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Abstract—Many international airports have operations with a 
diverse mix of flight times. When demand/capacity imbalances are 
predicted to occur, traditional traffic management techniques 
often exempt long-haul flights which can cause inequity and extra 
delay to the short-haul flights. Long-Range Air Traffic Flow 
Management (LR-ATFM) concepts are designed to more 
equitably share delay across all flights. Using a simulation model, 
this paper presents results on how different uncertainty sources 
affect the management of long- and short-haul flights in 
international airport hubs. Case studies from the United States 
(Newark), Australia (Melbourne) and Japan (Tokyo Haneda) are 
presented. The objective of the simulation is to establish a 
relationship between (1) push-back uncertainty of short-haul 
flights, (2) estimated time of arrival uncertainty of long-haul 
flights, and (3) the ratio of short- and long-haul flights on the 
sequence stability and system delays. Results on these metrics are 
reported in the paper to discuss different scenarios when LR-
ATFM is applied or not. The results provide insights into how LR-
ATFM strategies could be more effectively implemented in the 
future. 

Keywords-Long-Range Air Traffic Flow Management; Trajectory 
Based Operations; Airports. 

I. INTRODUCTION & PREVIOUS WORK 
Large international airport hubs receive flights from both 

short-haul and long-haul destinations. As a result, traffic 
management into these hubs needs to handle flights of very 
different durations, which are impacted by different uncertainty 
sources. Moreover, when Traffic Management Initiative (TMI) 
programs are implemented to manage demand/capacity 
imbalances, such as Ground Delay Programs (GDPs), the long-

 
* DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 
This material is based upon work supported by the Department of the Air Force under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or 
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Department of the Air Force. 
© 2023 Massachusetts Institute of Technology. Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding 
any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically 
authorized by the U.S. Government may violate any copyrights that exist in this work. 

haul flights are typically excluded. Therefore, short-haul flights 
are usually over-penalized with delays. Managing schedules 
with diverse duration flights can be supported by extending 
initiatives such as time-based control via Trajectory-Based 
Operations (TBO) farther from the destination airport. This type 
of approach is usually referred to as Long Range-Air Traffic 
Flow Management (LR-ATFM). 

Although various implementations and flight trials of early 
LR-ATFM concepts can be traced back to the Bay of Bengal 
Cooperative ATFM System (BOBCAT) in 2007 [1], a clear 
definition of LR-ATFM is only recent. In 2022, CANSO [2] 
described it as: “The integration of ATFM solutions to deliver a 
collaboratively balanced flow of long-haul and short-haul 
aircraft to an ATM resource (airport, waypoint, or sector of an 
airspace).” CANSO’s concept suggests to manage short-haul 
flights using GDPs and long-haul flights with some form of 
time-based metering (TBM). In all cases, the responsibility to 
meet the time constraint of the long-haul flights is passed to the 
crew at different timelines, ideally as early as possible. The 
International Civil Aviation Organization (ICAO) in 2018 had 
already introduced the terminology in the context of a joint flight 
trial between ANSPs of Singapore and New Zealand [3] but had 
not clearly defined the concept. CANSO’s definition addresses 
the main objective of the concept and points to the differences 
between long-haul and short-haul flights, and the different 
uncertainties they are subject to. These were defined in a recent 
study [4] using two case studies from the United States and 
Australia. The three main uncertainty sources were defined as: 

1. Departure Push-Back Time predictability (mostly for 
short-haul flights), 



 

 

2. Scheduled Time of Arrival (STA) predictability, and 
3. Flight Management System (FMS) Estimated Time of 

Arrival (ETA) predictability. 
The ICAO Global TBO concept [5] lays out the requirements 

to implement TBO in a globally harmonized way. A 
foundational characteristic of Global TBO operations is the 
increased reliance on data sharing in a collaborative 
environment. This will be key to mitigate the innate sources of 
uncertainty affecting LR-ATFM. In [6], a concept of operations 
for LR-ATFM focused on the Asia-Pacific Region is presented 
based on [3]. The concept suggests that using speed control in 
extended airspace around Singapore Airport, as far as seven 
hours from landing, could alleviate the demand/capacity 
imbalances caused by merging long and short-haul flights. To 
manage the same uncertainties, McDonald and Bronsvoort [7] 
propose to utilize multiple meter points. The concept can be 
supported by advanced FMS capabilities such as Required Time 
of Arrival (RTA) to meet the time constraints along the route. In 
[8], different extended metering ranges of 250 up to 650 nautical 
miles are proposed and tested to support Optimal Profile 
Descent (OPD) operations. The authors claim that, the longer the 
range, the more fuel savings can be achieved.  

