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Abstract— Weather is a significant source of disruption and 

uncertainty for air traffic. This unpredictability can present 

significant challenges to traffic managers when managing 

airport and airspace resources. The lack of data-driven decision 

support tools to advise stakeholders on how to best deal with 

weather impacts also represents a critical shortfall in enabling 

improved decision-making within air traffic management. In 

this paper, we present an epsilon-greedy approach that 

incorporates risk-adjusted objectives into recommendations of 

Traffic Management Initiative (TMI) parameters during 

uncertain weather conditions. The method attempts to achieve 

the best performance within the context of some of the worst-

case weather outcomes. The method is compared to a standard 

epsilon greedy approach that attempts to maximize the expected 

value of an objective. The two approaches are evaluated using a 

parallel fast-time simulation framework over various weather 

scenarios. A set of TMIs at airports and airspace resources is 

applied and tested against seven case days in which the airspace 

capacity in the Northeast United States was affected by 

convective weather. The risk-adjusted method is generally able 

to achieve a higher number of operations with lower amounts of 

airborne holding in adverse weather conditions. The results 

suggest that the approach could potentially aid more risk-averse 

air traffic stakeholders by supporting their operational 

planning. 

Keywords-Reinforcement learning, risk, epsilon greedy, weather, 

Simulation, airspace capacity 

I.  INTRODUCTION  

 Weather poses a considerable source of both disruption 

for Air Navigation Service Providers (ANSPs) and airlines 

when planning air traffic management operations. As the 

weather can limit the capacity of the airport and airspace 

resources, its presence may induce mismatches between the 

flight demand for specific resources and the available 

capacity. In these situations, ANSPs will preemptively assign 

delays to flights. These delays are known as Traffic 

Management Initiatives (TMIs) such as Ground Delay 

Programs (GDPs), Airspace Flow Programs (AFPs), Ground 
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Stops (GSs) and Collaborative Trajectory Options Programs 

(CTOPs) pushing the excess traffic demand back to later 

times during the day with the goal of balancing the air traffic 

operations with the available resource capacity. 

 This problem of weather-related disruptions is 

compounded by the lack of predictability associated with the 

information available. Weather forecasts can often be quite 

uncertain, especially over long time-horizons. This 

uncertainty manifests in a number of different ways. The 

uncertainty associated with the weather forecasts issued may 

imply significant variation in the possible temporal and 

spatial locations of the affecting weather patterns as well as 

the intensity of the weather patterns when they arrive at 

airspace and airport resources. Even when the uncertainty of 

these forecasts is low, the forecasts themselves do not directly 

describe the impact that the weather will have on the 

resources that need to be managed. This information must be 

obtained by other models that translate the weather into an 

estimate of the capacity of the affected resource. As this 

process is imprecise, the estimation of weather impacts adds 

an additional dimension of uncertainty to the problem. When 

facing this uncertainty, stakeholders must make decisions on 

how to adjust flight schedules and air traffic flow without a 

clear indication of how these decisions will impact their 

operational and business objectives. 

 The scope of the weather impact can be substantial at 

times affecting many different resources. In these situations, 

air traffic managers often apply TMIs to attempt to manage 

demand in a coordinated fashion across multiple resources. 

These TMIs can often have considerable complexity. 

Decision-makers need to determine what resources to 

control, when to control them, the duration of the proposed 

intervention and the levels of adjustment at each hour over 

the period of intervention. As the range of options available 

for each of these decisions is often substantial, traffic 



managers are faced with a problem of considerable 

complexity.  

 In the United States, traffic managers have a limited 

number of decision support tools available to them to aid 

them in developing a strategy. The Traffic Flow Management 

System (TFMS) provides the users with an estimate of the 

demand at each airport and the capability to visualize forecast 

traffic, while the Network Manager serves a similar function 

in Europe [1]. Weather forecasts such the Corridor Integrated 

Weather System [2] are also available to visualize the 

trajectory of the anticipated convective weather. These tools 

can be combined with experiential knowledge to provide 

some understanding of the effect of applying potential TMIs 

at a very coarse level but do not offer any direct prediction of 

TMI performance. 

 In the presence of weather impacts, traffic managers 

generally act on this imperfect information by making an 

initial decision on the TMI parameters and revising the TMI 

as the day progresses. This challenge can be viewed as a 

stochastic sequential staged decision-making problem, where 

the decision-maker needs to adjust the flight demand given 

the potential set of capacity scenario evolutions in a manner 

that optimizes a stated objective function. This topic has been 

studied widely using both descriptive and prescriptive 

approaches to address the problem. The descriptive studies  

attempt to predict the capacity of the airport and airspace 

resources when weather impacts are present [3]–[7]. While 

this information can enhance the level of situational 

awareness for traffic managers, it does not directly advise 

them on what to do with the additional information provided. 

The prescriptive studies seek to determine the optimal action 

to take in the context of potential capacity disruptions and 

uncertainty [8]–[15]. They often employ integer 

programming models to search for a solution that best 

advances the stated objective. While such approaches could 

be useful if they accurately depict the operational states of the 

airspace systems they try to model, the approaches often 

assume some theoretical distribution of the capacity that does 

not map to the actual impact of weather.  

 Other approaches have tried to apply data-driven 

descriptions of the weather forecast into models that optimize 

for performance. Integer programming models that 

incorporate weather-based capacity constraints have been 

used to optimize decision-making for ground delay programs 

[16]–[18]. Recent work has also adapted reinforcement 

learning algorithms to optimize the performance of air traffic 

across a set of airport and airspace resources across a 

geographic region. Our own work leveraged the Traffic Flow 

Impact (TFI) product that combines several forecast models 

to predict the impact on the capacity of airspace resources 

over time (see discussion in the next section). The 

information was used to construct a set of weather scenarios 

that informed various search methods with the goal of 

selecting GDP and AFP parameters that optimize operational 

throughput across a set of airports while limiting airborne 

holding[19]–[21]. In another line of research, the Short-

Range Ensemble Forecast (SREF) has been used to 

probabilistically model weather scenarios that were used to 

optimize the parameters on a ground delay program with 

metering using a cost function that weighted the impact of air, 

ground and air traffic induced delay[22], [23].  

 In both of these cases the models used considered the 

impact of various weather scenarios, while attempting to 

optimize for the expected cost in terms of the metrics 

considered. Neither of these approaches, however, 

considered the problem by optimizing the recommended 

decision to the level of risk-tolerance of the decision-maker. 

As the weather represents an uncertain prediction into the 

future, with varying levels of impact, the adoption of any 

specific recommendation from a model may not manifest. 

When this happens, traffic managers may be left to question 

the utility of the model even though the model provided the 

best recommendation given the information available at the 

time it was issued. In this context, one might argue that 

providing decision-makers with the relative risk associated 

with adopting a particular decision may help to quell an 

adverse reaction if a worst-case outcome were to occur.  

