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Abstract—Air Traffic Flow Managers are continually faced with 

the decision of when and how to respond to predictions of future 

constraints. The promise of Artificial Intelligence, and specifically 

reinforcement learning, to provide decision support in this domain 

stems from the ability to systematically evaluate a sequence of 

potential actions, or strategy, across a range of uncertain futures. 

As decision support for human traffic managers, the generated 

recommendations must embody characteristics of a good 

management strategy; doing so requires introducing such notions 

to the algorithm. In this paper, we propose to induce stability into 

the strategy by dynamically constraining the design space to 

promote consistency across decisions. We further evaluate the 

impact of adding a performance improvement threshold that must 

be overcome to accept a new strategy recommendation. The 

combination of search constraints and threshold values is 

evaluated against the agent’s reward function in addition to 

measures proposed to capture the stability of the strategy. The 

results demonstrate that strategy stability can be improved 

without unduly impacting performance. 

Keywords- artificial intelligence; reinforcement learning; traffic 

flow management; sequential decision making; decision support 

I.  INTRODUCTION 

 The goal of strategic Air Traffic Flow Management (ATFM 

or simply, TFM) is to balance demand with resource capacity 

in a safe and efficient manner. To mitigate situations where 

demand is predicted to exceed capacity, a TFM strategy – which 

comprise a sequence of Traffic Management Initiatives (TMIs) 

– is used to modulate future demand. The fundamental 

challenge in designing TMI strategies arises from the 

significant forecast uncertainties present at the time decisions 

are made, creating a dilemma of when and how to respond. As 

such, in today’s operation in the National Airspace System 

(NAS), TFM strategies are developed through a collaborative 

multi-stakeholder decision making process which is heavily 

reliant on past experiences and events. 

 The need for sequential decision-making approaches (i.e., 

methods that account for the dynamics of uncertainty in the 

timing of decisions) to provide decision support in this domain 

has long been recognized. Earlier efforts proposed a variety of 

approaches to tackle components of this challenge. For 

example, mixed-integer programming algorithms for GDP 

planning [1-4] demonstrated success at overcoming the large 

TMI design space, albeit under constructed, rather than derived, 

constraint scenarios. Taking an operational view of the decision 

process, [5] developed a TFM strategy defined decision tree 

that could be used to assist in the sequential decision-making. 

Alternatively, research into deriving constraint scenarios 

demonstrated the importance of capturing the physics 

phenomena [6] in the definition of constraint scenarios but did 

not take the additional step of defining the mechanics of how to 

connect these scenarios to the TFM decision-making 

environment. To bridge this gap, [7] employed a Genetic 

Algorithm to optimize a multi-time course TFM strategy 

against an ensemble of derived forecast scenarios; however, 

computational limitations precluded real-time decision support. 

 Recently, the resurgence of Artificial Intelligence (AI), and 

specifically Deep Reinforcement Learning (DRL) techniques, 

have shown promise for these overcoming computational 

issues. In the AI domain, an agent refers to automation that 

identifies and selects an action(s) to implement with the goal of 

maximizing a reward. Tien et. al [8] developed an AI agent to 

sequence taxiing aircraft at a hypothetical airport. Brittain and 

Wei [9] trained an agent controller to maintain aircraft 

separation in congested airspace, albeit assuming perfect 

information. The approach developed in [10] incorporates 

uncertainty into the conflict avoidance and separation assurance 

problem by assuming a normal distribution on the resulting 

state of an aircraft after executing the agent-prescribed action. 

Tran et. al [11] built upon this work to learn controller-specific 

resolutions with the goal of gaining greater operational 

acceptance. 

 Research into developing AI agents to generate TMI 

strategies is more limited. Xie et al. [12] developed a DRL-

based agent to generate tactical ground delay actions targeting 

specific airports, with the goal of alleviating congestion in Air 

Traffic Control (ATC) sectors; however, given the tactical 

nature of the problem, forecast uncertainty was not considered. 

Alternatively, Jones et al. [13] examined the performance of 

several different search techniques for selecting TMI 

recommendations from a set of pre-defined combinations, 

where uncertainty was captured by sampling across forecast 

future. Similarly, our earlier work [14] employed a Monte Carlo 

Tree Search (MCTS) to generate TMI recommendations for the 

next hour based on a translated ensemble weather forecast. 

However, both this and the previous effort did not employ DRL, 

essentially requiring these agents to learn each decision anew. 

mailto:ctaylor@mitre.org
mailto:evargo@mitre.org
mailto:jmanderfield@mitre.org


 In our previous work [15], we demonstrated the ability of 

an Expert Iteration (ExIt) algorithm to generate TMI 

recommendations under forecast uncertainty in a real-time 

context. Importantly, this work leverages DRL to learn a policy 

network (PNet) which, when coupled with a statistical model to 

improve the forecast error, demonstrated skill at overcoming 

performance degradations due to uncertainty.  