One of the key tools to manage demand/capacity imbalances 
is the use of GDPs. Jones and Lovell [9] propose an approach to 
manage the exemption that long range flights have to these 
programs. The authors present algorithms to improve the 
distribution of delays among short- and long-haul flights and 
eventually to increase the overall throughput. Lastly, the 
accuracy of a state-of-the-art scheduler was studied in [10] 
where the authors looked at the effect of improved wind 
information to improve TBO systems performance, and describe 
some of the enhancements to the automation necessary to take 
advantage of the improved wind data. 

Using a simulation model, this paper looks at the effects of 
different shares of long- and short-haul flights into the schedule 
of international hubs. Case studies from the United States, 
Australia, and Japan are used to illustrate the problem. Actual 
data on push-back time uncertainty and data from an actual FMS 
are used to characterize some of the above-mentioned factors 
affecting LR-ATFM in the simulation model. 

The rest of this paper is organized as follows: Section II 
describes the international airports used as case studies. Section 
III describes the uncertainty data used as inputs to the simulation 
model. Sections IV and V describe the simulation model and the 
results respectively. Using the simulation results, a discussion 
with some proposed mitigations is presented in section VI. The 
paper ends with some conclusions and next steps in section VII. 

II. CASE STUDIES  
In this section, to illustrate typical schedules at large airports 

in different world regions, operational characteristics at New 
York Newark, Melbourne and Tokyo Haneda airports will be 
briefly described. The data presented in this section is also used 
to identify the share of long-haul (more than 2 hours) and short-
haul flights (less than 2 hours) used as input parameters to the 
simulation model described in section IV. 

A. Newark Liberty 
Newark Airport (EWR/KEWR) is one of the busiest airports 

in the United States (US). The high demand and limited runway 
capacity leads to it also being one of the most affected by delays, 
especially when wind and other weather conditions are not 
favorable. In fact, in 2019 it was the airport generating the 
largest number of GDPs in the US. The arrival demand profile 
for a representative day in 2019 (Tuesday, November 5th) is 
presented in Figure 1. The demand is variable during the day, 
but after 18:00 Zulu time (13:00 local) it stays consistently close 
to the hourly arrival capacity, until it slows down after 02:00 
Zulu time (21:00 local). 

 
Figure 1. Representative EWR daily arrivals demand on November 5 2019 at 
13:30Z. Black represents flights already landed, red have taken off from their 
origin, and green are scheduled to depart. The black line is the airport arrival 

rate of 50 per hour on this day (https://www.fly.faa.gov/aadc/). 

In terms of arrival demand, flights were classified by the 
flight time necessary to reach EWR. As can be seen in Figure 2 
for the same day as Figure 1, EWR has a mix of long- and short-
range demand of flights during the day. The shortest flight on 
the day was a repositioning flight from JFK airport that took 24 
minutes to land in EWR. The longest flight of the day arrived 
from Shanghai, China flying for more than 13 hours. If flights 
were to be grouped in 3 groups: flight time under 1 hour, flight 
time between 1 and 2 hours, and flight time more than 2 hours, 
the data indicates that the majority of flights (46%) into EWR 
flew for more than two hours, 18% for less than one hour and 
36% between one and two hours. In the simulation presented in 
in section IV, these will be grouped into short-haul (less than 2 
hours) and long-haul (more than 2 hours). This data shows the 
wide mix of flights that need to be managed into EWR’s daily 
schedule, with a median flight time of 105 minutes and a large 
standard deviation of 131 minutes.   

 
Figure 2. Representative EWR arrival demand flight time distribution in 2019. 



 

 

Of the 100 flights of the day with less than one hour of flight 
time that could be defined as pop-ups, the majority came from 
Boston (22), 10 from Pittsburgh, and 8 from Washington Reagan 
(DCA) and Albany. 8 flights came from Canadian airports, 6 
from Toronto, and one each from Montreal and Quebec City 
each. These flights pose an additional complexity because of 
both their short flight time, and some of that flight time is in 
Canadian airspace, where FAA does not have control over them. 
The most frequent long-range origin airport is San Francisco (17 
flights), then Fort Lauderdale (16) and Los Angeles (15). 
Roughly seven percent of the flights (45) that landed in EWR 
flew for more than six hours, the most frequent from London 
Heathrow (7) then from Tel Aviv (4). These are international 
flights that are currently excluded from any initiative to control 
demand such as GDP, Airspace Flow Programs (AFP), etc.  

The hourly distribution of short- and long-range flights 
arriving at EWR in 2019 for the same day discussed in Figure 1 
is shown in Figure 3. Short-haul flights are not present in the 
early hours of the morning when most flights are long-haul. 

 
Figure 3. Representative EWR distribution of flight time groups by arrival 

hour in 2019 (local time). 