In this paper, we propose a methodology for 
recommending TMIs that allows the user to optimize the TMI 
performance over a set of worst-case outcomes. In our case, 
we define the worst-case as the TMI that yields the lowest 
throughput in the affecting weather scenario. We then 
compare the proposed method with one that issues 
recommendations based on an expected value and assess the 
relative utility of using such a risk-averse objective relative to 
expected value. Both methods use variants of an epsilon 

greedy (-greedy) algorithm and a parallel fast-time 
simulation to search for TMI parameters and seek to optimize 
performance over a set of weather forecast scenarios derived 
from the TFI weather impact model. In Section II, we describe 
our modeling framework and our methodology for 
incorporating risk levels into TMI recommendation. Section 
III, describes the computational experiments used to test the 
approach. We evaluate our method against a set of case days 
in the Northeastern United States when traffic was 
compromised by convective weather and discuss utility of our 
method to operational decision-making to support various 
levels of risk-aversion.  

II. METHODOLOGY 

In this section we describe our methodology for 

incorporating aspects of risk into the recommendation of 

Traffic Management Initiatives. We begin by describing our 

approach for translating the weather forecast into a prediction 

of the weather impact of airspace capacity. We discuss two 

ways to use this forecast information to develop TMIs that 

directly address the uncertainty in the forecast. We also 

present our modeling framework that we use to evaluate the 

two approaches.  

A. Traffic Flow Impact 

The inability to reliably provide users with greater 
situational awareness during convective weather events has 
historically served as a significant barrier to the advancement 
for strategic decision-making in air traffic management. 
Earlier work to predict convective weather impact focused on 



the propensity of flights to avoid specific storm cells [24], 
[25]. This information has been used to reroute traffic around 
convective weather [26], [27] and assess sector capacity [28], 
[29]. While such information can be useful in making tactical 
decisions, at the strategic level it is somewhat unreliable due 
to the lack of predictability in the movement of convective 
weather over long time horizons. The Traffic Flow Impact 
(TFI) tool was developed to address this shortfall by 
translating the weather to an impact level over larger regions 
of airspace. TFI produces predictions of the percentage of 
weather-free airspace known as permeability as forecast 
quantiles that are issued every hour. The permeability forecast 
is applicable to en route flights at an altitude of 35,000 ft over 
25 geographic regions across the eastern United States. These 
regions, known as flow constrained areas (FCAs) are located 
at chokepoints where the weather can greatly affect the 
throughput of traffic within the National Airspace System 
(NAS).  

The permeability represents the degree that traffic flows in 
a given airspace region will be constrained by convective 
weather based on the vertically integrated liquid values and 
echo top levels of the FCA regions at 35,000 ft. The TFI 
forecast predicts this permeability value using a supervised 
machine learning approach [30]. The feature set for the 
models consists of inputs from deterministic weather models 
such as the Consolidated Storm Prediction for Aviation 
(CoSPA) and the High-Resolution Rapid Refresh (HRRR) 
model. Other features are received from the Localized 
Aviation Model Output Statistics Program (LAMP) and the 
Short-range Ensemble Forecast model (SREF). The model is 
trained with weather data from prior convective seasons using 
two steps. In the first step the actual permeability is used to fit 
the features using ridge regression. In the second step the 
features are fit using quantile regression.       

The TFI forecast represents a distribution of permeability 
over time that can be sampled to generate the potential 
evolution of the weather pattern and its impact on the FCA 
airspace region. The samples are conditioned to have a 
consistent time-correlation to match the behavior of the actual 
permeability. Thus, the value of the sampled permeability is 
dependent on the state in the previous forecast lead. By 
sampling such draws at the available FCA regions, we can 
characterize the impact on the permeability over the eastern 
U.S. airspace.  

The permeability provides an estimate of a flight’s ability 
to traverse the region but does not directly inform us of how 
the weather is expected to impact the airspace capacity. We 
can convert the estimates of permeability to a flow rate 
describing the number of flights that can cross the airspace 
over an hour using a set of look-up tables that were derived 
through studies on the pilot avoidance of convective weather 
[31]. The avoidance was observed to depend on the 
permeability of the airspace and the length of time that the 
permeability level was present in the affected FCA region. 
The presence of a permeability level for longer periods of time 
is associated with lower flow rates for the same level of 
permeability. The flow rate is also driven by other airspace 
characteristics (e.g. size, traffic density) that differ between 
regions. 

B. Searching for TMI Parameters 

     The translation of weather forecasts to the impact they will 

have on specific regions of airspace provides us with an 

estimate of the airspace capacity. As this forecast and its 

impact is uncertain, there are a number of potential evolutions 

of weather that could manifest within the airspace that will be 

suited to different types of traffic management strategies. 

Severe weather days may require strategies that impose 

heavy ground delays on flights at multiple airport and 

airspace resources in order to better match demand with 

capacity preemptively. On the other hand, light weather 

impacts may require little intervention and can often be 

managed tactically.      

We would like to use the information available in the TFI 

forecast of airspace capacity to design TMIs that account for 

the range of potential outcomes that may affect a set of 

managed resources. One way to accomplish that is to sample 

from the TFI distribution and search for the TMI that will 

maximize an expected value of some performance metric(s) 

when averaged over all the capacity scenarios that are 

selected. We can view these samples in the context of a 

scenario tree where each node represents a set of feasible 

capacities during some hour at a set of airspace resources 

across the NAS. Letting Wij be the forecast from scenarios i 

in hour j we can envision a scenario constructed by sampling 

from a set of correlated draws at FCA resources as a single 

branch along the tree. An illustration of the concept is shown 

in Figure 1. We can incorporate these samples into our model 

that characterizes that state of the NAS over time. By running 

instantiations of the model, we can gain a sense of how the 

NAS will perform given a weather forecast and the assumed 

demand.  
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Figure 1.  A set of sampled capacities on a scenario tree where Ci 

represents the capacity for the resource. 

     If we had the ability to sample from all of the scenario tree 

branches, we could compute the value of each state so that 

we can maximize the expected value. Due to the 

computational complexity of the problem of managing a 

large set of resources in the presence of uncertianty, is it only 

possible to consider a small number of potential scenarios. 

While we can determine the optimal action given what we 

know about the state of the world, we do so at the cost of not 

learning about the value of the unsampled states and actions. 

The tradoff between sampling the unknown states and 

sampling states that will likely perform well given current 

knowledge, is known as the exploration-exploitation 

problem.  



-greedy policies: 

      There are a number of algorithms that have been proposed 

to deal with the exploration-exploitation problem. One of the 

more widely used approaches is to adopt an -greedy policy. 

