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Abstract—Airport traffic flow exhibits significant periodicity on
a daily scale, few studies have given attention to periodicity
when predicting airport traffic flow. In this article, we propose a
novel model that combines long short-term memory (LSTM) and
seasonal-trend decomposition procedure based on loess (STL)
to predict the arrival/departure traffic flow at the airport. A
sinusoidal template-matching method based on Fréchet distance
is used to restack the periodic input variables. A time series
decomposition algorithm STL is used to decompose the traffic
flow time series into trend, seasonal, and remainder components
to identify its periodic structure. LSTM model is trained using
historical airport operation data, strategic flight schedule data,
and meteorological data from Beijing Capital International Air-
port, Guangzhou Baiyun International Airport, and Shanghai
Pudong International Airport in 2019. Our results demonstrate
that both the adaptive restack of input variables and the time
series decomposition algorithm STL can improve the prediction
performance. Our proposed method shows superior performance
in long-time prediction (720-time steps). In particular, STL
combined LSTM method achieves an R-squared of 0.97 and
a mean absolute error (MAE) of less than 1.58 for all three
airports.

Keywords—long short-term memory (LSTM); time-series pre-
diction; airport traffic flow; seasonal-trend decomposition pro-
cedure based on loess (STL)

I. INTRODUCTION

More than 4.5 billion passengers were transported by
passenger flights in 2019. Although the air transportation
industry has been impacted by the COVID-19 pandemic,
it is undoubtedly that air traffic would soon be recovering
strongly [1]. As one of the most important components of
the air transportation industry, airports provide services and
infrastructure for airlines and passengers. These services and
infrastructure cover a wide range, from passenger check-
in, security scanning, through baggage systems, to gate
operations and lighting systems. Resource allocation and
collaborative operations play vital roles in improving the
performance of the airport system. There is a growing body of
literature that address various aspects of airport operations, for
example, airport capacity and demand management [2], gate
assignments [3], immigration and custom staff scheduling
[4], [5], and airport delay prediction [6]–[8]. Most of these

This work is supported by the National Natural Science Foundation of
China under grand number: U2033203.

studies attempt to prepare and allocate airport resources to
meet flights and passengers’ demands. Accurately predicting
departure and arrival flight flow is fundamental to airport man-
agement and air traffic flow management, which is however
less investigated.

Air traffic flow at the airport exhibits high daily patterns
and seasonal regularities due to the nature of air transport
demand. Fig. 1 shows the actual departure/arrival traffic flow
at Guangzhou Baiyun International (ICAO code: ZGGG)
airport from Sunday to Saturday. A clear daily pattern can
be observed with low traffic in the early morning and in late
night hours, and higher traffic during the daytime. In most
busy airports, flight schedules are published several months in
advance. To manage the demand-capacity imbalance, airport
slots are allocated under the guidance of Worldwide Airport
Slot Guidelines (WASG) that is issued by the International
Air Transport Association (IATA) [9]. Airlines develop flight
schedules after obtaining airport slots. However, the actual
number of flights arrival/departure at the airport may vary
from the scheduled ones because of the uncertainty of tactical
operations. A particular issue is whether that can reduce
airport capacities thus limiting the number of arrivals or
departures. For instance, the minimum standards for takeoff
at the airport are given as follows: for one and two-engine air-
craft, the visibility is 1600 meters; for three and four engines
aircraft, the visibility is 800 meters [10]. Thus, it is still very
difficult to accurately predict airport departure/arrival traffic
flow.