 While our previous work demonstrates the viability of this 

technology, the specific TMI recommendations were not 

necessarily acceptable within the context of decision support to 

a human Traffic Manager (TM). The agent was permitted to 

make a recommendation every hour and often did. While 

updated recommendations are not inherently undesirable, the 

changes, if inconsistent from one decision to the next, would 

result in an increase in workload for TMs, a decrease in 

predictability for flight operators, and thus an overall reduction 

in trust and adoption for a future decision support capability. 

 The objective of this paper is to identify and evaluate 

mechanisms to improve the TFM agent’s TFM strategy 

recommendations. In discussions with Subject Matter Experts 

(SMEs), a dominant theme has been the desire for the agent to 

generate a stable TFM strategy (i.e., that the recommendations 

should gracefully evolve over the planning horizon). While the 

agent is not capable of understanding grace, it does abide by 

constraints. As such, we propose to dynamically limit the action 

space based on the current recommendation sequence; we 

define two such constraint sets and compare these against the 

baseline, unconstrained search. A second consideration raised 

was the desire for a user-defined threshold to limit when the 

agent alerts a TM of a new TMI recommendation. While we 

envision that this threshold in performance improvement would 

vary, both by TM and likely by situation, we propose to 

evaluate the impact of waiting – ignoring the TMI 

recommendation and remaining with the current plan – for a 

small threshold level. Each of the three constraint sets 

(including the baseline) are considered with and without a 

threshold imposed on enacting the recommendation. To 

evaluate the results, we consider the performance of the TFM 

strategy, as defined by the agent’s reward function, as well as 

additional measures that capture strategy stability. 

 The remainder of the paper is organized as follows. Section 

II details the environment for our case study, where a brief 

description of the scenarios, TMIs and reward function are 

presented. Section III provides an overview of the TFM agent 

decision framework. The specifics of the proposed experiment, 

including the additional stability measures considered are 

provided in Section IV. The results and discussion are presented 

in Section V and Section VI summarizes the conclusions.  

II. CASE STUDY  

Our case study focuses on designing TMIs to manage arrival 

demand into Atlanta Hartsfield Jackson International Airport 

(ATL) under uncertain weather and potentially degraded 

capacity conditions. As shown on the right side of Figure 1, our 

representation abstracts the arrival routes into a four corner-post 

configuration common at ATL. The four corner-posts, termed 

fixes for the remainder of the paper, are labeled as Northwest 

(NW), Northeast (NE), Southwest (SW), and Southeast (SE) 

and are positioned 40 NM from the airport, which is shown in 

the center of the circle. 

 The left side of Figure 1 highlights the information provided 

to the agent and the TMIs that the agent can take, which will be 

described later in this section. Note that while the agent plans 

TMI actions based on forecasted capacities, the performance is 

assessed against observed capacities for the scenario. 

A. Scenario Generation 

 Scenario data was generated for the period between 1 

January 2015, and 1 January 2020. Each scenario corresponds 

to a historical day containing a time history of demand at each 

of the five resources (the four fixes and the airport), and the 

capacities – both derived from forecast and observation – for 

these resources.  

 Demand data is derived from the first filed flight plan for 

each flight arriving at ATL. As described in [14], the flight 

plans were mapped to one of the four fixes. The average transit 

time between each fix and the airport was derived and used to 

estimate the expected time of arrival to each fix, based on the 

expected time enroute (ETE) for each flight.  

 The airport capacity is defined as the Airport Arrival Rate 

(AAR) associated with the most common configuration 

between 2015-2019, namely 26R 27L 28 | 26L 27R. Reference 

[16] provides the AARs for each of the four Meteorological 

Conditions (MC): Visual MC (VMC), Low VMC (LVMC), 

Instrument MC (IMC), and Low IMC (LIMC), where the 

published hourly rates were divided by four and rounded down 

to provide the 15-minute values shown in Table 1.  

 To compute the applicable observed MC rate, we used 

Automated Surface Observing System (ASOS) and 

Meteorological Terminal Air Report (METAR) data to identify 

the actual ceiling and visibility for each 15-minute period and 

recorded the associated AAR for the airport at that time [17]. 

 Nominal fix capacities were estimated as the 95% value of 

historical arrival throughput in each quadrant, as shown in 

Table 2. To compute the actual weather-impacted capacities, 

 
Figure 1. Case Study of Managing Arrivals into ATL under Forecast 

Uncertainty 

 

Table 1. Meteorological Conditions for ATL Case Scenario 

Category 
Visual 

MC 
(VMC) 

Low 
VMC 

(LVMC) 

Instrument   
MC     

(IMC) 

Low 
IMC 

(LIMC) 

Rate per 
15 min 

33 31 27 24 

 



we leveraged the Corridor Integrated Weather System (CIWS) 

nowcast to provide measurements of Vertically Integrated 

Liquid (VIL) greater than or equal to 3 mm of surface 

accumulation (VIL3+) in the 80 NM area surrounding the 

airport for each 15-minute period. A SME vetted modification 

[15] to the relationship provided in [18] was used to compute 

the fraction of nominal capacity available.    
Table 2. Nominal Fix Capacities per 15-minute time bin 

Fix NW NE SW SE 

Capacity 10 10 7 7 

 To compute the predicted resource capacities which will be 

used by the agent to select TMI actions, we leverage the Short-

Range Ensemble Forecast (SREF), which consists of 26 

deterministic trajectories of weather variables at hour-long 

intervals. As stated in [19], each member of the ensemble is 

equally likely to occur and, together, the ensemble members 

span the space of future outcomes. Furthermore, a new SREF is 

issued every 6 hours. 