The approach attempts to strike a balance between 

exploration and exploitation by favoring each aspect at 

different points in the process. The algorithm begins by 

sampling from a random distribution. When the value of the 

sample is greater than some predefined level , the policy 

selects a random action, when the sample is less than , the 

algorithm chooses the optimal decision based on an estimate 

of the value of each choice that was fit with information 

collected prior to the decision. Initially the threshold value is 

usually set to a high level to force the algorithm to favor 

random selection. When the actions are largely random, the 

algorithm can learn more about the value of being in various 

states. As the algorithm continues, the value of the threshold 

is lower, making the chance of selecting exploitative action 

higher. This change is often advantageous as the value of new 

information tends to drop as the more iterations are 

completed. An adaptation of the algorithm for TMI decision-

making problem is shown in Table I with the  threshold 

occurring in step 5. When new information is collected, we 

need to fit the value of the information using some model. In 

our implementation, we train non-parametric supervised 

learning method known as Gradient Boosting Regression by 

fitting the TMI parameters to operational metrics of interest 

(e.g. number of operations, number of flights experiencing 

excessive airborne holding, hours of ground delay). 

The variable definitions used in Table I are provided as 

follows: 

Ω≡The set of all scenarios 

St
n,m≡The system state at time t in scenario m during trial n 

Wt≡The airspace capacity described in forecast in period t 

J ≡The set of all simulation instances 

m≡ The scenario forecast m 

Xj
,n≡ The policy function X that maps air traffic states to 

TMIs for instance  j of the air traffic simulation 

xn,m≡ The TMI decision made in scenario m for instance j on 

trial n 

C(Sn,m , xj
n,m ) ≡ The cost of the decision made 

𝜐̂𝑗
𝑛,𝑚 ≡ The value of the decision in scenario m for instance j 

on trial n 

TABLE I.  AN -GREEDY APPROACH FOR ASSIGNING TMIS 

Step 0. Initialization 

Step 0a. Initialize 𝑉̅𝑗
0, 𝑗 ∈ 𝐽. 

Step 0b. Initialize 𝑆𝑗
1, 𝑗 ∈ 𝐽. 

Step 0c. Choose an initial policy 𝑋𝜋,0. 

Step 0d. Set 𝑛 = 1. 

Step 1. Repeat for 𝑚 = 1, 2, … , 𝑀. 

 Step 1a. Choose a sample path 𝜔𝑚. 

Step 2. Do for j =0, 1, … , 𝐽. 

 Step 2a. Find 𝑥𝑗
𝑛,𝑚 =  𝑋𝜋,𝑛−1(𝑆𝑗

𝑛,𝑚). 

    Step 2b. Update the state variable by simulating 

the air traffic 

 𝑆𝑗
𝑛,𝑚 =  𝑆𝑀(𝑆𝑗

𝑛,𝑚, 𝑥𝑗
𝑛,𝑚, 𝑊(𝜔𝑚)). 

            Step 2c. Set 𝜐̂𝑗
𝑛,𝑚 = 0 

 𝜐̂𝑗
𝑛,𝑚 = 𝐶(𝑆𝑗

𝑛,𝑚, 𝑥𝑗
𝑛,𝑚) 

Step 3. Compute the average value from starting in state 

𝑆𝑗
1: 

  𝜐̅𝑗
𝑛 =  

1

𝑀
∑ 𝜐̂𝑗

𝑛,𝑚𝑀
𝑚=1 . 

Step 4. Update the value function approximation by using 

the average values by fitting an estimate. 

 𝑉̅  ←  𝑈𝑉(𝑉̅𝑗
𝑛−1, 𝑆𝑗

𝑥,𝑛 , 𝜐̅𝑗
𝑛). 

Step 5. With probability 𝜖, choose 𝐽 decisions 𝑥𝑛 at  

random from 𝑋. With probability 1 −  𝜖, choose 𝐽  

decisions 𝑥𝑛 using the following procedure. Let j =0 

    Step 5a. For 𝑗 find 

  𝑋𝑗
𝜋,𝑛(𝑆) =  𝑎𝑟𝑔𝑥∈𝑋max (𝐶(𝑆𝑗

𝑛, 𝑥 ) +  𝑉̅𝑗
𝑛 (𝑆𝑀,𝑎(𝑆𝑗

𝑛, 𝑥))) 

    Step 5b. Remove 𝑥 such at 𝑥 ∉ 𝑋  and let 𝑥 ∈D,  

    where D is the set of TMI decisions to be taken.  

    Step 5c. Update the value of 𝜖=(+n+1),  

    where  is the learning rate. 

    Step 5d. Increment 𝑗. If 𝑗 ≤ 𝐽 go to step 6,  

    if not go to step 5a. 

Step 6. Increment 𝑛. If 𝑛 ≤ 𝑁 go to step 1. 

Step 7. Return the value functions 𝑉̅𝑗
𝑛. 

Sample-ranked constrained -greedy policies: 

Another approach is to assume the capacity of the airspace 

resources are assigned to quantiles of the distribution. This 

approach is commonly adopted in chance-constrained 

programming. In this framework, FCA regions would be 

assigned a certain quantile based on the risk tolerance of the 

decision-maker. Once the capacities are defined, they will 

stay fixed and the TMI parameters can be adjusted to 

optimize the desired objective. The solution would then 

describe the best possible performance assuming the airspace 

capacity did not exceed the assumed constraints. One 

drawback to this approach is that it is difficult to construct 

scenarios that limit the capacity bounds of 25 airspace 

resources without over-constraining certain resources to 

levels that represent a realistic outcome. 

A potentially less stringent alternative to the chance-

constrained approach is to draw from the distribution and 

grade the performance of each scenario based on some 

performance metric. The goal is then to achieve the best 

possible performance when averaging over the subset of 

worst-case scenarios that were selected.  In this approach, we 

evaluate the performance of the TMIs under each scenario 

and rank the scenarios from best to worst based on a given 

performance metric (e.g. number of operations, delay cost). 

Once the scenarios are ranked, we establish a threshold 𝛽 that 

equates to an assigned percentile. We then eliminate the 

scenarios that demonstrated better performance than the one 

in the chosen quantile and average over the remaining 

scenarios. We will refer to this method as the Ranked-sample 

constrained -greedy approach. A description of the method 

is shown in Table II. 



TABLE II.  A RANKED-SAMPLE CONSTRAINTED -GREEDY 

APPROACH FOR ASSIGNING TMIS 

Step 0. Execute Steps 0, 1 and 2 in Table I. 

Step 1. Order samples of 𝜐̂𝑗
𝑛,𝑚

 for all sample paths 𝑚. 

Step 1a. Let 𝑉(𝛽) be the value of the sample 

realization in the 𝛽-percentile. 

Step 1b. If 𝜐̂𝑗
𝑛,𝑚 ≤ 𝑉(𝛽) then 𝑚 ∈ 𝑄 where 𝑄is the    

set of scenarios achieving performance below 

quantile 𝛽. 
Step 2. Compute the average value from starting in state 

𝑆𝑗
1: 

  𝜐̅𝑗
𝑛 =  

1

[𝑄]
∑ 𝑣𝑗

𝑛,𝑚
𝑚∈𝑄 . 

Step 3. Update the value function approximation by using 

the average values by fitting an estimate. 