B. Melbourne 
Melbourne Tullamarine Airport (MEL/YMML) is 

Australia’s second busiest airport. Like Newark Airport, the 
capacity at Melbourne Airport can be severely impacted when 
wind and weather conditions are not favorable due to its crossing 
runway configuration. A maximum capacity of 40 arrivals per 
hour can be reached in Visual Meteorological Conditions 
(VMC) when utilizing Land And Hold Short Operations 
(LAHSO) on both runways. But strong northerly winds can 
reduce this capacity to just 20 arrivals per hour, even in VMC. 
Also, like Newark Airport, Melbourne Airport generated the 
highest number of GDPs in Australia in 2019. In fact, a GDP 
was in place nearly 80% of the time between 6am and 11pm 
local time during 2019. This was due to high demand at 
Melbourne Airport, in combination with challenging weather 
conditions due to Melbourne’s geographic location as winds can 
change from warmer Australian continental northerlies to colder 
Southern Ocean southerlies.  

Figure 4 provides the daily flight time distribution of all 
arrivals into Melbourne airport averaged over 2019. The 
majority of the flights (44%) have a flight time of 1 to 2 hours, 
and include Sydney (23%), Adelaide (7%) and Brisbane (10%; 
flight time can be under 2 hours depending on prevailing winds). 

15% of flights have a flight time less than 1 hour coming from 
nearby airports such as Canberra (4%) and Hobart (5%). 41% of 
flights have a flight time of more than 2 hours. Similar to 
Newark, the vast majority of flights (85%) have a flight time less 
than three hours. The longest flight into Melbourne in 2019 was 
from Vancouver, with a maximum flight time exceeding 17 
hours.  

 
Figure 4. MEL arrival demand flight time distribution for 2019. 

Figure 5 provides a distribution of flight time by local arrival 
hour at Melbourne (averaged over 2019). As can be seen, most 
international aircraft (over 5 hours flight time) arrive between 
6am and 7am local time, with shorter-haul domestic arrivals 
commencing from 7am. During the morning peak between 7am 
and 11am local time, approximately 40% of the arrivals have a 
flight time over 2 hours. The practical result of this is that GDPs 
implemented at Melbourne during those hours have limited 
effectiveness due to a high percentage of flights coming from 
departures more than 2 hours away and exempt from GDPs. 
This, in combination with the typical capacity and demand 
imbalances at Melbourne Airport, make it a prime candidate for 
the implementation of LR-ATFM. 

 
Figure 5. Representative MEL distribution of flight time groups by arrival 

hour in 2019 (local time). 

C. Tokyo 
Tokyo International (Haneda) Airport (HND/RJTT) is the 

busiest hub airport in Japan, which services both domestic and 
international flights. On a typical day in 2018, for example, 
about 17% of all arrivals were international, with the remaining 
73% being domestic flights. The flight times of all domestic 
flights on a sample day in January 2018 are shown in Figure 6. 



 

 

As seen from the figure, most of the domestic flights (75%) are 
between 1 and 2 hours, flights shorter than 1 hour represent 18% 
of all domestic arrivals, and flights longer than 2 but shorten than 
3 hours constitute the remaining 7%. Note that no domestic 
arrival exceeds this 3-hour limit, the longest flights depart from 
the southern island of Okinawa. International flight data is 
available for the portion of the Fukuoka Flight Information 
Region (FIR) only, so these flights are not included in the 
histogram. The shortest international flights come from Seoul 
(South Korea) and can be under 3 hours.  

 

Figure 6. Representative HND arrival demand flight time distribution on a 
sample day in 2018 (domestic only). 

The hourly distribution of the arrivals for a sample day in 
2018 is shown in Figure 7. Night and early morning arrivals are 
mostly international flights, which is similar to Melbourne. For 
most of the day, flights longer than 2 hours represent a very 
small percentage of all arrivals, which might limit the effect of 
any in-flight ATFM initiatives such as the LR-ATFM.  

 
Figure 7. Representative HND distribution of flight time groups by arrival 

hour on a sample day in 2018 (local time). 

III. INPUT DATA 
The objective of the simulation runs (described in the next 

section) is to help explain the relationship between (1) push-back 
uncertainty of short-haul flights, (2) ETA uncertainty of long-
haul flights, and (3) ratio of short- vs long-haul, on sequence 
stability (slot changes for LR-ATFM flights and/or assignment 
of too much delay). To achieve this goal, real data distributions 
were investigated to identify appropriate inputs to the simulation 
model, which will be described in this section.  

A. Departure Push-Back Time Uncertainty Data 
One of the major sources of uncertainty for ATC is the 

departure push-back time. This mostly impacts short-haul flights 
that do not have time to speed up or slow down in a short cruise 
phase. This issue is even more evident for aircraft taking off 
inside the metering horizon (called “pop-up” flights) and 
notoriously create problems for time-based arrival management 
systems. To quantify this source of uncertainty to LR-ATFM in 
the simulation model, data for the United States and Australia 
were compared.  