 Using the SREF data, we compute the applicable MC to 

obtain a prediction of AAR and the reflectivity to estimate 

VIL3+ coverage, as described in [19]. The resulting predicted 

capacity ensemble contains 26 members, where each member 

contains the 15-minute integer capacities (e.g., hourly 

capacities divided by 4) for each of the five resources.  

B. Traffic Management Intitiatives 

 Two types of TMIs are considered in this case study: GDPs 

and metering. A Ground Delay Program (GDP) is a strategic 

TMI that delays flights on the ground prior to departure. The 

GDP is defined by four parameters: 

• Rate:  The maximum quarterly arrival rate for flights. 

• Scope:  The scope defines the set of origin airports whose 

departures are subject to delays by the GDP. 

• Start time:  The start time of the GDP expressed in local 

time at the destination airport. 

• Duration:  The duration of the GDP. 

 For the case study in this paper, the scope was set to include 

all departures. 

 The GDP implementation was based on the logic of Flight 

Schedule Monitor (FSM) [20] and incorporates the option to 

cancel or revise an existing GDP (i.e., alter the GDP 

parameters). Arrival slots are assigned using a ration-by-

schedule logic where controlled arrival times (CTAs) and 

controlled departure times (CTDs) are computed based on the 

assigned arrival slot times and the flights’ ETEs.  

 In the case of revisions, delay is released (to the extent 

possible) from flights no longer included in the revised GDP 

and re-assigned based on the new slots, where flights that were 
impacted by the previous GDP have precedence over flights 

that were not included. Additionally, flights can be exempt for 

several reasons (scope, departure time), and exempt flights are 

assigned slots before any other groups. In contrast to non-

exempt flights, exempt flights take up slots and are assigned 

CTDs and CTAs but are not delayed.  

 The metering TMI is intended to represent tactical, 

coordinated air delay assigned to flights prior to arrival in the 

terminal airspace. Each fix can have a separate “metering TMI” 

that is defined by: 

• Rate: The permissible arrival rate per 15 minutes. This rate 
is translated into a new time of arrival at each corner-post 
fix. 

• Start time:  The start time of the rate restriction. 

• Duration:  The duration of the metering program in minutes.  

C. Reward Function 

 The total delay accrued for each flight is the sum of the TMI 

Ground Delay (𝑑𝑔), TMI Air Delay (𝑑𝑚), and ATC-induced 

Delay (𝑑𝑎). The TMI Ground Delay for a flight is calculated as 

the difference between the CTD and the original estimated time 

of departure (OETD). TMI Air Delay is measured as the 

difference between the scheduled fix arrival time and the 

assigned fix arrival time resulting from the metering TMI. 

ATC-induced delay is the total queuing delay imposed by the 

simulation, capturing both queues at the fix and at the airport. 

Details on the queuing simulation that calculates ATC-induced 

delay can be found in [15]. 

 The reward function is defined to minimize the delay impact 

for the entire scenario, where delay impact represents a non-

linear aggregation of the three components of delay that aims to 

reflect the relative “pain” caused. We therefore considered it 

unitless. Using Subject Matter Expert (SME) guidance, the 

delay impact for each type of delay was defined as a piece-wise 

linear function to capture not only the difference between 

sources of delay but how the duration of the delay changes the 

impact. Figure 2 displays these relationships.   

Viewing Figure 2, we see that for flight-specific delays that 

are less than two minutes, ATC-induced delay (red line) returns 

the least delay impact; however, as ATC delays increase, delay 

impact grows at the fastest rate to reflect the increased workload 

associated with absorbing different amounts of delay. For 

delays greater than 30 minutes, a large penalty is assigned to 

represent the disruption associated with a potential diversion. 

For flight-specific delays between two and ten minutes, 

metering delay (orange line), induces the least delay impact and 

increases more slowly than ATC delay, but still assigns a large 

penalty for delays over 30 minutes. GDP delay is the least 

impactful for delays over 10 minutes and does not have a large 

penalty assigned at higher delay values as delay is taken on the 

ground. The reader is referred to [15] for the specific equations.  