 𝑉̅  ←  𝑈𝑉(𝑉̅𝑗
𝑛−1, 𝑆𝑗

𝑥,𝑛 , 𝜐̅𝑗
𝑛). 

Step 4. With probability 𝜖, choose 𝐽 decisions 𝑥𝑛 at  

random from 𝑋. With probability 1 −  𝜖, choose 𝐽  

decisions 𝑥𝑛 using the following procedure. Let j =0 

    Step 4a. For 𝑗 find 

  𝑋𝑗
𝜋,𝑛(𝑆) =  𝑎𝑟𝑔𝑥∈𝑋max (𝐶(𝑆𝑗

𝑛, 𝑥 ) +  𝑉̅𝑗
𝑛 (𝑆𝑀,𝑎(𝑆𝑗

𝑛, 𝑥))) 

    Step 4b. Remove 𝑥 such at 𝑥 ∉ 𝑋  and let 𝑥 ∈D,  

    where D is the set of TMI decisions to be taken.  

    Step 4c. Update the value of 𝜖=(+n+1),  

    where  is the learning rate. 

    Step 4d. Increment 𝑗. If 𝑗 ≤ 𝐽 go to step 5,  

    if not go to step 4a. 

Step 5. Increment 𝑛. If 𝑛 ≤ 𝑁 go to step 0. 

Step 6. Return the value functions 𝑉̅𝑗
𝑛. 

Sample Generation: 

In both variants of the -greedy algorithm we need to 

generate a sample path from the TFI distribution. We also 

need to estimate the value of various TMI decisions. We 

consider two types of TMI decisions: GDPs and AFPs. GDPs 

assign ground delays to flights that are scheduled to fly to 

specified airports, while AFPs assign ground delay to flights 

that plan to fly through various airspace regions. Each of 

these programs can be defined by a start time and end time 

and a rate. In order to estimate a TMI value, we need to 

generate a set of candidate TMIs. We begin with a baseline 

vector describing the characteristics of the TMI program. The 

baseline vector element includes the hourly controlled rates 

at the set of resources under consideration, in this case a set 

of airports and/or flow constrained areas in an AFP. Another 

vector element is the size of the exemption radii for GDPs. 

When an exemption radius is applied to a GDP, all flights at 

origins that are more than the specified distance away from 

the GDP airport exempted from the program, while flights at 

origin airports inside of the radius receive controlled ground 

delays. The TMI baseline vector sets the size of the 

exemption radius to one of four distances for each GDP. 

Another element included in the baseline vector is the start 

time of the GDP or AFP for each managed resource. The end 

time of the program is defined by adding the number of 

elements that define the rate of the start time divided by 24 

and taking the remainder. Once all the elements of a program 

have been included in the baseline vector, the vector elements 

continue to define the parameters for the other managed 

resources until all the TMI parameters have been listed. The 

TMI sample generation process is depicted in Figure 2. 

R1 R2 R3

R1 X2 X3R1 D2 D3

R1 D2 Y3R1 D2 V3 R1 X2 B3R1 X2 A3  

Figure 2.  An illustration of a sample perturbation of the TMI baseline 

vector. 

C. Search Strategy 

A fast-time simulation framework was used to evaluate 

the effects of weather impacts on airspace against various 

traffic demand scenarios. The simulation can import either 

the flow rate that is based on a sampled TFI forecast draw or 

the actual weather. The simulation also ingests wind forecast 

models such as the High-Resolution Rapid Refresh or the 

Global Forecast System to account for the impact of wind on 

the four-dimensional flight trajectories. Controller workload 

behavior based on a set of analytical models described in [28] 

and [29] are used to set the sector capacities across the NAS. 

Flight demand is defined by historical flight plans from the 

Traffic Flow Management System. The Base of Aircraft Data 

(BADA) 3.6 model is used to derive the speed and fuel burn 

profiles for each aircraft. Coded instrument flight navigation 

procedures from the Federal Aviation Administration (FAA) 

provide the basis for the four-dimensional trajectories used in 

the simulation. The TMI responses are implemented using 

Collaborative Decision Making (CDM) procedures such as 

ration-by-schedule, cancellation and substitution and 

compression [32] Tactical TMIs such as Approval Requests 

(APREQ) that are used in the US impose ground-holding to 

adjust  the demand at nearby sectors were also implemented 

within the simulation. 

    When the simulation initializes, a TMI can be applied to 

the scenario by adjusting the scheduled arrival times prior to 

take-off. A set of concurrent instantiations of the air traffic 

simulation are run in parallel on a computing cluster to 

provide broader scenario exploration. A set of TFI-correlated 

FCA draws based on the forecast weather is sampled by each 

simulation. After our initialization, the algorithmic approach 

under evaluation generates a new set of TMI parameters to 

control a set of airspace and airport resources in the scenario. 

The performance of the evaluated TMI is scored using a set 

of operationally-relevant metrics (e.g., number of operations, 

holding events, delay) and logged in a database. As the 

process iterates, the framework continues the series of air 

traffic management simulations by using our algorithmic 

selection method to choose different sets of TMI parameters 

until we have reached our last simulation run. A diagram of 

the architecture is shown in Figure 3. 



 
Figure 3.  A simulation framework to facilitate exploration of Traffic 

Management Initiative parameters. 

III. RESULTS AND DISCUSSION 

In this section we describe our computational experiments 
used to evaluate the approaches for selecting TMI parameters. 
We discuss the relative performance of two methods against 
forecast weather scenarios over a set of case days. We also 
report the performance of the Ranked-Sample Constrained e-
greedy method relative to the TMIs that were actually 
implemented using the actual weather. 

A. Experimental Description 

    A set of computational experiments were performed using 

the methodology described in Section II. Seven case days in 

the summer of 2019 were chosen as test scenarios. The 

weather impacts on those days were either moderate or severe 

and all days had sufficient convective blockage to motivate 

the traffic managers on duty to initiate a set of TMIs at 

airports and airspace resources within the Northeastern 

United States. These weather impacts provide the type of 

airspace capacity disruptions that our proposed methodology 

was designed to mitigate. The TFI capacity data was injected 

into a set of simulations configured to evaluate the traffic on 

the days examined over a period lasting between 04:00GMT 

to 3:59GMT the next day. Historical TFMS flight plans for 

an entire day of traffic in the U.S. were ingested and 

simulated along the route in the flight plans to 

deterministically emulate the demand levels for the day. The 

TMIs identified with our search methods were imposed at 

New York John F. Kennedy (JFK), LaGuardia (LGA), 

Newark (EWR), Philadelphia (PHL), Boston Logan (BOS) 

airports and FCA regions called A01 and A08. A diagram 

showing the geographic locations of the airports and FCAs 

used is shown in Figure 4. In many instances, the actual case 

days often included other GDPs. We wanted to include them 

for comparison purposes when evaluating the tested TMIs 

relative to the implemented TMIs, so we also included the 

GDPs that were put in place at these resources on the day 

being evaluated. Since we did not intend to test the GDPs at 

these airports, the parameters on the GDP, resources 

remained constant and consistent with the implemented rates 

in all trials. 

