs. 1 and 2 show that the absolute
value of the Shapley value increases with the GCD. This
indicates that, for long-haul flights, the delay strongly depends
on the distance - according to the data used for training
the models. The results presented in this section are only
applicable to GVA, and other airports or countries may exhibit
different figures. For example, in the United States, delays on
connected short-haul flights are often more uncertain as the
domino effect can grow from one leg to the next.



(a) 5th quantile (b) Median (c) 95th quantile

Figure 1: Feature attribution distribution for departure delay prediction model. It should be noted that the x-axes of the figures
are represented with different scales to enable a visual assessment of the trends

(a) 5th quantile (b) Median (c) 95th quantile

Figure 2: Feature attribution distribution for arrival delay prediction model. It should be noted that the x-axes of the figures
are represented with different scales to enable a visual assessment of the trends

The reader should keep in mind that each point in Figs. 1
and 2 corresponds to a single observation, i.e., flight. Accord-
ingly, these figures represent the global interpretation of the
departure and arrival delay prediction models, respectively,
based on local feature attributions. Figures 3 and 4, on
the other hand, illustrate the Shapley value of the expected
number of passengers feature as a function of its value for the
departure and arrival delay prediction models, respectively. As
in the previous figures, each point represents one observation.

Figure 3a shows that, for the 5th quantile of the departure
delay distribution, the relationship between the number of
passenger and its Shapley value is linear. The results also
show that when the number of passengers is below (roughly)
100, the Shapley value corresponding to this feature is nega-
tive (i.e., this feature contributes to predicting early departure
when compared to the expected value in the training set),
whereas it is positive when the number of passengers is above.
A similar pattern can be observed for the median in Fig. 3b.
For the 95th quantile (see Fig. 3c), however, the relationship
is linear only when the number of passengers is below 200.
The attribution of this feature is similar for the arrival delay
prediction model, according to Fig. 4.

Figures 5 and 6 show the Shapley value of the hourly
departures and arrival features as a function of their value
for the departure and arrival delay prediction models, respec-
tively. As expected, Figs. 5 and 6 indicate that the higher
the number of hourly departures and arrivals, the higher the

quantiles of the predicted departure and delay distribution,
respectively. For instance, Figs. 5b shows that when the
number of hourly departures is lower than around 10, the
contribution of this feature is null or negative, whereas higher
values tend to increase the median of the predicted delay
distribution. Similar conclusions can be derived for the arrival
delay prediction as well as for the rest of quantiles.

The dispersion of Shapley values for a specific value of a
feature in Figs. 3 to 6 is due to the fact that the Shapley value
depends on the value of the other features.

C. Illustrative applications

This section presents some illustrative examples of how
the departure and arrival delay prediction models covered
in previous sections could be used in real operations. In
hierarchical order, Sections V-C1 to V-C3 show how to
pinpoint flights that are likely to not depart or arrive on time
starting for an aggregated prediction over the next months.

1) Detection of problematic days: Let us start with the
most basic use case, in which airport operators plan their
resources (like number of staff and handling agents, stand
and gate allocation, etc.) several days in advance. Figure 7
(resp. 8) shows the mean absolute hourly mismatch between
scheduled and potential number of departures (resp. arrivals).
For instance, a date marked with the number 3 means that,
in average during that day (considering the 24 hours), the
absolute difference (positive or negative) between the number
of scheduled and potential hourly operations is 3.



(a) 5th quantile (b) Median (c) 95th quantile

Figure 3: Attribution of the total pax. feature for departure delay prediction model as a function of its value. It should be noted
that the y-axes of the figures are represented with different scales to enable a visual assessment of the trends

(a) 5th quantile (b) Median (c) 95th quantile

Figure 4: Attribution of the total pax. feature for arrival delay prediction model as a function of its value. It should be noted
that the y-axes of the figures are represented with different scales to enable a visual assessment of the trends

(a) 5th quantile (b) Median (c) 95th quantile

Figure 5: Attribution of the hourly departures feature for departure delay prediction model as a function of its value. It should
be noted that the y-axes of the figures are represented with different scales to enable a visual assessment of the trends

Each cell within Figs. 7 and 8 shows the mismatch consid-
ering that flights could arrive at any time within a predicted
quantile range. For example, a flight with a scheduled depar-
ture time of 10:30 and which 5th and 95th quantiles of the
predicted departure delay distribution are -45 and 60 min,
respectively, may depart at any time between 9:45 and 11:30,
and thus should be considered when computing counts for
the windows [9:00,10:00), [10:00,11:00), and [11:00,12:00).
Accordingly, depending on the quantile range under consid-
eration, a single flight could be counted in several windows.