 
Figure 2. Delay Impact vs Delay Minutes 

 



III. TFM AGENT 

Figure 3 provides an overview of the TFM agent developed 

in [15]. The left side shows the Expert Iteration (ExIt) algorithm 

[22] which uses approximately five years of historical training 

scenarios to encode the relationship between the state – 

represented as the set of expected demand and capacity 

scenarios, along with observed system behavior up to the 

current time – with the TFM strategies that are most likely to 

improve the reward. The right side of Figure 3 depicts the real-

time evaluation process for each hour of the new forecasted 

scenario, where reliance on the offline policy network (PNet) 

improves the agent’s ability to quickly identify which actions 

are likely to yield better outcomes.   

A key challenge noted in [14] was the impact of capacity 

prediction error on generating TMIs that respond to the 

constraints. To address this issue, a Data Assimilation (DA) 

algorithm was developed to update the probabilities associated 

with each capacity ensemble member based on their agreement 

with the previously observed capacity values over the past 

several hours.  

Central to both the development of PNet and the real-time 

execution is the MCTS algorithm, which is briefly described 

below. For a thorough development of each of the agent’s 

algorithmic components, the reader is referred to [15]. 

The agent uses MCTS to select the best action – i.e., the 

action that the agent estimates will achieve the lowest future 

expected delay impact relative to the predicted capacities – at 

the current (hourly) decision time 𝑡. During the duration 

allotted, MCTS builds a tree that estimates the optimal adaptive 

TMI policy with respect to the possible future capacity 

trajectories as derived from the capacity ensemble. The policy 

is adaptive over the target planning horizon in the sense that the 

best action at time 𝑡 considers future contingencies – 

downstream TMI actions that could be triggered by future 

observed capacities. Note, however, that the time 𝑡 tree is used 

to select only the time 𝑡 action, and a new tree is built to select 

the action at each subsequent decision time. The agent’s action 

at time 𝑡 results in an updated system state, which is used to 

initialize the topmost “root” node of the time 𝑡 + 1 tree.  

Our MCTS algorithm is initialized by defining a root node 

𝑁0 at depth 𝑑 = 0. The root node reflects the current state of the 

TFM environment at time 𝑡, including the impact of all actions 

taken up to time 𝑡 on each flight’s position in the queueing 

model, and by extension projected future demand at each of the 

five capacitated resources. In general, we let 𝑆𝑁 denote the set 

of SREF members that are consistent in their capacities along 

the path in the tree from the root 𝑁0 to node 𝑁. It follows that 

𝑆𝑁0
 contains all 26 members since at depth 𝑑 = 0 no capacities 

have been branched on to distinguish one member from another.  

Before optimizing over TMI actions, we first construct a 

“baseline” tree from the root downward that captures the space 

of possible futures when no TMI actions are taken (but assumes 

actions taken prior to time 𝑡 are in place). The possible futures 

are enumerated in tree form as follows: From the root node, first 

identify which members in the capacity ensemble have the same 

capacity values over the next hour (though the values may vary 

over time) and place these into the same set 𝑆 at depth 𝑑 = 1, 

and associated with each set we create a child node of the root, 

where 𝑆𝐶  is the set of ensemble members associated with a child 

node 𝐶. Note that the collection of all 𝑆𝐶  for child nodes 𝐶 of 

any parent node 𝑁 partitions the parent’s consistent SREF set 

𝑆𝑁. For notational convenience, we also define 𝑁0 = Parent(𝐶) 

for all children 𝐶 of 𝑁0. For the baseline tree construction, the 

parent-to-child transitions assume that no TMI action is taken, 

and we represent this no-TMI action as �̃�. We apply this 

branching process recursively to each child to create a complete 

tree. We terminate the branching process when the child node 

depth reaches a predefined target value of 𝑑𝑚𝑎𝑥 = 5, or the child 

node represents a terminating state of the simulation in which all 

flights have landed – whichever comes first. By limiting the 

depth of the tree in this way, we ensure that the MCTS algorithm 

will focus its action search on more immediate actions (here, 

over the next 5 hours) where the future – and hence action 

impact – is more certain.  

 
Figure 3. Overview of Expert Iteration Algorithm 

 



The next step is to initialize a value function at all nodes in 

the baseline tree. This process begins at the leaf nodes of the 

baseline tree and propagates upward to the root. If a given leaf 

node 𝑁 does not represent a terminating state of the simulation, 

we estimate the value 𝑉𝑁,�̃� of action �̃� at the node by performing 

a rollout from 𝑁 – otherwise we set 𝑉𝑁,�̃� = 0. In our MCTS 

implementation, a rollout simulates the current node state to the 

completion of the simulation, wherein all future actions default 

to �̃�. The rollout is executed for each ensemble member in 

𝑠 ∈ 𝑆𝑁 and their resulting future rewards are combined in a 

weighted average, proportional to their respective data 

assimilated probabilities 𝑝(𝑠) to obtain 𝑉𝑁,�̃�. In general, the 

optimal action at node 𝑁 is given by 

𝑎𝑁
∗ = argmax

𝑎
𝑉𝑁,𝑎 1 

where the argmax is taken over all actions 𝑎 explored at node 𝑁. 