FCAA01

FCAA01 is defined by the western 

boundary of ZNY and extending to 

Lake Erie.

Altitude Filters:  120 – 600

Arrival Filters:  ZNY & ZBW

Departure Filters:  None

Likely weather for use:  Weather 

close in to or moving toward the 

N.Y. Metro area.

Weather Triggers:  Intense 

weather that is close in or moving 

toward the N.Y. Metro area and is 

or will likely directly impact the 

N.Y. Metro airports.

NESP Rate Guidelines  

Flow through ZOB:

Low Weather Impact: 90 – 100 Rate/Hour

Med Weather Impact         80 – 90 Rate/Hour

High Weather Impact 70 – 80 Rate/Hour

BOS
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EWR
PHL
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Figure 4.  The location of the airports and FCA regions that were 

managed by the TMI programs under test. 

An instantiation of our simulation framework was run on 

a high-performance computing cluster [33]. A set of TFI FCA 

forecast distributions were sampled 30 times to emulate 30 

potential spatial-temporal evolutions of the weather. A group 

of 15 TMI parameter configurations was also selected to 

evaluate the performance of 15 different TMIs with TFI 

forecast samples. Each TMI was tested with 30 TFI forecast 

samples. The combination of TFI forecast samples and TMI 

configurations composed 450 concurrent simulation 

instances, each of which was run on an Intel Xeon-phi 7210 

processor. The outcomes of each instance describe the 

operational performance of a single sampled TFI forecast 

when one of the 15 TMIs is implemented. 

A nominal baseline TMI was constructed and perturbed 

with a 1st-order Gaussian auto-regressive random process 

whose parameters can be described by a mean, standard 

deviation and autocorrelation. The baseline settings were 

chosen to generate samples that provided moderate 

restriction on the resources, while future iterations were 

modified to evaluate more benign or restrictive control of 

flight demand. The baseline TMI had a mean value of 80% 

of the visual flight rules airport capacity for all 5 airport 

resources under test, a rate of 115 flights/hour for FCAA01 

and 120 flights/hour in the case of FCAA08. The distribution 

that perturbed the baseline had a standard deviation of 3 

flights for all GDPs and 5 flights for all AFPs since the FCA 

resources generally operate at higher flow rates than the 

airports under test. The exemption radii of the GDPs were 

discretized to distances of 1000, 1500, 2000 and 2500 NM. 

The baseline TMIs had a duration of 12 hours. During each 

strategy evaluated, the simulation iterated over 40 batch runs. 

Since the weather impacts for the days evaluated were later 

in the day, the initial start time of the TMIs were set to 16:00 

GMT. The TMI baseline could also be adjusted by cancelling 

the program at any given resource prior to the scheduled end 

time.  

We sought to identify TMI decisions that best yield high 

operational throughput. This goal can be obtained by over-

delivering the traffic to the airports and airspace resources. 

However, when the amount of holding is excessive it can 

affect controller workload and may also lead to significant 
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airborne holding. Since these effects are operationally 

undesirable, we would also like our selected TMIs to limit 

demand in a manner that results in a lower amount of holding. 

Thus, our ideal operating point would be achieved when we 

can replicate the throughput when the airspace is relatively 

saturated relative to its capacity, while delivering a low 

number of holding events. A depiction of the concept is 

shown in Figure 5. 
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Figure 5.  An illustration of an operational performance objective 

under evaluation. 

The value of the TMI decisions for the -greedy method 

was estimated with Gradient Boosting Regression using a 

least-squares loss function. The model was trained at each 

exploitation step based on the performance data from the 

prior TMI implementations. At each iteration, we sampled 

from a uniform distribution from zero to one and compared 

the result to a threshold to determine whether an exploration 

or exploitation step was selected. The threshold level to 

choose an exploitation step started at one and dropped with 

each subsequent iteration using a learning rate of =5. While 

other rates could be evaluated, due to the large dimensionality 

of the problem we did not investigate the sensitivity of this 

parameter. A gradient tree boosting model was created to 

predict the number of operations at the five airports 

evaluated.  These TMIs were filtered based on the criterion 

that the TMIs implemented ranked in the bottom 25% of 

flights with more than 15 minutes of airborne holding. Each 

model was trained with an initial sample set of 5 random 

samples. These trained models were then used to predict the 

performance of an additional 100,000 samples.  

 In the case of the Ranked-Sample Constrained -greedy 

method, the performance of each TMI sample was sorted 

over the 30 TFI samples based on the number of operations 

that occurred in the simulations over the day at the five 

controlled airports after the simulation executed. Forecasts 

that yielded higher number of operations were ranked more 

highly and mapped to higher percentiles than forecasts that 

induced lower number of operations when using the same 

TMI. Samples with values below a specified threshold were 

removed from the sample pool for the purposes of calculating 

the objective. This threshold was set to the 90th, 80th and 70th 

percentile worst case outcomes with respect to operations. 

These thresholds filtered the pool of simulations down to the 

worst 3 samples (90th percentile) and the worst 6 samples 

(80th percentile) and worst 9 samples (70th percentile). The 

expected value of each of the filtered sample pools was used 

to fit the value function of the Gradient-Boosting Regression 

algorithm. We then sought to maximize the expected value of 

the filtered samples using the same process as the -greedy 

algorithm. A summary of the various test instances is shown 

in Table III. 

TABLE III.  SIMULATION FRAMEWORK TEST PARAMETER 

CONFIGURATIONS 

Selection 

Method 

Simulated 

TFI, TMI, 

Trials 

Exemption 

Radii NM 

Objective 

Calculation 

Std Rate 

Perturbation 

Ranked-

sample 

constrained 

-greedy 

30, 15, 40 

1000, 

1500, 
2000, 

2500 

Samples with 
TMI performance 

in the worst70th, 

80th and 90th 
percentiles 

3 GDP, 
5 AFP 

-greedy 30, 15, 40 

1000, 

1500, 

2000, 2500 

All TFI forecast 
samples 

3 GDP, 
5 AFP 

B. Results and Discussion 

The results of the experiments described in the previous 

sub-section were aggregated to identify the best performing 

TMI. For each TMI tested in our simulation framework, we 

calculated our performance metrics (e.g. number of 

operations, number of holding events) by taking the expected 

value over the appropriate number of TFI samples. Once the 

individual statistics were computed for the individual TMI 

programs, the resulting performance data from each TMI was 

used to identify the best performing parameter settings based 

on our metrics of interest. We also calculated the expected 

value that we would have obtained if we used a TMI selected 

with the -greedy method and evaluated the performance with 

another TFI sample test configuration (e.g. 70th percentile). 