Figures 7a and 8a show, respectively, the mismatch when
flights depart and arrive as late (or early) as the median of the

predicted delay distribution. It should be noted that because
the median is a single value rather than a range, flights
are counted only in one window. In this situation, Figs. 7a
and 8a show that the mean absolute hourly mismatch never
exceeds two operations (either departures or arrivals), and,
as expected, dates across the whole summer season and on
weekends are the most uncertain, particularly for the arrivals.

When considering that flights could depart or arrive at any
time between the 25th and 75th quantiles of the predicted delay
distribution, the discrepancy between the scheduled number
of hourly operations and the potential number of operations
begins to increase (see Figs. 7b and 8b). Obviously, the most



(a) 5th quantile (b) Median (c) 95th quantile

Figure 6: Attribution of the hourly arrivals feature for arrival delay prediction model as a function of its value. It should be
noted that the y-axes of the figures are represented with different scales to enable a visual assessment of the trends

extreme difference is observed when considering that flights
could depart or arrive at any time between the 5th and 95th

quantiles of the predicted delay distribution. In that situation,
which is shown in Figs. 7c and 8c, the mean absolute hourly
mismatch could be as high as 8 departures and 9 arrivals,
respectively.

Airport operators could use this simple calendar view to
identify dates with potential pitfalls caused by a difference
between the number of scheduled and potential operations
per hour. It is worth noting that because all of the model’s
features are accessible during the pre-tactical phase, airports
might do this assessment months in advance. Once the most
critical days have been found, operators could zoom in and
identify the hours with the most (predicted) disparities.

(a) Median

(b) Any time between the 25th and 75th quantiles

(c) Any time between the 5th and 95th quantiles

Figure 7: Mean absolute hourly mismatch between scheduled
and potential number of departures in the test set

2) Detection of problematic hours: Based on Figs. 7c
and 8c, the 30th of July has been selected to illustrate how
problematic hours could be identified. This day showed the
highest mean absolute hourly mismatch between scheduled

(a) Median

(b) Any time between the 25th and 75th quantiles

(c) Any time between the 5th and 95th quantiles

Figure 8: Mean absolute hourly mismatch between scheduled
and potential number of arrivals in the test set

and potential number of operations. Figures 9a and 9b show
the detailed hourly departures (resp. arrivals), considering that
flights depart (resp. arrive) at the scheduled departure (resp.
arrival) time, that realise the median delay, and that depart
(resp. arrive) at any time between the 25th and 75th quantiles
as well as between the 5th and 95th quantiles.

In Figure 9, the extension of the bar showing the number of
probable events included by the 5th and 95th quantile values
may be of particular interest (i.e., red bar) when conservative
decisions might be taken by the user. Even more interesting
could be to detect the most critical periods of a day by looking
at the difference between the planned and predicted amount
of operations (i.e., difference between the extension of the
grey and red bars). However, the user might decide to plan
an action without considering any uncertainty. In this case,
the count provided by the median predictions (i.e., the black
bar) should be adopted. An intermediate approach could be to
consider a more likely range of predictions that are provided