Research methods on airport traffic flow prediction can be
classified into mathematical modeling, simulations, and ma-
chine learning. In [11], the authors propose a timed stochastic
Colored Petri Net (CPN) model of a single runway to analyze
the effect of taxiways availability on runway traffic flow. In
[12], the authors develop a traffic flow pattern classification
model based on the clustering of multi-airport flight trajecto-
ries to capture the traffic flow patterns. An empirical model
for arrival capacity estimation is proposed based on historical
traffic patterns. The second group of studies to predict airport
traffic flow is using simulation software. SIMMOD is a
discrete-event simulation model that captures airport system
evolving in time through a mathematical model, supporting
the prediction of airport traffic flow [13].
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Figure 1: ZGGG arrival/departure flow during Sun - Sat

Aviation systems record vast amounts of data which en-
ables machine learning to predict traffic flow and flight delays.
Several neural network models have been proposed to predict
traffic flow, including Artificial Neural Networks (ANN) [14],
Long Short-Term Memory (LSTM) [15], [16], Gated Recur-
rent Units (GRU) [17], Recurrent Neural Network (RNN) [18]
and Convolutional Neural Networks (CNN) [19]. RNNs are
widely used for sequence modeling, but their training based
on gradient descent algorithms may blow up [20]. Typical
RNNs fail to recognize the time lag that exists for long periods
of time between the input and the target output [21]. In
recent years, LSTM and GRU have been successfully applied
in predicting periodic time series. A work in [22] proposes
Stacked AutoEncoder (SAE), LSTM, and GRU models to
predict traffic flow at the Beijing Capital International Airport
for the 45min time horizon. These three models tested on the
airport north line, airport west road, and airport expressway,
SAE model exhibits superior performance. In [15], the authors
propose a method combining LSTM and eXtreme Gradient
Boosting (LSTM-XGBoost) to predict airport arrival flow
for the 30min, 60min, and 120 min time horizon. XGBoost
is developed to obtain the ranking of the features. In [23],
the authors propose a new deep learning-based framework
called Airport Traffic Flow Prediction Network (ATFPNet) to
capture the spatial-temporal dependence of historical airport
departure and arrival traffic flows. The time horizon of the
model prediction are 30min, 45min, 60min, and 120 min. A
real-world airport traffic flow data set is applied to validate the
proposed model. The results show that the proposed method
achieves up to 17% MAE improvement compared to baseline
models.

We notice that most of the work is focusing on short-
range traffic flow prediction. In this paper, we focus on long-
range traffic flow prediction ( about 1 month prior to the
day of operation, 720-time steps). A sinusoidal template-
matching method based on Fréchet distance is used to restack
periodic input weather variables adaptively. A time series
decomposition algorithm, seasonal-trend decomposition pro-
cedure based on loess (STL), is used to decompose the
departure/arrival flow time series into trend, seasonal, and re-
mainder components, to identify the periodic structure of the

flow. Subsequently, machine learning models are used to learn
the trend components. The predicted trend components are
summed to the seasonal components to obtain the predicted
departure/arrival traffic flow. The results demonstrate that both
the adaptive restack of input variables and the time series
decomposition algorithm STL can improve the prediction per-
formance. Especially the time series decomposition algorithm
STL can significantly improve the prediction performance.

The main contents of the paper are shown in Fig. 2. Step 1
is processing experimental data using three methods; step 2 is
selecting evaluation metrics; step 3 is collecting and analyzing
the data set; step 4 is conducting experiments to compare the
performance of different methods. The structure of this paper
is organized as follows. Section II describes the data used
in this paper. Section III introduces the sinusoidal template-
matching method and time series decomposition algorithm
STL. Section IV introduces the machine learning algorithms
and compares the performance of algorithms. Finally, conclu-
sions and discussions are given in Section V.

II. DATA

This paper takes Guangzhou Baiyun International Airport,
Beijing Capital International Airport and Shanghai Pudong
International Airport as the subjects of the study, covering
historical airport operation data, strategic flight schedule data,
and meteorological data from March 31, 2019, to October
26, 2019. Meteorological data are obtained from National
Oceanic and Atmospheric Administration (NOAA) [24]. The
strategic flight schedule data is used to obtain the number
of scheduled hourly departures/arrivals at the airport, and
the historical airport operation data is used to obtain the
airport departure/arrival hourly traffic flow, the target to be
predicted. Meteorological data includes elements such as
visibility, temperature, and pressure. The features extracted
from each data source and used for training and prediction
are shown in Table I. The extracted departure/arrival hourly
traffic flow and weather data tables are merged with the date
and time.