Although this calculation was not used in the -greedy 

objective function calculation it did enable us to project how 

we would have done with an -greedy approach when 

measured against more severe weather scenarios. We can see 

the relative improvement in the outcome by subtracting the 

performance we would have scored in a reduced set of more 

pessimistic outcomes from the performance obtained using all 

of the TFI samples. Figures 6 and 7 illustrate the relative 

change in performance obtained using the TMI solutions 

derived from the -greedy approach in Table I when 

considering each of the percentile outcomes. Negative values 

indicate that there are fewer operations or holds when 

evaluating the percentile scenarios against the mean, while 

positive values correspond to more operations and holds. We 

would like to see small negative values for the number of 

operations in Figure 6 and small positive values for holding in 

Figure 7 as such outcomes would suggest that the -greedy 

approach is relatively robust against the worst weather 

scenarios. Thus, the large adverse magnitude of both 

operations and holding indicate that the approach performs 

poorly against these more extreme weather impacts. In the 

seven days tested, our best mean outcome yields more than 

350 operations while achieving significantly lower levels of 

holding.  

The plots in Figures 6 and 7 suggest that there is a 

considerable gap in performance when the selected TMIs are 



evaluated with more pessimistic scenarios. Given this 

difference, more risk-averse parties might ask whether 

anything can be done to perform better in these situations. We 

attempt to address this issue by comparing the performance 

of the Ranked-Sample Constrained (RSC) -greedy 

algorithm relative to the -greedy approach. Figure 8 shows 

the relative number of operations obtained with the RSC -

greedy method. Figures 9 and 10 list the number of instances 

when airborne holding exceeds 15 minutes (holding events) 

and 45 minutes (extreme holding events) respectively. The 

relative performance of the two algorithms is also listed in 

Table IV. This table lists the mean number of operations and 

holding events (holding greater than 15 minutes) for the best 

performing TMI selected with each configuration. 

 
Figure 6.  Number of operations obtained in each percentile scenario 

set relative to the 30 sample mean scenario set when using the -greedy 

method. 

 
Figure 7.  Number of additional holding events obtained in each 

percentile scenario set relative to the 30 sample mean scenario set 

when using the -greedy method. 

The data in Figure 8 suggests that the RSC -greedy 

method  yields a higher number of operations than the -

greedy method in all but one instance. In the one instance 

where the performance does not exceed that of the e-greedy 

approach it is only marginally lower. This suggests the 

algorithm is able to successfully find better solutions from the 

standpoint of operational throughput in cases where the 

weather impacts are generally more limiting. The 

performance improvement is better with the 90th percentile 

on most days. This may relate to the fact that the -greedy 

algorithm is valuing a metric that is less similar to the 90th 

percntile than 70th percentile.  However there are two notable 

exceptions on June 19th and July 17th. The increase exceeds 

140 more operations on July 17th. On this day the weather 

impact was large, wide-spread and lasted for a long time. 

Under these circumstances, the convective weather blockage 

may have limited the potential for improvement in 

operational throughput. On June 19th the improvement was 

lower at 38 more operations. On this day the blockage in 

certain areas lasted a long time. In these circumstances, it is 

also more likely for different scenarios to yield worst-case 

outcomes for different TMIs making it harder to establish an 

optimal that performs noticably better for the higher 

percentiles. The number of holding events where the holding 

exceeded 15 minutes and the extreme holding events where 

the holding exceeded 45 are plotted in Figures 9 and 10. We 

can see from Figure 9 that in most cases the RSC -greedy 

method produces lower numbers of holding events, 

suggesting that the improved throughput of the method is 

generally not gained at the expense of additional operational 

holding. There is no clear trend to the relative performance of 

the percentile, however, this is not surprising as we are not 

explicitly trying to minimize holding in our value function. 

Figure 10 suggests that the method is even more successful 

at limiting extreme holding. In nearly every instance the 

number dropped when using the RSC -greedy method. This 

improvement may indicate that the RSC -greedy method 

could also be better at limiting diverted flights in addition to 

providing higher throughput in these worst case situations. 

The performance suggests that the approach could be used 

to provide decision-makers with alternative choices to 

potentially mitigate more extreme weather outcomes. When 

applying the concept to the operational environment, the risk-

tolerance of traffic managers could be assessed through 

interviews, human-in-the-loop studies, training and user-

feedback to inform the settings of a decision-support tool. 

Decision-makers could then review the projections of the 

potential outcomes, which may help improve expressions of 

risk-tolerance within the context of the weather forecast and 

the expected traffic demand. Such discussions may motivate 

choices to hedge more aggressively and make decisions that 

are more consistent with their actual preferences and beliefs. 

In these instances the RSC -greedy algorithm might provide 

a more targeted alternative than one that seeks to address 

more benign scenarios that may be of less concern to the user. 



It should be noted that while the results of this study 

focused on applying a set of GDPs and AFPs to address 

convective weather impacts in the Northeast United States, 

the methodology could be applied to a range of air traffic 

management situations and control measures. The impacts 

from non-convective weather (e.g., strong winds, low 

ceiling/visibility) can be mitigated through a combination of 

airport capacity uncertainty forecasts and reinforcement 

learning. Similarly, scenarios involving demand uncertainty 

could be addressed using the proposed concept. As ANSPs 

adopt more trajectory-based operational concepts to manage 

traffic, the technique could also be applied to address more 

targeted flight pools by using a combination of ground delay 

and speed control. In this framework the associated 

reinforcement learning-based recommendations could issue 

controlled-times-of-arrival rather than controlled-times-of-

departure and be paired with optimization models [34]–[36] 

that apply speed control to realize more tactical adjustments 

based on airline preferences.   

 
Figure 8.  Number of operations obtained when using the ranked-

selection constrained -greedy method relative to the -greedy method. 

 
Figure 9.  Number of holding events obtained when using the ranked-

selection constrained -greedy method relative to the -greedy method. 

 
Figure 10.  Number of extreme holding events obtained when using  the 

ranked-selection constrained -greedy method relative to the -greedy 

method. 

TABLE IV.  OPERATIONAL PERFORMANCE OF THE RANKED-
SELECTION CONSTRAINED -GREEDY METHOD RELATIVE TO 

THE -GREEDY METHOD 

Day 

90th Percentile 

(Operations/ 

Holding 

Events) 

80th Percentile 

(Operations/ 

Holding 

Events)  

70 Percentile 

(Operations/ 

Holding 

Events) 

June 5 60.25/-5.50 22.61/15.71 -2.40/8.97 

June 10 61.25/-74.25 8.43/-20.71 9.20/-4.20 

June 19 9.00/6.75 1.14/-15.71 34.03/-69.47 

June 20 20.00/-8.00 19.14/-47.14 14.55/-8.00 

July 17 23.50/-48.60 36.62/-60.90 161.17/-71.67 

July 19 5.75/-5.75 3.57/3.43 2.90/14.40 

August 15 2.50/2.50 2.86/0.0 0.0//0.0 

IV. SUMMARY AND FUTURE WORK 

In this paper, we presented a Rank-Sample Constrained -
greedy method for searching for the TMI parameters that 
attempts to optimize an objective under a set of impactful 
convective weather scenarios. The operational performance of 
the approach was evaluated against samples from a TFI 
weather impact forecast distribution. The method was 

compared to a prior implementation of an -greedy approach  
that was adapted to selected TMI parameters. The resulting 
performance indicated that the proposed method can 

outperform a traditional -greedy approach in these situations 

by facilitating higher levels of throughput relative to the -
greedy approach while often reducing the level of holding. 