In the baseline tree, 𝑎𝑁
∗ = �̃� since no other actions have yet been 

explored. The corresponding optimal value at node 𝑁 is denoted 

𝑉𝑁 = 𝑉𝑁,𝑎𝑁
∗ . Next, we use dynamic programming to recursively 

update parent node values for action �̃�:   

𝑉𝑁,�̃� = ∑ 𝑤𝐶 ∙ (𝑟𝐶,�̃� + 𝑉𝐶,�̃�)
𝐶∈Children(𝑁,�̃�)

 2 

Here 𝑤𝐶 denotes the DA-weighted SREF probabilities 

associated with 𝑆𝐶 , as defined in Equation 3. 

Just like with the leaf nodes, we let 𝑎𝑁
∗ = �̃� represent the 

optimal action at each subsequent parent node 𝑁 until the 

recursive process terminates at the root. A notional illustration 

of the resulting baseline tree is depicted in Figure 4 for 𝑑𝑚𝑎𝑥 =
2, where dashed lines represent rollouts from leaf nodes. Note 

that all transitions from parent to child involve the “no TMI” 

action �̃�.  

Once the baseline tree is constructed, the MCTS algorithm 

explores new actions to improve upon the baseline policy, where 

our specific MCTS implementation is inspired by the 

Combinatorial Multi-armed Bandit problem [22] to manage the 

combinatorically large action space.  

IV. STABILITY EXPERIMENT 

 This paper evaluates how changes to the TMI search and 

recommendation process impact the structure of the resultant 

TFM strategy. Based on SME input, we propose two different 

mechanisms to induce stability in the agent’s TMI 

recommendations. The first constrains the search space at 

decision nodes during MCTS, where two different sets of 

constraint rules are defined. The second imposes a threshold on 

the expected performance improvement before a TMI 

recommendation is implemented at the current decision time. 

To evaluate the impact of these changes, we define measures 

that aim to reflect the stability of the TFM strategy from the 

perspectives of both a TM and a flight operator.  

A. Search Space Constraints 

 The MCTS action selection and evaluation process 

described in Section IV provides the agent maximum flexibility 

to address the range of forecast futures; however, it can result 

in TMI recommendations that do not reflect a good operational 

strategy. For example, the agent could select a GDP at a 

decision time only to cancel this action at the next and 

potentially re-implement at the subsequent decision time. 

Providing such a strategy to a TM would not only be unhelpful 

but would likely degrade trust in the automation. As such, we 

seek to reflect the desire for an adaptive, yet consistent plan by 

requiring the agent to limit subsequent actions based on the 

history of decisions at both the root node and at downstream 

contingency planning nodes. While the TMI recommendation 

is generated solely from the root node, constraining 

downstream nodes requires the agent to evaluate the goodness 

of the root node action in the context of a stable plan. 

 We consider three constraint cases in this paper. The first, 

Case 1, imposes no constraints on the search space (i.e., 

baseline case). Case 2 restricts the search space as follows:  

• If a GDP action is selected, the rate change is limited to +/- 

25% of the current rate 

• If a GDP action ends or is canceled, no new GDP action 

may be initiated for four hours 

• If a metering action is selected for a specific fix, the rate 

change is limited +/- 15% of the current rate 

• Once a metering action ends, no new metering action at the 

same fix may be initiated for 2 hours.  

 Case 3 assumes the same restrictions as Case 2 and adds an 

additional constraint on GDP actions that prohibits any changes 

within two hours of when it was implemented or last changed.  

B. Improvement Threshold 

 The second modification addresses SME concerns 

regarding the frequency of TMI recommendation alerts, 

especially in cases where the recommendation does not 

meaningfully change the expected performance. While we 

expect that the quantification of a meaningful change will vary 

by TM and scenario, we impose a performance improvement 

threshold to determine whether a recommended decision is 

implemented.  

 To motivate the selection of a performance threshold, 

Figure 5 presents a histogram of samples, representing decision 

𝑤𝐶 =
∑ 𝑝(𝑠)𝑠∈𝑆𝐶

∑ 𝑝(𝑠)𝑠∈𝑆𝑁
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Figure 4. Notional Depiction of Baseline MCTS Tree 



points where the agent recommended a new action. Each 

sample in the histogram corresponds to an action taken during 

the 92 validation days without any constraints (Case 1), where 

the percent of expected performance improvement associated 

with taking the action is calculated. Viewing Figure 5, we note 

that over half (55%) of the recommendations only provide a 

marginal (less than 3.2%) improvement in expected reward; 

however, the distribution has a long tail, corresponding to 

decision points where not taking a recommendation at that time 

(i.e., waiting) is likely to have a significant impact on future 

expected reward. 

C.  Measuring TMI Stability 

 To quantify the impact of the proposed changes on TFM 

strategy stability, we consider several measures to reflect this 

behavior from the  perspective of the TM or the flight operator. 