The daily departure/arrival hourly traffic flow of
Guangzhou Baiyun International Airport is shown in
Fig. 3. Fig. 3 shows that the hourly departure and arrival



Figure 2: Main contents of the paper

TABLE I. Feature description for the airport flow prediction

Feature Feature description

Schedule Month, Day of week, Hour, Day of month, Scheduled arrivals and scheduled departures
Weather Wind direction[deg], Wind speed[m/s], Opaque layer height[m], Temperature[°C], Visibility[m], Dew point[°C],

Pressure[hpa], Precipitation[mm], Cloud height[m] and Cloud cover



Figure 3: ZGGG arrival/departure hourly flow

traffic flow of the airport are different. In terms of arrival
traffic flow, it is at a low level in the early hours of the day
and increases significantly after 7:00 a.m., and then remains
at 30-40 hourly traffic flow with oscillations. In terms of
departure traffic flow, it starts to increase notably after 4:00
a.m. to reach a peak at 8:00 a.m., and then starts to decrease
after 16:00 p.m..

III. METHODS

A. Feature engineering and seasonal-trend decomposition

1) Baseline feature processing: Trigonometric functions
are employed to convert month, day of week, hour, and day of
month, to keep the nature of periodicity [25]. For a particular
hour, t in one day, the trigonometric functions sin(2πt/24)
and cos(2πt/24) are applied to ensure 24-hour periodicity.
After trigonometric conversion, t = 24:00 and t = 01:00 will
be continuous hours. Similarly, the periodicity of the month,
day of week, and day of month are 12, 7, and 30 respectively.

Other numerical variables such as wind direction and
wind speed are normalized. That is the data are mapped
uniformly to the interval [0, 1]. Normalization will change the
dimensional expression into a dimensionless expression. The
normalization method used here is Max-Min standardization,
which is the linear transformation of original data. The
transformation function is given as follows:

x =
x−min

max−min
(1)

where x is the original data, min is the minimum value in the
original data and max is the maximum value in the original
data.

2) Feature restack by a sinusoidal template-matching
method: The meteorological wind (wind direction and wind
speed) is decomposed into headwind that is parallel to the
airport runway direction and crosswind that is perpendicular
to the airport runway direction. The segmentation coding
method is used to encode visibility, cloud height, and opaque
layer height variables. For example, airport visibility below
800m is coded as 0; visibility between 800m and 1200m is
coded as 1; visibility between 1200m and 1600m is coded
as 2; visibility above 1600m is coded as 3. The selection
of 800, 1200, and 1600m as segmentation coding threshold

is mainly based on airport runway operation standards and
the regulations for the establishment and implementation
of minimum standards for the operation of aircraft. The
segmentation coding process of each feature is shown in Table
II.

Temperature and pressure features of the weather exhibit
significant periodic characteristics. A sinusoidal template-
matching method based on Fréchet distance is used to restack
the periodic input variables. Template matching is a repre-
sentative algorithm in the field of image recognition, which
identifies the matching location in the target image by a spec-
ified template [26]. To preserve the periodic changes of the
weather time series, we match the time series using a standard
sinusoidal image by extending the template-matching method.

Given a time series of temperature or pressure X =
{x1, x2, · · · , xn}, where n here refers to the length of the data
set (the number of days times 24), the Exponential Moving
Average (EMA) is applied to ensure the time series will not
fluctuate too much due to outliers. EMA equation is given as

vt =

{
x1 t = 1

αvt−1 + (1− α)xt t > 1
(2)

where t is the sliding time window, x is the original data ,
and v is the data after EMA processing, α indicates the speed
of weighted decline.