(a) Departures

(b) Arrivals

Figure 9: Potential number of departure and arrival operations
at GVA during the 30th of July 2022

by the 25-75th quantile values (i.e., blue bar).
3) Detection of problematic flights: Once a critical period

of the day has been identified, it might be desired to detect
which flights require more attention since their arrivals or de-
partures predictions incorporate more uncertainty and present
higher mismatched with the scheduled in-block and off-block
times. As an example in Figure 10, on a day characterised
by high delays such as the 30th of July 2022, flights D10,
D09, D07, D06, D04, D02 are very likely to depart later than
scheduled since their planned time does not even fall within
the red bar (5-95th quantile) which covers 90% of possible
occurrences (Figure 10a). On the contrary, it is possible to
observe that the mismatch between planned and predicted
arrival times is lower since the grey lines fall within or are
in close proximity to the blue bars (Figure 10b) for most of
the represented flights. An intuitive indication of criticality is
the distance between the schedule time (grey lines) and both,
the ends of the red bar (5-95th quantile) and the median value
(black lines). An undesired scenario is represented indeed by
flights scheduled much earlier than these two values. With
these ad hoc predictions the assignment of airport resources
for each single flight could be more efficient.

VI. DISCUSSION & CONCLUSIONS

Once a machine learning model is trained, specific metrics,
such as the average error between predicted and actual
realisations of the target variable, can be computed accounting
for both aleatory and epistemic uncertainty [20]. However,
while these averaged statistics of the error can be used to
assess the overall quality of the model, they do not provide
a quantification of the uncertainty of a single prediction.

There are various models and methodologies for predicting
flight delays in the literature. However, some of them provide
punctual predictions, leaving to the user the assessment of

(a) Departures

(b) Arrivals

Figure 10: Predicted quantiles of the flights scheduled to
depart or arrive at GVA during the 30th of July 2022 from
14:00 to 15:00

possible deviations from the predicted values that might
derive from the complex and uncertain environment in which
flights are operated. Other approaches have been suggested
in the literature to estimate the uncertainty of the individual
predictions, such as sensitivity analyses [21], bootstrapping
methods [22], Bayesian methods [23] and Gaussian pro-
cesses [12]. Most of these methods provide an estimation of
the variance of the error but they are not able to provide a
range of probabilistic occurrences of predicted values.

In this paper, the uncertainty of individual predictions
can be quantified by the quantile values provided by the
model’s outcomes. As an example, the difference between
two (predicted) quantiles, one relatively high and another
relatively low (e.g., 95th and 5th, respectively), represents
the extension of the time domain over which departures and
arrivals are predicted to take place. This quantification allows
to assess the criticality (or miss-match between plan and
prediction) of specific periods of the year at an aggregated
level (see Figs. 8 and 7) and, more in detail, of specific days
of the year (see Fig. 9) and of individual flights (see Fig. 10)

An important methodology to quantify the contributions of
each single input feature to the predictions is the Shapley
analysis, which results are shown in Section V. As a main



outcome of this analysis, it has been observed that the number
of passenger highly affects the predictions. Specifically, the
higher the number of passengers (Pax total in Figs. 1 and 2’),
the higher the arrival and departure delays, showing that
particular attention should be paid to operations involving
passengers, such as boarding and de-boarding. For a flight
showing high positive Shapley values of the total passenger
input feature, further analysis and sets of data might allow
to identify the operations involving passengers that are more
likely to cause delays.

This study has been developed in response to a proposal
of the operations performance & forecasting department of
Geneva airport (GVA) within one of the EUROCONTROL
Air Transport Innovation Network (EATIN) initiative (https:
//www.eurocontrol.int/project/eatin). As such, it is of partic-
ular interest to understand how this probabilistic approach
can satisfy the needs of already complex and demanding
airport operations. The model is currently under trial at GVA,
and in the following months a survey will be conducted to
study the impact that the model is making on the planning
of the operations at GVA. As a result of the survey, a
suitable human-machine interface might be developed and
implemented. Alternatively, the schedule arrival and departure
values could be replaced in the systems (planning, demand
& capacity balance in the land side as well as in the air side,
etc.) by the model values. This approach could be extended
to other airports and adjusted to serve the needs of any other
ATM stakeholder.

In future work, the performance improvement of incor-
porating weather features into the model, such as visibility,
cloud ceiling, or wind speed, could be assessed. However,
this variant would only be usable when weather forecasts for
the airport are available, which is typically 24 hours before
operations. A similar discussion applies to aircraft rotations
and ATFM regulations.
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