There are a number of areas of potential exploration that 
could be pursued based on our proposed methodology. Given 
the challenges of developing an algorithm that can be 
practically used on a time-scale needed to support operational 



decision-making, one might explore alternative ways to 
improve the computational performance of the simulation 
framework in order to train the algorithm more efficiently. 
Alternatively, pre-training the current approach offline with 
additional historical weather and traffic scenarios may also 
provide another way to improve the overall performance and 
efficiency of the methodology. Another area of potential 
inquiry is to examine the distributions in the TFI forecast 
model with the goal of developing better ways to sample and 
account for weather impacts from the tails of the distribution. 
Other input from stakeholders such as airlines could be 
incorporated to understand and quantify their own risk-
preferences and their tolerance for and response to particularly 
impactful weather scenarios. By examining the question of 
how stakeholders perceive risk we can develop decision-
support technologies that more acutely map to the concerns 
and potential responses of the air traffic management 
community in dealing with potentially unfavorable weather 
events. 

ACKNOWLEDGMENT  

The authors would like to thank Yan Glina for his help in 
generating some of the flight plan data used in this study. The 
authors would also like to thank Mike Matthews and Joe 
Venuti for their assistance in classifying of weather impact 
days used in this paper. 

AUTHOR BIOGRAPHIES 

James Jones is Technical Staff in the Air Traffic Control 
Systems Group at MIT Lincoln Laboratory. He has a PhD in 
Civil and Environmental Engineering from the University of 
Maryland. 

Zachary Ellenbogen is Associate Staff in the Cyber System 

Assessments Group at MIT Lincoln Laboratory. Zachary 

received his BA in Math and Computer Science and his MA 

in Computer Science from Columbia University.  

REFERENCES 

[1] S. Ruiz, H. Kadour, and P. Choroba, “A novel air traffic flow 
management model to optimise network delay,” in The 13th 

USA/Europe ATM R&D Seminar, Vienna, Austria, 2019, p. 10. 

[2] J. E. Evans, K. Carusone, M. Wolfson, B. Crowe, D. Meyer, and D. 
Klingle-Wilson, “THE CORRIDOR INTEGRATED WEATHER 

SYSTEM (CIWS),” in 10th Conference on Aviation, Range, and 

Aerospace Meteorology, 2001, p. 6. 
[3] C. A. Provan, L. Cook, and J. Cunningham, “A probabilistic airport 

capacity model for improved ground delay program planning,” in 

2011 IEEE/AIAA 30th Digital Avionics Systems Conference, Oct. 
2011, pp. 2B6-1-2B6-12. doi: 10.1109/DASC.2011.6095990. 

[4] R. Kicinger, J.-T. Chen, M. Steiner, and J. Pinto, “Airport Capacity 

Prediction with Explicit Consideration of Weather Forecast 
Uncertainty,” Journal of Air Transportation, vol. 24, no. 1, pp. 18–

28, Jan. 2016, doi: 10.2514/1.D0017. 

[5] J. Cox and M. J. Kochenderfer, “Optimization Approaches to the 
Single Airport Ground-Holding Problem,” Journal of Guidance, 

Control, and Dynamics, vol. 38, no. 12, pp. 2399–2406, Dec. 2015, 

doi: 10.2514/1.G001081. 
[6] S.-L. (Alex) Tien, C. Taylor, E. Vargo, and C. Wanke, “Using 

Ensemble Weather Forecasts for Predicting Airport Arrival 

Capacity,” Journal of Air Transportation, vol. 26, no. 3, pp. 123–
132, Jul. 2018, doi: 10.2514/1.D0105. 

[7] M. P. Matthews, M. S. Veillette, J. C. Venuti, R. A. DeLaura, and J. 

K. Kuchar, “Heterogeneous Convective Weather Forecast 

Translation into Airspace Permeability with Prediction Intervals,” 

Journal of Air Transportation, vol. 24, no. 2, pp. 41–54, Apr. 2016, 
doi: 10.2514/1.D0025. 

[8] M. O. Ball, R. Hoffman, A. R. Odoni, and R. Rifkin, “A Stochastic 

Integer Program with Dual Network Structure and Its Application to 
the Ground-Holding Problem,” Operations Research, vol. 51, no. 1, 

pp. 167–171, Feb. 2003, doi: 10.1287/opre.51.1.167.12795. 

[9] B. Kotnyek and O. Richetta, “Equitable Models for the Stochastic 
Ground-Holding Problem Under Collaborative Decision Making,” 

Transportation Science, vol. 40, no. 2, pp. 133–146, May 2006, doi: 

10.1287/trsc.1050.0129. 
[10] O. Richetta and A. R. Odoni, “Solving Optimally the Static Ground-

Holding Policy Problem in Air Traffic Control,” Transportation 

Science, vol. 27, no. 3, p. 228, Aug. 1993, doi: 10.1287/trsc.27.3.228. 
[11] A. Mukherjee and M. Hansen, “A Dynamic Stochastic Model for the 

Single Airport Ground Holding Problem,” Transportation Science, 

vol. 41, no. 4, pp. 444–456, Nov. 2007, doi: 10.1287/trsc.1070.0210. 
[12] D. Bertsimas, G. Lulli, and A. Odoni, “An Integer Optimization 

Approach to Large-Scale Air Traffic Flow Management,” 

Operations Research, vol. 59, no. 1, pp. 211–227, Feb. 2011, doi: 

10.1287/opre.1100.0899. 

[13] A. S. Estes and M. O. Ball, “Equity and Strength in Stochastic 

Integer Programming Models for the Dynamic Single Airport 
Ground-Holding Problem,” Transportation Science, vol. 54, no. 4, 

pp. 944–955, Jul. 2020, doi: 10.1287/trsc.2020.0975. 

[14] G. Lulli and A. Odoni, “The European Air Traffic Flow Management 
Problem,” Transportation Science, vol. 41, no. 4, pp. 431–443, Nov. 

2007, doi: 10.1287/trsc.1070.0214. 
[15] A. Agustı´n, A. Alonso-Ayuso, L. F. Escudero, and C. Pizarro, “On 

air traffic flow management with rerouting. Part II: Stochastic case,” 

European Journal of Operational Research, vol. 219, no. 1, pp. 167–
177, May 2012, doi: 10.1016/j.ejor.2011.12.032. 

[16] G. Buxi and M. Hansen, “Generating Probabilistic Capacity Profiles 

from weather forecast: A design-of-experiment approach,” in The 
9th USA/Europe Air Traffic Management Research and 

Development Seminar, Berlin, Germany, 2011, p. 10. 