The time series after EMA processing denotes as V =
{v1, v2, · · · , vn}, which will be further splited at the point
where the concavity or monotonicity changes. Define M =
{m1,m2, · · · ,mn−1}, C = {c1, c2, · · · , cn−2}, where mi =
vi+1 − vi, ci = mi+1 − mi. When mimi−1 < 0, it
indicates a change of the monotonicity of the time series;
when cici−1 < 0, it indicates a change of the concavity of
the time series. Dividing the time series when mimi−1 < 0
or cici−1 < 0 to obtain four types of time series, including
monotonically increasing convex, monotonically decreasing
convex, monotonically increasing concave and monotonically
decreasing concave time series (see Fig. 4 (a)). For each seg-
ment, the template-matching process is performed by using
the standard sinusoidal image, which consists of four quarter-
cycle sinusoidal images, as shown in Fig. 4 (b). The process
of template-matching is done by stretching, compressing, and
shifting the sinusoidal templates to minimize the Fréchet
distance from the time series in this segmentation interval.
The specific process of sinusoidal template-matching is as
follows.

Given a four quarter-cycle sinusoidal templates sin(x),
define the following three transformation processes:

• Stretching P (x): P (x) = sin(x/duration);
• Compressing Q(x): Q(x) = amplitude ∗ sin(x);
• Shifting S(x): S(x) = sin(x) + pan.
Let T = (P (x), Q(x), S(x)) be the transforming process

that contains the above three processes, and J(x) be the
transformed time series. Let F (J(x), V (x)) be the Fréchet
distance between J(x) and V (x). The Fréchet distance is
defined as:

F (J(x), V (x)) = min ∥L∥ (3)



TABLE II. Segmentation coding process of each feature

Feature Segmentation coding

Visibility 0-800m →0, 800-1200m →1, 1200-1600m →2, >1600m →3
Cloud height 0-100m →0, 100-300m →1, 300-500m →2, 500-1000m →3, 1000-1500m →4, >1500m →5
Opaque layer height 0-80m →0, 80-120m →1, 120-200m →2, >200m →3

∥L∥ = max
i=1,...,n,a=1,...,m

d (vi, ja) (4)

where (vi, ja) is the pair of data in the templates and target
time series, d is the Euclidean distance. In a sequence of two
different sampling points, Fréchet distance tries to find a path
that minimizes the sum of the distances of the values paired
with each other. The objective of the sinusoidal template-
matching method is to minimize F (J(x), V (x)). Fig. 4
(b), Fig. 4 (c), and Fig. 4 (d) demonstrate the process of
minimizing the Fréchet distance by transforming the four
quarter-cycle sinusoidal templates. The sinusoidal template-
matching method pseudo code is shown in Fig. 5. With the
special note that to restack input variables faster, we initialize
transformation consisting of stretching, compression, and
shifting shown in Fig. 5 line 7-9. Finally, restack the input by
a sinusoidal template-matching method, and transformation
Q,P, S is set to get the minimal Fréchet distance in a list
parameterT . An example of the original temperature series
and its sinusoidal template-matching is shown in Fig. 6. As
can be seen from the figure, the temperature series shows a
periodicity of a week. The matched series successfully capture
the periodic characteristics of the temperature data.

3) Seasonal-Trend decomposition procedure based on loss:
STL algorithm is used to decompose the series of depar-
ture/arrival flow into trend, seasonal, and remainder compo-
nents thus identifying its periodic structure. It uses robust lo-
cally weighted regression as a smoothing method [27]. Given
a departure/arrival time series Y = {y1, y2, · · · , yn}, STL
algorithm decomposes Y into trend component T , seasonal
component S, and remainder component R (shown in Fig.
7), such that Yv = Tv + Sv + Rv , v = 1, 2, · · · , n. Once
the original series has been decomposed, machine learning
algorithms will be developed to predict the trend components
T ′. The seasonal component S is then added to T ′ to obtain
the predicted time series Y ′. STL algorithm presumes that the
remainder component R is very small. Since there has already
residual errors when predicting T ′, STL then preserves the
seasonality of the original time series.