In [11] Badrinath et al. studied the accuracy of predicted 
push-back times (called Earliest Off Block Time (EOBT) in the 
US) as a function of forecast lead-time compared to the actual 
push-back time. Data from 2018 showed that the EOBT relative 
to actual push-back time error can vary significantly between 
airports, between airlines at the same airport, and with the 
lookahead time. Not surprisingly, in general, the closer the 
EOBT estimate is made to the actual push-back, the greater the 
accuracy. EWR had a Standard Deviation (STD) in the EOBT 
time error of around 8.9 minutes at 40 minutes lookahead, and 
of 3.1 minutes at 10 minutes lookahead. In other words, forty 
minutes before taking off, the system was able to predict the 
best-performing airline push-back times with around ±10 
minutes accuracy. Other airports in the US presented double 
these levels of uncertainty.  

Reference [4] presents the variation in actual take-off with 
the GDP-assigned Calculated Take Off Time (CTOT) for 
Australian domestic departures to Melbourne in 2019. In 
Australia, airlines need to comply with the GDP-assigned push-
back time at the gate, but actual off block time is often not 
available and hence GDP compliance is determined using the 
take-off time as a reference. In 2019, less than 3% of flights 
departed more than 5 minutes early of CTOT (early non-
compliant), 82% of flights between 5 minutes early and 15 
minutes late (compliant), and 15% of flights were more than 15 
minutes late (late non-compliant). Although the vast majority of 
flights departed compliantly, this still means a window of 20 
minutes exists in which a flight can depart, which can result in 
large tactical variation of the arrival sequence, especially if these 
flights depart from within the Melbourne metering horizon.  

As shown by the Newark and Melbourne Data, push-back 
time error is still a big issue for LR-ATFM and therefore needs 
to be considered in the simulation. 

B. Scheduled Time of Arrival (STA) Error Data 
Past studies have shown that errors in the wind model used 

by the ground automation can cause inaccuracies in the 
calculated STAs [10]. Errors depend on the wind conditions of 
the day and can vary from 20 to 40 seconds on average at a 20 
minutes look-ahead time. These translate to 1.7-3.3% of the 
remaining flying time. The error decreases the closer the aircraft 
is to the metering point.   

C. FMS Estimated Time of Arrival (ETA) Error Data 
The uncertainty in the FMS trajectory prediction was 

modeled by looking at the earliest and latest times the aircraft 
can be at the destination with varying cruise altitudes and 
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weights. This is based on the Cost Index (CI) parameter which 
airlines use to have the FMS calculate speeds in terms of cost of 
time over cost of fuel. The lowest CI determines the latest, and 
the highest CI the earliest the aircraft can arrive at the 
destination. The CI is not known by the ground automation 
tasked to predict the aircraft trajectory and metering time 
because this is often a proprietary parameter set by the airlines 
depending on their business objectives for any given flight.  

 
Figure 8. Arrival time difference vs CI, Zero-fuel Weight and Cruise Altitude. 

The FMS used to generate these flight profiles was an actual 
GE Aerospace FMS for a very common single-aisle aircraft in a 
simulated environment using a typical configuration. That 
makes the numbers representative and justifies the smaller 
sample size as mostly trends are of interest here. The 
determination of earliest/latest was performed for a typical 
short-haul flight from Boston (KBOS) to Newark (KEWR) 
(typically less than one hour flight) with a range of cruise 
altitudes from FL160 (16,000 feet) to FL380 (38,000 feet). The 
latter is possible but unlikely for a short flight. The zero fuel 
weights (dry weights) varied from 80 klbs to 120 klbs with a 
constant fuel weight of 20 klbs. Figure 8 shows the time 
difference between the earliest (CI=100) and latest (CI=0) 
arrival times over these parameters. The maximum time 
difference of more than 900 seconds is observed at the lowest 
cruise altitude of FL160. The lower the cruise altitude, the more 
the arrival times can vary. 

 
Figure 9. Vertical profile for flights using FL160 (blue line) and FL380 (green 

line) cruise altitude. 

This is because the lower the cruise altitude, the longer the 
cruise phase will be (see Figure 9). A longer cruise phase will 
allow for more speed variance, whereas speeds are more 
prescribed in climb and descent due to also having to satisfy 
other constraints for energy management. An increase in the 
time difference can be observed when the zero-fuel weight is 

lowered because the aircraft will be able to climb faster and be 
in cruise longer. 

The variability in the arrival time is used to illustrate that 
even with a perfect performance model, the ground system is 
still impacted by uncertainty driven by the CI used by the airline 
to fly the aircraft. In the case presented, on the flight between 
KBOS and KEWR which is usually less than one hour, there 
could be a variability of 15 minutes (900 seconds) just by using 
different CIs. This level of uncertainty, 25%-time error, is 
obviously an extreme, so smaller values, described in the next 
section will be used in the simulation runs. Anecdotally, some 
airlines use CIs as low as 6 (slow and low fuel burn) and up to 
60, for faster arrival and higher fuel burn. This difference would 
cause an arrival time change on the same KBOS-KEWR flight 
of 7.5 minutes, or about 12% of the total flight time.         