The first measure computes the number of individual TMI 

recommendations generated, where GDP revisions are included 

within this count, but TMI extensions (i.e., when the agent 

issues a recommendation that extends the current TMI without 

any change to the rate) are exempt from this calculation. 

 The second measure focuses on the variability in TMI rate. 

It is important to note that in this research, the agent can only 

assign a single rate to a TMI recommendation and therefore it 

may be desirable to change the rate at a future time, in response 

to changes in the forecast. However, if the agent’s 

recommendation strategy repeatedly alternates the rate up and 

down, this will have a negative impact on both TMs and flight 

operators. As such, we compute the number of inflection points 

in the rate profile for each TMI over the course of the day. 

 Our final measure aims to reflect GDP stability from the 

perspective of a flight operator. Specifically, we compute the 

number of flights with multiple EDCTs assigned and focus on 

the additional ground delay accrued during revisions. The 

motivation here is that while the initial GDP may disrupt the 

original plan, subsequent revisions reduce predictability. We 

further categorize the magnitude of this additional delay into 3 

bins: less than 15 minutes, between 15 and 30 min and greater 

than 30 minutes of additional delay, to reflect the varying 

degrees of disruption produced by GDP revisions.  

V. RESULTS 

A. Experimental Design 

To evaluate the performance of the TFM agent, we generated 

TFM strategies for three non-consecutive months: June, 

October, and December 2019. For each scenario day, the agent 

was provided with the capacity ensemble and had an hour to 

generate the recommended action for the upcoming hour. For 

the two TMIs described in Section II.B, we permitted the agent 

to select among the TMI parameter values listed in Table 3. 

As shown in Table 3, the TMI start time (in minutes) 

specifies the offset between the decision time and the start of the 

program. For the GDP, this offset can dictate which flights will 

receive ground delay, as flights within 30 minutes of their 

original departure time will be exempt. The duration (in 

minutes) specifies how long the TMI will be in effect. For GDP 

actions, the rate specifies the number of aircraft that can land at 

the airport in a 15-minute bin. For metering actions, the rate 

specifies the number of flights within each 15-minute bin that 

can cross the corner post fix, where the difference between the 

two upper limit values distinguishes between the nominal 

capacity of 10 flights per 15-minute bin associated with the two 

northern fixes and 7 flights per 15-minute bin for the southern 

fixes. In addition to these choices, each agent can opt to take no 

action, cancel, or revise an existing action. Note that while only 

two TMI types are defined and only a handful of parameter 

values are considered for each, the resulting design space has 

more than 40 billion discrete action choices at each time step and 

for each decision depth of the tree. 

B. Evaluation of 92 Day Validation Set 

 Figure 6 shows the total delay impact incurred by each 

constraint case described in Section IV for each of the 92 days 

when no threshold is applied. Viewing Figure 6, we note that 

June 8th is the most impactful day and results in the largest 

performance variation between the three cases, where Case 2 

incurs the highest delay impact and Case 3 yields the lowest 

delay impact. This may seem counterintuitive – the addition of 

constraints cannot improve the optimality of a solution – 

however, MCTS has no guarantee of optimality and given the 

combinatorially large search space, the addition of constraints 

is likely to assist the agent during its search.  

 Viewing Figure 7, we see that the 1% threshold does not 

noticeably change the overall delay impact across the 92 days, 

except for June 8th, where all three cases roughly achieve the 

same delay impact, with Case 1 performing the best and Case 3 

performing the worst. This is not surprising – referring to Figure 

 
Figure 5. Histogram of Percent Improvement of Expected Reward due to 

Implementing a TMI Recommendation verses Waiting 

 

Table 3. TMI Parameter Options 

TMIs  
Start Time 

(min)  
Duration 

(min) 
Rate                   

(per 15 min) 

GDP 
{60, 120, 
180, 240} 

{120, 240, 
360, 480} 

{4, 8, 12, …, 32} 

Metering {30, 60, 90} 
{60, 90, 120, 

180, 240} 

NW/E: {1, 2, …9} 

SW/E: {1, 2, …9} 

 



5, we note the long tail of performance improvement loss due 

to waiting, where presumably larger differences correspond to 

days with larger capacity reductions on which delaying action 

can significantly degrade expected future performance.  

 To gauge the impact on stability verses total delay created 

by the proposed changes, we examine the difference between 

Case 2 and Case 3, as compared to Case 1 in the number of 

GDPs (Figure 8) and the number of metering actions (Figure 9) 

compared to the total delay, where total delay is the sum of the 

three delay components without delay impact weighting. The 

left side of Figure 8 shows the results without implementation 

of a threshold for days where a GDP was issued. As the points 

represent the difference between Case 2 and Case 1 (pink) or 

Case and Case 1 (blue), we can interpret the plots as follows. 