STL algorithm consists of two parts: inner loop and outer
loop. The inner loop is for trend fitting and the calculation of
the seasonal component, while the outer loop improves the
robustness of the algorithm. The inner loop can be described
in six steps.

1) Detrending. Initially, set T 1
v = 0. Then Yv − T 1

v .
2) Cycle-subseries smoothing. Set n(p) = 24, then

Subseries one =
{
y1, y1+n(p)

, y1+2n(p)
, · · ·

}
,

Subseries two =
{
y2, y2+n(p)

, y2+2n(p)
, · · ·

}
, · · · .

Loess(Subseries (one− twentyfour)) = C2
v .

3) Low-pass. Moving averagewindowsize=n(p),n(p),3(C
2
v ) =

D2
v . Loess(D2

v) = L2
v .

Figure 4: Feature restack by a sinusoidal template-matching
method

4) Detrending of smoothed Cycle-subseries. S2
v = C2

v −
L2
v .

5) Deseasonalizing. R2
v = Yv − S2

v .
6) Trend Smoothing. Loess(R2

v) = T 2
v , return Step 1 until

convergence.

Step1: Detrending, Yv subtract the trend component T (k)
v

obtained at the end of the last inner loop, where k indicates
at the end of kth path, initially T

(k)
v = 0; Step2: Cycle-

subseries Smoothing, a Locally weighted regression (Loess)
is done on the subseries (a sequence of sample points at the
same position for each cycle, in this paper is the sequence



Figure 5: Pseudo code of sinusoidal template-matching
method

Figure 6: Original temperature series and its sinusoidal
template-matching

of departure/arrival traffic flow at the same hour) and the
result is noted as C

(k+1)
v ; Step3: Low-Pass, the result C(k+1)

v

is filtered by a moving average with a window of size n(p)

(number of the subseries), n(p), 3, then a Loess is performed
to get the output L

(k+1)
v . Step4: Detrending of smoothed

Cycle-subseries, calculate S
(k+1)
v = C

(k+1)
v −L

(k+1)
v ; Step5:

Deseasonalizing, a deseasonalized series Yv − S
(k+1)
v is

computed. Step6: Trend Smoothing, a Loess is done on the
deseasonalized series to obtain the trend component T (k+1)

v .
The outer loop is mainly used to improve the robustness of
the algorithm. When there is an outlier in the time series,
the neighborhood weights need to be weighted so that the
weights of the large outlier in the data are very small or
taken as 0 to weaken the effect of the outlier when loess is
performed in steps 2-6. In fact, there is no significant outlier
in the departure/arrival flow time series data, and the outer

Figure 7: STL decomposition algorithm example diagram in
a week

loop is not really uesful. but in order to retain the robustness
of the algorithm, the outer loop process is retained in this
paper.

B. LSTM-attention algorithm

We denote the i-th feature of the airport at time step t
as xi,t ∈ RC , where C denotes the traffic flow types (e.g.,
arrival traffic flow, departure traffic flow). Then, the airport
traffic flow of N features at time step t is represented as
Xt = (x0,t, x1,t, ..., xN−1,t) ∈ RN×C .

In this paper, we plan to predict the airport traffic flow of
the next Q time steps Ŷ = (X̂1, X̂2, ..., X̂Q) ∈ RQ×N×C ,
given the airport traffic flow data of N features at previous
P time steps X = (X0, X1, ..., XP−1) ∈ RP×N×C . In this
paper, each time step is 1 hour, and we use the data of the
previous 720 hours (P=720) to predict the flight delay of the
next 720 hours (Q=720).

1) Attention: The task of the attention mechanism is to
obtain information of local interest, and the introduction
of attention makes certain locations in the input data more
worthy of attention [28].