IV. SIMULATION MODEL 
An ATFM simulation has been developed in order to explore 

key LR-ATFM issues in more detail. The simulation is a 
simplified queuing model which accounts for capacity and 
demand at different airport resources in order to calculate delays 
at different parts of the system, but does not capture interactions 
between arrivals and departures explicitly. Real world 
uncertainty sources were modeled with error distributions that 
will be discussed. Results were obtained by running multiple 
simulations in a Monte Carlo fashion and averaging the 
outcomes. More details on earlier versions of the simulation 
model can be found in [12]. 

The share of international flights potentially subject to LR-
ATFM is varied from 0% to 60%. From now on, this will be 
denominated long-haul flights, since in the US there are 
domestic flights that are more than six hours long (coast-to-
coast). This high percentage of long-haul flights is not consistent 
with the data shown in section II for EWR, MEL, and HND, but 
testing the impact of high shares of long-haul flights was one of 
the objectives of the simulation. In the simulation, these are the 
only flights subject to LR-ATFM delays of 2 minutes maximum. 
The maximum delay absorption through deceleration in the 
enroute phase allowed for LR-ATFM of 2 minutes is in 
accordance with past research results [13] for Fukuoka FIR. This 
value is small compared to other regions such as the Melbourne 
FIR in Australia where higher amounts of delays can be 
absorbed through speed control, and therefore is not 
representative of other airspaces. Nonetheless, it was considered 
to be a good starting point for this research. Extensions to this 
model will be discussed in the conclusions and are subject of 
future research. 

In the simulation, the domestic flights, usually less than 2 
hours, denominated short-haul are the only operations subject to 
ground delays. Again, this assumption comes from the original 
model developed for the Japanese airspace.   

The purpose of the ATFM simulation is to calculate 
estimated departure times based on the ground delay program 
for domestic (short-haul) flights, LR-ATFM delays imposed on 
long-haul flights and resulting arrival times for given traffic flow 
and control parameters. The key parameters are the maximum 
allowed LR-ATFM delay, set to 2 min as discussed above, and 
the airborne delay buffer (maximum vectoring time in the 



 

 

terminal area) set to maintain runway pressure, equal to 9 
minutes. This buffer accounts for departure time and flight time 
prediction uncertainties, so when the predicted airborne delay of 
each flight is less than this value, no ground delay or LR-ATFM 
delay is assigned. Ground delays of short-haul aircraft can be 
indefinitely long, but the LR-ATFM delays of long-haul arrivals 
are limited to 2 min [12] [13]. 

The ATFM simulation starts with initial sequencing, which 
is based on the expected time of arrivals (ETAs) obtained prior 
to departure of each flight. Required separation on arrival is set 
to 2 minutes, so the initial ETA queue is recalculated every time 
an ETA is updated to ensure this separation minimum is met (see 
Figure 10). The difference in the initial ETA and projected ETA 
adjusted for separation for each flight is the arrival delay and it 
is tallied as a key metric in the simulation. When the arrival 
delay exceeds the 9-minute buffer, ground delays on short-haul 
flights and LR-ATFM delays on long-haul flights are applied. 
Note that since the LR-ATFM delays cannot exceed 2 minutes, 
sequence changes might be necessary, i.e., long-haul flights 
might have to “overtake” short-haul ones. One of the main goals 
of LR-ATFM is to provide more equity in delay distribution, as 
discussed in past work [14]. Actual departure and arrival times, 
however, might change due to uncertainties in departure and 
enroute flight times, so the calculated departure times (ground 
delays) and LR-ARFM delays are updated periodically.  

  
Figure 10. Delay calculation flow. 

The uncertainties modeled in this ATFM simulation are 
departure time uncertainties and flight time prediction 
uncertainties, due to both FMS CI settings and STA error in the 
ground system. In the real world, departure time uncertainties 
depend on airport of origin, weather conditions, airline and other 
factors as discussed in section III.A. In this ATFM simulation, 
departure time uncertainties are modeled by a normal 
distribution with a mean of zero and standard deviation of 5, 10, 
or 20 minutes. This is not completely consistent with the actual 
data from the US and Australia presented in section III.A for 
EWR and MEL, where aircraft are more likely to depart late but 
was used for simplicity. Nonetheless, this is enforced in the 
simulation. In fact, when a flight is assigned a ground delay, it 
cannot depart earlier than the assigned time. This assumption as 
well is not completely realistic, in the US flights subject to 
ground delay programs can leave slightly early if ATC allows 
them. This is not reflected in the simulation. As a result of these 
assumptions, ground-delayed flights and non-ground-delayed 
flights departure errors are modeled separately.  

Long-haul arrivals’ ETAs are also subject to uncertainties 
due to limited information sharing among different flight 
regions, so these are modeled analogous to domestic departure 
time uncertainties. Note that there are no pop-up flights in the 
simulation. The total number of flights in the original ETA 
sequence and the final Actual Time of Arrival (ATA) sequence 
is always the same. The order in the sequence obviously changes 

from the original and the number of swaps are tallied as a 
predictability metric. This will be discussed in the next section.  