Points in the upper right quadrant represent days when the 

constraint cases resulted in higher total delay and more TMI 

actions than the baseline, whereas the bottom left quadrant 

captures days where the constraints reduced both. Points in the 

upper left quadrant correspond to days where the constraints   

reduced the number of TMIs, but at the expense of additional 

delay, whereas the bottom right quadrant corresponds to days 

where the constraints resulted in more TMIs but lower overall 

total delay. 

 When no threshold is applied, we see that, in general, Case 

2 not only performs worse than Case 1 most of the time, but 

worse than Case 3 as well, implying that simply restricting the 

rate ranges may be insufficient for inducing TMI stability and 

may lead to higher delay costs as well. As expected, Case 3 

tends to reduce the number of GDPs issued, but higher delays 

may be incurred since the specific GDP cannot be adapted for 

2 hours, despite any changes in the constraint forecast. 

 Comparing the results when a 1% performance 

improvement is implemented, we see that this restriction 

reduces the variance in total delay between the constraint cases 

and the baseline. Case 3 continues to outperform Case 2, 

reducing both the number of GDPs issued and the total delay 

incurred. However, we note two days when Case 3 resulted in 

both an additional GDP and higher total delay, as compared to 

Case 1, indicating the potential for performance degradation 

due to waiting on high-impact days. 

 Figure 9 displays the difference in the number of metering 

actions verses total delay generated for Case 2 and Case 3, as 

compared to Case 1 when no threshold is applied. Recall that 

 
Figure 6. Comparison of Constraint Case Delay Impacts without Threshold over 92 Validation Days 

 
Figure 7. Comparison of Constraint Case Delay Impacts with 1% Threshold over 92 Validation Days  

 



both Case 2 and Case 3 impose the same constraints on 

metering actions and as a result both significantly decrease the 

number of recommendations generated by the agent. When 

thresholding is applied, we notice that Case 2 continues to 

report a similar decrease in metering actions as well as a 

reduction in total delay, as compared to Case 1. Case 3, 

however, has a slight increase in relative metering actions, as 

compared to the baseline, which may result from a greater need 

to manage traffic through metering, given the GDP restrictions 

imposed.  

 We next compare the number of inflection points in the 

GDP rate profile for days when a GDP was issued, as shown in 

Table 4. For each constraint case we distinguish between results 

when the threshold was not applied (NT) and when it was 

implemented (TH). Viewing Table 4, we see that for Case 1 and 

Case 2, the implementation of the threshold decreases the 

number of inflection points in the resultant GDP strategy, 

indicating that “waiting” can reduce the tendency of the agent 

to overoptimize the solution in pursuit of improvement in delay 

impact. However, Case 3, either with or without thresholding 

has the greatest impact on the number of inflection points, as 

expected, since rate changes are explicitly disallowed for 2 

hours. Thus, from this perspective, Case 3 provides the greatest 

stability in the GDP strategy.  

C. June 8th 2019 

 Our final analysis focuses on the highest delay impact day, 

June 8th. Figure 10 presents the number of EDCT revisions 

issued for each TFM strategy developed and the corresponding 

additional ground delay associated with the revision, as 

categorized into three delay ranges: minor (less than 15 

minutes), moderate (greater than 15 minutes but less than 30 

minutes), and significant (greater than 30 minutes). Note that a 

single flight may be subject to more than one revision and each 

revision is represented as a sample in Figure 10.  

 The left side of Figure 10 compares all three cases when no 

threshold is applied, where we see that Case 2 results in the 

greatest number of revisions and more instances of moderate 

and significant additional ground delay. Case 3 incurs the least 

number of revisions, however there is an increase in moderate 

and significant revision delays, as compared to Case 1. 

 The right side of Figure 10 compares the three cases when 

thresholding is applied. Viewing Figure 10 we note that both 

Case 1 and Case 2 result in more EDCT revisions when 

thresholding is applied than without and that there is an increase 

in the number of revisions that incur significant delay. 

However, Case 3 with thresholding applied reverses this trend 

and results in the lowest number of revisions overall where 

almost all revisions incurred minor additional ground delay. 

Yet, the delay impact was highest under this configuration, 

implying a potential trade-off between performance and 

stability, when viewing stability at the flight-impact level.  

 Finally, we evaluate the TMI strategies generated for this 

day, where, given the above analyses, we focus on Cases 1 and 

3 without thresholding and Case 3 with thresholding to assess 

the strategies developed. The results are shown in Figures 11-

13, respectively, where we note that each resource is 

distinguished by color and displays the associated rate for a 

 
Figure 10. Comparison of June 8th EDCT Revision Delay 

Table 4. Average GDP Inflection Points 

Case Threshold 
# 

Inflections 
# GDP 
Days 

Avg. 