Given airport traffic flow data of N features at previous
P time steps X = (X0, X1, ..., XP−1) ∈ RP×N×C , multiply
the matrices W q ∈ RN×N , W k ∈ RN×N and W v ∈ RN×N

separately to obtain Q, K and V (as shown in Equation
5). For example, Xi after the multiplication we get Qi, Ki

and V i. Here Q, K, and V correspond to Query, Key, and
Value. The original concept is derived from the information
retrieval system. Take each query Q and key K, perform
attention transformation to get the attention score. Then,
the score is normalized by dividing by

√
dk (as shown in

Equation 6). Softmax is applied to get the weights (Equation
7). The weights are multiplied by the value matrix V and
then summed to obtain the final output (Equation 8). After the
attention mechanism, we transfer airport traffic flow data of N
features at previous P time steps X = (X0, X1, ..., XP−1) ∈
RP×N×C to A = (A0, A1, ..., AP−1) ∈ RP×N×C .



Qi = W qXi Ki = W kXi V i = W vXi (5)

αi,p =
QiKT

√
dk

(6)

α̂i,p =
eαi,p∑
p e

αi,p
(7)

Ai =
∑
p

α̂i,pV
p (8)

2) LSTM: A long short-term memory (LSTM) is a variant
of the RNN structure, which is designed to be able to learn
information between long separated events. It was proposed
by Hoschreiter and Schmidhuber to cope with the long-term
dependency problem of RNNs [29]. The reason that LSTM
can find the correlation between long separated events is that
LSTM has three multiplication gates: input gate, forgetting
gate and output gate. LSTM controls the retention of the
previous moment cell state by input gate and forgetting gate.
The input gate, forgetting gate, output gate and cell status of
the input unit are calculated as follows,

ip = σ (Wi · [hp−1, Ap] + bi) (9)

fp = σ (Wf · [hp−1, Ap] + bf ) (10)

op = σ (Wo · [hp−1, Ap] + bo) (11)

c̃p = tanh (Wc · [hp−1, Ap] + bc) (12)

where σ is the sigmoid function, and tanh is the tanh
function. Wi ∈ RN×D, Wf ∈ RN×D, Wo ∈ RN×D, and
Wc ∈ RN×D are the input gate, forgetting gate, output gate,
and cell status of the input unit weight matrix. bi, bf , bo,
and bc is the bias item, hp−1 is the LSTM output value at
the previous moment, while Ap is the current network input
value obtained from attention mechanism.

The state of the cell at the current moment is given as,

cp = fp ◦ cp−1 + ip ◦ c̃p (13)

where cp−1 is the status of the last output cell, while ◦ denotes
multiplication of the elements.

The output of the current cell is obtained from the output
gate and the cell state at the current moment with equation
14. We last use fully-connected layer to project the data into
N -dimensional representation as Ŷ = (X̂1, X̂2, ..., X̂Q) ∈
RQ×N×C .

hp = op ◦ tanh (cp) (14)

A schematic diagram of the LSTM-attention framework is
shown in Fig. 8. The general architecture of the network is
shown in Fig. 8 (a), in which the network inputs are X =
(X0, X1, ..., XP−1) ∈ RP×N×C and the network outputs are
Ŷ = (X̂1, X̂2, ..., X̂Q) ∈ RQ×N×C . Fig. 8 (b) shows an
illustration of an LSTM model described in III-B2. Fig. 8 (c)
illustrates a self-attention model described in III-B1.