Since the simulation model could not encompass both FMS 
and STA errors, these uncertainties were combined into a single 
distribution. In Section III.B an STA error between 1.6% and 
3.4% because of wind data error was presented, while in Section 
III.C, a maximum time error of 25% was shown. A compromise 
was chosen for the simulation runs and combined flight time 
prediction uncertainties are modeled by a normal distribution 
with mean of zero and standard deviation of 2% and 5% of the 
predicted flight time. Therefore, longer flights are described by 
higher uncertainties. A summary of the parameters varied in the 
simulation is presented in Table 1. 

TABLE 1. EXPERIMENTAL MATRIX. 

Simulation Parameters Metric Values Simulated 

Push-back Uncertainty 
Distribution 

Standard 
Deviation 5, 10, 20 minutes 

STA/FMS Error 
Distribution 

Standard 
Deviation 2%, 5% of flight time 

Long- vs Short-Haul Mix 
of Flights Percentage 40%, 70%, 100% short-

haul flights 

Monte Carlo simulations with 300 runs are performed for 
each sample traffic to account for the uncertainties described 
above. The metrics used are ground delay of short-haul flights, 
controlled enroute delay of long-haul flights, airborne delays 
(vectoring) in the terminal area and extra delays as compared to 
the non-ATFM-control case due to flow control (Figure 11) for 
all flights. ATFM delay include the airborne delays introduced 
using LR-ATFM to long-haul flights (max 2 minutes per flight, 
airborne) and by the use of GDPs for short-haul flights (no limit, 
absorbed on the ground). 

 

Figure 11. Extra delays introduced by LR-ATFM and GDPs. 

V. RESULTS 

A. Delay Analysis 
The original schedules for each traffic mix are shown in 

Figure 12. Short-haul arrivals are shown in blue, long-haul (LR-
ATFM-target) arrivals are shown in pink.  

 
Figure 12. Pre-departure schedule in the simulation time (x-axis) for short-
haul (blue dots) 100% (upper panel), short-haul 70%- long-haul (pink dots) 
30% (mid panel) and short-haul 40%- long-haul 60% (lower panel) traffic.  



 

 

Figure 13 presents results for these traffic mixes, consisting 
of short-haul only (d100), short-haul 70% (d70) and short-haul 
40% (d40) traffic. The remaining traffic is considered long-haul 
and subject to LR-ATFM. FMS2 and FMS5 stand for the FMS 
error standard deviation, 2% and 5% of the flight time 
respectively. In each Monte Carlo run, the total delays of all 100 
flights are calculated. These are then averaged over all 300 
Monte Carlo simulation runs and shown on the vertical axis of 
the figure. The horizontal axis shows the departure time 
prediction standard deviation (sigma) error of 5, 10, or 20 
minutes.  

 
Figure 13. Total simulated delays (all flights).  

From the top panel of Figure 13, no significant dependence 
of the ground delay on departure time errors for the existing 
traffic is observed. While the simulation allows for ground delay 
recalculations once every uncertainty is removed from the 
system (for example, after each departure and arrival), the 
relatively short sequence (about 3 hours) and constraints on the 
freezing horizon on ground delay updates (40 minutes prior to 
departure) limits the departure time error effect. The same can 
be said for FMS errors. 

From the second panel of Figure 13, it is seen that the LR-
ATFM delay increases when more long-haul aircraft are present 
in the queue, but this impact might be limited due to the small 
amount of delay which can be absorbed by these aircraft. Larger 
departure time errors decrease the LR-ATFM delays, but this is 
considered to be due to the decreased sparsity of the arrival 
traffic, a phenomenon discussed in more details below. Airborne 
delays (third panel) decrease substantially for larger departure 
time errors. Because of the normal distribution used, such errors 

allow for early departures (not completely realistic), which in 
turn spreads the arrival times over a larger time interval.  

From the original schedule at the start of the simulation, the 
pre-departure ETAs of all 100 aircraft are between 12:00 and 
15:20. In the real world, arrivals are constrained by traffic 
preceding and following this window, as the delay propagates, 
but this is not explicitly modeled in the current set of simulations. 
To account for such arrival delay accumulation, the number of 
aircraft arriving in this window, i.e., the number of flights with 
ATAs within this window, is investigated for all simulated 
traffic patterns. This can be considered a measure of total 
throughput. The results are shown in Figure 14. For departure 
error sigma 5 minutes, between 93.8 and 94.9 flights arrive in 
the initial ETA window, depending on the number of domestic 
aircraft and FMS error. The values are not integer as they are 
averaged over all 300 Monte Carlo simulations. These numbers 
drop to 89.0-89.7 for departure error sigma 20 minutes cases, 
which indicates reduced traffic density and thus reduced 
airborne delays. This result also shows the impact of departure 
error on throughput. The bigger the departure error, the smaller 
the number of flights is processed in the original arrival window. 
The share of short-haul and FMS errors has a smaller effect as 
can be seen in Figure 14.  