[17] J. C. Jones and R. DeLaura, “Predicting Airport Capacity in the 
Presence of Winds,” in 17th AIAA Aviation Technology, Integration, 

and Operations Conference, Denver, Colorado: American Institute 

of Aeronautics and Astronautics, Jun. 2017. doi: 10.2514/6.2017-
3595. 

[18] J. C. Jones, R. DeLaura, M. Pawlak, S. Troxel, and N. Underhill, 

“Predicting & Quantifying Risk in Airport Capacity Profile Selection 
for Air Traffic Management,” in The 12th USA/Europe Air Traffic 

Management Research and Development Seminar, Seattle, WA, Jun. 

2017, p. 10. 
[19] J. C. Jones, R. DeLaura, Y. Glina, and E. Hassey, “Learning 

Airspace Flow Rates through Fast-time Simulation,” in 2018 

Aviation Technology, Integration, and Operations Conference, 
Atlanta, Georgia: American Institute of Aeronautics and 

Astronautics, Jun. 2018. doi: 10.2514/6.2018-2881. 

[20] J. C. Jones and Y. Glina, “Estimating Flow Rates in Convective 
Weather: A Simulation-Based Approach,” in 13th USA/Europe ATM 

R&D Semina, Vienna, Austria, 2019, p. 10. 

[21] J. C. Jones, Ellenbogen, Zachary, and Y. Glina, Yan, 

“Recommending Strategic Air Traffic Management Initiatives in 

Convective Weather,” in The 14th USA/Europe Air Traffic 

Management Research and Development Seminar, VIRTUAL 
EVENT, Sep. 2021. Accessed: Jan. 24, 2023. [Online]. Available: 

https://drive.google.com/file/d/1esb9B4My2DflVSjHdCMjDDNNr

RRBlVO3/view?usp=sharing&usp=embed_facebook 
[22] C. Taylor, E. Vargo, Bromberg, Emily, and Carson, Everett, 

“Reinforcement Learning for Traffic Flow Management Decision 

Support,” in The 14th USA/Europe Air Traffic Management 
Research and Development Seminar, VIRTUAL EVENT, Sep. 

2021. Accessed: Jan. 24, 2023. [Online]. Available: 

https://drive.google.com/file/d/1xD26ZTN00FtOP_rsrEMGdNTSH
I2lm7o2/view?usp=sharing&usp=embed_facebook 

[23] C. Taylor, T. Masek, C. Wanke, and S. Roy, “Designing Traffic Flow 

Management Strategies Under Uncertainty,” in The 11th 
USA/Europe Air Traffic Management Research and Development 

Seminar, Chicago, 2015, p. 10. 



[24] M. P. Matthews and R. DeLaura, “Evaluation of enroute convective 
weather avoidance models based on planned and observed flights,” 

14th American Meteorological Society Conference on Aviation, 

Range, and Aerospace Meteorology, p. 17, 2010. 
[25] M. Rubnich, M. Matthews, and R. DeLaura, “Use of the Convective 

Weather Avoidance Polygon (CWAP) to Identify Temporally 

Coherent Convective Storm Boundaries,” in 2013 Aviation 
Technology, Integration, and Operations Conference, Los Angeles, 

CA: American Institute of Aeronautics and Astronautics, Aug. 2013. 

doi: 10.2514/6.2013-4215. 
[26] M. P. Matthews and R. DeLaura, “Decision Risk in the Use of 

Convective Weather Forecasts for Trajectory-Based Operations,” in 

14th AIAA Aviation Technology, Integration, and Operations 
Conference, Atlanta, GA: American Institute of Aeronautics and 

Astronautics, Jun. 2014. doi: 10.2514/6.2014-2717. 

[27] C. Gong and D. Mcnally, “Dynamic Arrival Routes: A Trajectory-
Based Weather Avoidance System for Merging Arrivals and 

Metering,” in 15th AIAA Aviation Technology, Integration, and 

Operations Conference, Dallas, TX: American Institute of 

Aeronautics and Astronautics, Jun. 2015. doi: 10.2514/6.2015-3394. 

[28] J. Y. N. Cho, J. D. Welch, and N. K. Underhill, “Analytical 

Workload Model for Estimating En Route Sector Capacity in 
Convective Weather,” in The 9th USA/Europe Air Traffic 

Management Research and Development Seminar, Berlin, Germany, 

2011, p. 10. 
[29] J. D. Welch, J. Y. N. Cho, N. K. Underhill, and R. A. DeLaura, 

“Sector Workload Model for Benefits Analysis and Convective 
Weather Capacity Prediction,” in The 10th USA/Europe Air Traffic 

Management Research and Development Seminar, 2013, p. 10. 

[30] M. P. Matthews, M. S. Veillette, J. C. Venuti, R. A. DeLaura, and J. 
K. Kuchar, “Heterogeneous Convective Weather Forecast 

Translation into Airspace Permeability with Prediction Intervals,” 

Journal of Air Transportation, vol. 24, no. 2, pp. 41–54, Apr. 2016, 
doi: 10.2514/1.D0025. 

[31] M. Matthews, R. DeLaura, M. Veillette, J. Venuti, and J. Kuchar, 

“Airspace Flow Rate Forecast Algorithms, Validation, and 
Implementation,” MIT Lincoln Laboratory, Lexington, MA, Project 

Report ATC-428, 2015. 

[32] T. Vossen and M. Ball, “Optimization and mediated bartering 
models for ground delay programs,” Naval Research Logistics, vol. 

53, no. 1, pp. 75–90, Feb. 2006, doi: 10.1002/nav.20123. 

[33] A. Reuther et al., “Interactive Supercomputing on 40,000 Cores for 
Machine Learning and Data Analysis,” in 2018 IEEE High 

Performance extreme Computing Conference (HPEC), Waltham, 

MA: IEEE, Sep. 2018, pp. 1–6. doi: 10.1109/HPEC.2018.8547629. 
[34] J. C. Jones, D. J. Lovell, and M. O. Ball, “Combining Control by 

CTA and Dynamic Enroute Speed Adjustment to Improve Ground 

Delay Program Performance,” in The 11th USA/Europe Air Traffic 
Management Research and Development Seminar, Lisbon, Portugal, 

Jun. 2015, p. 10. 

[35] J. C. Jones, D. J. Lovell, and M. O. Ball, “En Route Speed Control 
Methods for Transferring Terminal Delay,” in The 10th USA/Europe 

Air Traffic Management Research and Development Seminar, 

Chicago, IL, Jun. 2013, p. 10. 

[36] J. C. Jones, D. J. Lovell, and M. O. Ball, “Stochastic Optimization 

Models for Transferring Delay Along Flight Trajectories to Reduce 

Fuel Usage,” Transportation Science, vol. 52, no. 1, pp. 134–149, 
Jan. 2018, doi: 10.1287/trsc.2016.0689. 

 

 