3) Performance metrics: The metrics used to evaluate the
performance of the models developed in this paper are the
Mean Absolute Error (MAE), Mean Squared Error (MSE),
Root Mean Square Error (RMSE), and R-square. The perfor-
mance metrics are defined as follows:

MAE =
1

Q

∑Q

t=1

∣∣∣Xt − X̂t

∣∣∣ (15)

MSE =
1

Q

∑Q

t=1

(
Xt − X̂t

)2

(16)

RMSE =

√
1

Q

∑Q

t=1

(
Xt − X̂t

)2

(17)

Xt =
1

Q

∑Q

t=1
Xt

SStot =
∑Q

t=1

(
Xt −Xt

)2
SSres =

∑Q

t=1

(
X̂t −Xt

)2

R2 = 1− SSres

SStot

(18)

IV. RESULTS

A. Model training

The case study data are divided into training data set and
test data set. Specifically, we divide the training set and the
test set in date sequence, and the ratio of the training set to the
test set is 4:1. The training data is forward propagated into the
LSTM network, and the output is generated by the network
described in Fig. 8 (a). The network input is 720-time steps
and the output is 720-time steps, which is an m-m network
structure. The loss function is calculated using the MAE of the
difference between the actual and predicted output values, and
the error is back-propagated to update the model parameters
by the back-propagation algorithm. The hyperparameters of
the network are obtained by Grid Search. The LSTM model
is trained using traffic flow and meteorological data from
Beijing Capital International Airport, Guangzhou Baiyun In-
ternational Airport and Shanghai Pudong Airport in 2019.

B. Results analysis

In Tables III and IV, the best performance metrics of each
model are compared. Fig. 9 - 11 show the actual arrival flow
and predicted flow (left) and compares the flow predictions
of the three models on the test data with the actual hourly
flow (right) of ZGGG arrival. This figure (right) can be used
to analyze the performance of the models qualitatively. The
diagonal line in the figure indicates the state where the error is
zero since the predicted value and the actual value match. The
greater the difference between the actual and predicted values
the greater the deviation of the points from the diagonal.

The results in Tables III - IV and Fig. 9 - 11 show that
the LSTM network under baseline feature processing can
already learn daily traffic trends. The airport flow starts to
increase after 4:00 a.m. and peaks in the afternoon, then
starts to decrease at 20:00 p.m.. But the LSTM network is
too conservative in order to get a smaller MAE, and it is



Figure 8: Schematic diagram of lstm-attention

difficult to identify the traffic changes near the hour, which
may be related to the error propagation under the long time
series prediction of LSTM. Traffic flow prediction under
the STL decomposition method shows optimal performance
in both arrival and departure of all three airports, with an
MAE less than 1.58 and an R-squared performance of 0.97
above. Especially, in the ZGGG hourly arrival flow prediction,
template-matching gives 5.06 % MAE reduction (2.57 ↓
2.44), and STL gives 44.75 % MAE reduction (2.57 ↓ 1.42).
In the ZGGG hourly departure flow prediction, template-
matching gives 6.11 % MAE reduction (2.62 ↓ 2.46), and
STL gives 52.29 % MAE reduction (2.62 ↓ 1.25). STL
yields a 49.32 % averaged MAE reduction among the three
airports in the arrival flow prediction, 47.93 % averaged
MAE reduction among the three airports in the departure flow
prediction. In most scenarios, the template-matching method
has only a slight performance improvement over the baseline.
Template-matching yields a 16.05 % averaged MAE reduction
among the three airports in the arrival flow prediction, 6.56
% averaged MAE reduction among the three airports in the
departure flow prediction. A more detailed analysis of why
just slight performance improvement is discussed in the next
section. Departure traffic flow prediction outperforms better
than arrival traffic flow prediction.

V. DISCUSSION AND CONCLUSION

A. Discussion

Lundberg and Lee [30] proposed the SHAP (SHapley
Additive exPlanation) method, an additive explanatory model.
The SHAP value implements a sample-based approach to
quantify the effect of features on the model output. Fig. 12
present a summary plots of SHAP values for all features for
all samples at Guangzhou Baiyun Airport (The SHAP values
of departure flow prediction has similar results. Due to limited
space, the figure is not shown.). Each point corresponds to
a sample and is associated with a SHAP value (i.e., the
horizontal coordinate value in the plot). The color indicates
the magnitude of the feature value, with blue indicating a
smaller value for the feature, and red indicating a larger value
for the feature. In Fig. 12, the features are sorted by the sum
of the SHAP values, the features at the top of the graph have

(a)

(b)

Figure 9: Actual arrival flow and estimated flow of ZGGG
under baseline feature processing

the greatest impact on the algorithm’s output, while those at
the bottom of the graph have the least.