 
Figure 14. Traffic arrival sparsity for various simulation cases. 

Extra delay (bottom panel of Figure 13) increases for large 
departure errors as well. Flights subject to ground delays are not 
allowed to depart early, i.e., compared to the non-ATFM control 
case which is used as a baseline of the extra delay, more flights 
are delayed.   

No direct dependence of the delays on the FMS errors is 
observed. The main reason for these results is the timing of the 
final arrival sequencing, which is performed after the FMS 
errors are fixed in the developed simulation. In reality, flight 
time uncertainties are present after the arrival sequence is frozen, 
which causes increases in airborne delay. Comparison with such 
sequencing timing is a subject of future work. 

B. Position Shift Analysis 
To study the schedule predictability of different scenarios, 

the number of positions shifts was collected. Position shift is 
defined as the difference in the pre-departure estimated arrival 
sequence and the final one (see Figure 15). Because over the 
entire traffic of 100 flights this is a zero sum, when calculating 
the total position shifts for each arrival sequence at each Monte 



 

 

Carlo run, both negative and positive position shifts are defined 
as positive ones when calculating the overall number of shifts 
for each traffic scenario. Nonetheless, positions shifts are also 
very workload-intensive for ATC. Therefore, they show a 
measure of goodness of each scenario. 

 
Figure 15. Position shift definition. 

Figure 16 and Figure 17 show the position shifts for two 
traffic patterns: 100% and 40% short-haul, respectively. First, 
comparing both figures, it can be concluded that introducing 
flights subject to LR-ATFM (Figure 17), which cannot be 
subject to ground delay, increases significantly both the total 
number and frequency of position shifts. This is due to the fact 
that lang-haul flights subject to LR-ATFM can absorb only a 
limited amount of delay through speed reduction and overtake 
domestic flights in the final sequence, causing many shifts.  

 
Figure 16. Short-haul traffic 100%. 

Next, an increase in the departure time prediction error leads 
to more position shifts. The frequency of large position shifts 
also increases. As shown in the upper panel of Figure 16, for 
example, the maximum number of position shifts of a single 
flight for departure error sigma 5 minutes is only 11, compared 
to 39 for the departure error sigma 20 case. Since there is no 
aircraft mix (100% are short-haul), Figure 16 also illustrates the 
departure error is the main reason for position shifts in the arrival 
sequence. Comparing the lower and upper panel of the figures 
implies that a larger FMS error increases both the total number 
of position shifts and the maximum values, but this increase is 
more visible for smaller departure errors. In fact, for both traffic 
mixes, the total position shifts in case of departure errors sigma 

20 minutes are more for FMS error sigma 5, but the difference 
in the FMS error sigma 2 case is negligible and is most likely 
due to the nature of Monte Carlo simulations.  

 
Figure 17. Short-haul traffic 40%. 

C. LR-ATFM contributions to delay absorption equity 
Numerical simulations for the same traffic patterns but 

without the LR-ATFM control were conducted to investigate 
the LR-ATFM contributions to delay absorption equity. The 
delays analogous to those presented in Figure 13 are shown in 
Figure 18. Compared to the LR-ATFM case, the ground delays 
(top panel) increase regardless of the departure and FMS errors. 
In other words, the LR-ATFM assigns some of the delays to 
flights which are not subject to the GDP, thus contributing to 
more fair delay distributions. LR-ATFM also allows to shift 
some of the delays to the long-haul flights that otherwise would 
not be affected by any delays, which is similar to how current 
operations work in all the countries evaluated in this paper. As 
a result, the LR-ATFM delays in Figure 18 are all zero, these 
delays are shifted to the short-haul flights and absorbed as 
ground delays. From an equity point of view, the absence of 
LR-ATFM reduces the distribution of delays over penalizing 
the short-haul flights. No significant changes in the airborne 
delay (third panel) are seen, results supported by past work as 
well [14].  

 
Figure 18. Total simulated delays without LR-ATFM (all flights). 



 

 

LR-ATFM contributes to more predictability as well, 
reducing the number of position shifts, as seen from Figure 19 
where the number of additional positions shifts compared to the 
same scenario with LR-ATFM (Figure 17) are presented in the 
parentheses. Positions shifts increase across all scenarios 
because LR-ATFM controls are not applied here to pre-
condition the sequence. Therefore, there is more need to 
overtake flights. This, as mentioned before, significantly 
increases ATC workload.  

 
Figure 19. Domestic traffic 40% position shifts without LR-ATFM case. 