Case 1 
NT 45 31 1.45 

TH 37 34 1.09 

Case 2 
NT 52 34 1.53 

TH 49 35 1.40 

Case 3 
NT 16 35 .46 

TH 18 35 0.50 

 

 
Figure 8. Difference in Number of GDP actions for each constraint 

case compared to baseline verses total delay 

 
Figure 9. Difference in Number of Metering actions for each constraint 

case compared to baseline verses total delay 

 



GDP (airport, shown in blue) and metering actions at each fix. 

Each entry has three features: 1) a triangle denoting the time the 

agent recommended the action, 2) a dashed line signaling the 

offset between the decision time and when the rate restriction 

was applied at the corresponding resource, and 3) a solid line 

indicating the duration of the restriction. 

 Figure 11 corresponds to the baseline (Case 1 without 

thresholding), where we note that the GDP strategy varies 

considerably, especially between the hours of 8-11 local time. 

During this period, a recommendation is made each hour, where 

at 9am the first revision decreases the rate, at 10am the second 

revision significantly increases the rate and at 11am where the 

third revision decreases the rate to just above the original TMI. 

This is an undesirable plan from both the perspective of a TM 

and of a flight-operator and is the behavior we aim to correct 

with the modifications considered in this paper.  

 Figure 12 displays the TFM strategy for Case 3 without 

thresholding, where we see that the agent recommended fewer 

GDPs with a more consistent rate profile over time. 

Specifically, there are only 2 inflection points in the GDP rate 

profile (as compared to three above). Furthermore, the metering 

at any given fix is mostly set to the same rate throughout the 

day. Thus, while there is still some rate variability and resulting 

EDCT revision impacts that are undesirable, this TFM strategy 

incurred the lowest delay impact on this day. 

 Figure 13 displays the TFM strategy for Case 3 with 

thresholding, where we note that two separate GDPs were 

issued. The first is a short GDP between 10:00 and 12:00. The 

second GDP decision is made at 12:00 but cannot start until 

16:00, due to the restrictions imposed by Case 3, namely a four-

hour gap between GDPs. Given the severity in capacity 

reduction on this day, the decision to wait on a revision, coupled 

with the restrictions on issuing a second GDP resulted in the 

worst delay across all cases for this day. 

D. Discussion 

 In our discussions with SMEs, the primary concern for TFM 

strategy stability centered around when and how GDP decisions 

were made and revised, as the impact of changes cascade and 

disrupt the operation in ways that are difficult to quantify. In 

response, we proposed Case 3 to evaluate the necessity of 

completely restricting GDP changes, as opposed to limiting the 

range of revision options. From the results, we see that Case 2 

(range restrictions on both GDP and metering) were not only 

insufficient at improving the performance of the TFM strategy 

in terms of the stability measures, but these constraints also 

resulted in poorer performance across all metrics and measures 

considered. On the other hand, the hard constraints on GDP 

revisions imposed by Case 3 yielded the best delay impact 

result for our worst day and generally provided good solutions 

with greater stability in terms of fewer GDPs and an improved 

rate profile across the strategy. The tradeoff here, at least on 8 

June, was in the number of EDCT revisions issued and points 

to the potential importance of directly capturing unwanted 

behavior in the reward function as opposed to the search 

constraints. 

 It is important to highlight a limitation of the current model– 

namely, that the agent can only define a single rate GDP. 

However, as we showed in the Case 3 results (without 

thresholding) limiting the design space can improve the agent’s 

recommendation as there are fewer options to search, especially 

further into the tree. Thus, care needs to be taken in how a multi-

rate GDP is implemented to balance the reality of the operation 

and the quality of the resulting TFM strategy returned. We will 

explore different approaches for capturing this complexity 

adequately in future work.  

 Furthermore, the threshold on performance improvement 

demonstrated the potential value, in terms of stability, from 

waiting, but not on days when a timely response was critical. 

While future research could explore ways to predict whether the 

current day falls into one category or another, ultimately, we 

see this is as a user-set threshold.  

 Finally, for real-time decision support, the computational 

time required to identify good decisions needs to be shortened. 

The results presented in this paper employ software models 

designed for research purposes, not production and therefore 

improvements in both the algorithmic implementation and 

computing infrastructure could enhance the performance with 

respect to search duration. 

 
Figure 11. Case 1 TFM strategy without thresholding 

 
Figure 12. Case 3 TFM strategy without thresholding 

 
Figure 13. Case 3 TFM strategy with thresholding 

 



VI. CONCLUSIONS 

 This paper demonstrated that considerations that impact the 

subjective goodness of an agent-generated strategy can be 

captured using constraints on the search space. While constraint 

set specifics (e.g., the rate change allowance range) may require 

further tuning, developing such a mechanism opens 

possibilities for other interventions, potentially even permitting 

future TMs to direct the agent in its search and thereby 

improving calibrated trust in the automation itself. Furthermore, 

the utility of setting a threshold on performance, while varied, 

points to an important consideration for how the automation can 

help guide a TM as to when and to what degree such limitations 

should be applied. Continuing work will focus on developing 

and fine-tuning such mechanisms in support of a future AI-

based decision support capability for TFM.  
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