From the figure, we can see that the feature hour have a
strong influence on the model output in arrival and departure
traffic flow prediction. This means that the LSTM model itself
has been able to learn some of the periodic features of the
daily variation of traffic flow. Also note that the weather
features cloud cover, cloud height and visibility have a large
impact on the output. Some weather features like temperature,
dew point and precipitation have a slight impact on the output,



TABLE III. Performance metrics of hourly arrival flow prediction

Airport MAE MSE RMSE R-square

ZGGG Baseline 2.57 10.79 3.28 0.93
Template-matching 2.44 9.95 3.15 0.94
STL 1.42 4.57 2.14 0.97

ZBAA Baseline 3.30 19.08 4.37 0.95
Template-matching 2.01 15.7 3.96 0.96
STL 1.58 6.67 2.58 0.98

ZSPD Baseline 2.74 12.44 3.53 0.93
Template-matching 2.63 11.68 3.42 0.93
STL 1.34 3.21 1.79 0.98

TABLE IV. Performance metrics of hourly departure flow prediction

Airport MAE MSE RMSE R-square

ZGGG Baseline 2.62 12.21 3.49 0.93
Template-matching 2.46 11.29 3.36 0.93
STL 1.25 3.06 1.75 0.98

ZBAA Baseline 2.58 11.46 3.38 0.97
Template-matching 2.48 10.32 3.21 0.97
STL 1.22 2.59 1.61 0.99

ZSPD Baseline 1.96 6.33 2.52 0.97
Template-matching 1.77 5.05 2.25 0.98
STL 1.20 2.76 1.66 0.99

(a)

(b)

Figure 10: Actual arrival flow and estimated flow of ZGGG
under sinusoidal template-matching method

(a)

(b)

Figure 11: Actual arrival flow and estimated flow of ZGGG
under STL algorithm



Figure 12: SHAP values of the features used for arrival flow
prediction

this explains why feature restack by a sinusoidal template-
matching method shows a lower performance improvement
over the baseline.

B. Conclusion

The LSTM algorithm is used to estimate the hourly de-
parture and arrival traffic at airports. The model is trained
using weather data and historical operational data and tested
on data from Guangzhou Baiyun Airport, Beijing Capital
Airport, and Shanghai Hongqiao Airport. Some evaluation
metrics, such as MAE and RMSE, are selected and the
model performance is evaluated in actual compared to pre-
dicted plots. A feature processing method is also proposed
to better retain the feature information of the training data,
including segment coding of features and features restack
by a sinusoidal template-matching method. Also, to better
retain the periodic variation of the traffic flow, the flow data
are decomposed into seasonal components, trend components
and residual components using STL decomposition algorithm.
The results show that both the treatment of features and
the consideration of the periodic pattern of airport traffic
flow can improve the prediction performance, especially the
consideration of the periodic pattern of airport traffic can
significantly improve the prediction performance. In the three
airport prediction performances, the average MAE is less
than 1.58, and the R-square performance reaches 0.97 above.
More meaningfully, these two methods can be combined
with arbitrary machine learning methods to achieve better
prediction of periodic data. Feature restack by a sinusoidal
template-matching method potentially could be a generalized
method for smoothing periodic data.

Through this study, traffic flow could help to operate ter-
minals more efficiently and further improve the efficiency of
air traffic flow management. For example, airport congestion
can be quantitatively analyzed in conjunction with the hourly
traffic flow of the airport. Due to the uncertainty of weather
forecasts, weather scenarios can be divided to build airport
traffic prediction models, making the models more robust.
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