VI. DISCUSSION AND POTENTIAL MITIGATIONS  
LR-ATFM is the meeting point between flow management, 

which is concerned with ensuring the rate of aircraft arriving at 
an airport is consistent with its capacity, and tactical arrival 
management, in which individual aircraft are assigned actual 
arrival times. The point at which this transition occurs from 
arrival rate to arrival times is often not a clear boundary and 
should be better defined. In fact, most ANSPs operate flow 
management and tactical arrival management by different 
systems with limited integration. As LR-ATFM essentially 
connects these environments, it is inherently complex and 
dependent on the operational scenario. 

But what is a successful LR-AFTM implementation? The 
ideal situation is one where long-haul flights get a fixed arrival 
time as early as possible to optimize flight efficiency, and where 
this does not lead to (increased) inequity in delay allocation and 
access (to an airport or airspace) for short-haul flights which 
have not taken off yet. The preliminary results of the simulation 
model support that LR-ATFM will not add any additional 
inequity in delay distribution. 

One of the complexities investigated in this paper is the 
contribution of differing trajectory uncertainty between short- 
and long-haul flights. This ultimately leads to uncertainty in the 
prediction of demand (both short- and long-haul combined). 
Paradoxically, short-haul demand is more difficult to predict at 
large prediction horizons due to large uncertainty in departure 
time. Therefore, the higher the short-haul demand, the more 
variation one can expect in the arrival sequence, exactly as 
demonstrated by the simulations. The practical consequence is, 
that if the times in the arrival sequence are difficult to set until 
very late (when the majority of short- and long-haul demand is 
airborne), it provides little benefit to provide long-haul flights 

with an arrival time several hours out if this time is very likely 
to change.  

LR-ATFM is therefore only effective (and provides 
efficiencies) when there is sufficient predictability of total 
demand (short- and long-haul) at large prediction horizons. This 
is either achieved through reducing trajectory errors or a 
sufficient portion of flights being long-haul (relative to the 
prediction horizon). In other words, an LR-ATFM concept that 
aims to provide long-haul flights with an arrival time 4 hours 
from arrival, but where these long-haul flights only make up a 
few percent of total arrivals, is unlikely to be successful. It either 
will result in continuously changing times for the long-haul 
flights, or if the assigned time is honored, more tactical 
management of short-haul flights to fit in the sequence (this is 
also likely to result in lost capacity). The net impact could 
therefore be that while in theory LR-AFTM allows for some 
sharing of delay between short-haul and long-haul flights, this 
sharing may actually come at a cost (i.e., increased total delay). 
The results of the simulations shown in Figure 13 (with LR-
ATFM) and Figure 18 (no LR-ATFM) do not show any increase 
in the total delays imposed to the traffic scenarios. Therefore, 
even if preliminary and with the limitations described, they do 
not show an increased cost to the system.  

The authors believe that pushback uncertainty for short-haul 
flights is therefore the key challenge to overcome for LR-ATFM 
to be successful. Concepts such as Airport Collaborative 
Decision Making (A-CDM) (or Surface CDM in the United 
States) could assist in improving pushback uncertainty at the 
departure airport for short-haul flights, which would improve 
sequence stability at the arrival airport. However, inherently, 
flights that have not yet departed will in general always be 
subject to more arrival time uncertainty than a long-range flight 
that is airborne and established in cruise. For any airport where 
LR-ATFM is being considered, it is therefore important that the 
ability to predict arrival demand (as well as capacity) at large 
prediction horizons is carefully assessed. LR-ATFM is a tool in 
the overall ATFM toolbox, and like with any tool, it may not be 
suitable or effective for every operational scenario 
(airport/airspace).  

Further, the authors believe that a hybrid solution between 
managing flow rates (at larger time horizons) and controlling to 
fixed arrival times (closer to arrival) should be found. For 
example, in the planned LR-AFTM implementation for 
Australia, a concept was being considered where LR-AFTM 
flights were assigned a “no-earlier-than” time rather than a fixed 
arrival time. This allows a buffer to be applied to prevent over-
allocation of delay as well as allowing some flexibility in the 
tactical arrival management to adjust the sequence when short-
haul demand is introduced.  

VII. CONCLUSIONS & NEXT STEPS 
From the preliminary simulation results presented in this 

paper, LR-ATFM seems to distribute delays more equitably 
because it introduces delay absorption to long-haul flights that 
are currently exempt and therefore reducing overall ground 
delays. Moreover, it reduces the number of positions shifts, 
improving the predictability and stability of the system. 
Although preliminary and with the limitations described above, 



 

 

the concept is promising. As discussed, the implementation is 
key to materialize the potential benefits. 

In terms of potential next steps, one of the key extensions to 
the modeling approach is to examine the impact of the amount 
of delay that can be absorbed in the long-haul flights. The 
maximum value of two minutes used in the simulation is not 
realistic for most FIRs around the world that are much larger 
than Fukuoka. Further exploration of this parameter will be 
studied in future work through a parametric study of a range of 
feasible values. A prior limitation to extensive absorption of 
airborne delay in oceanic regions has been the limited 
surveillance and communication environments to effectively 
control long-haul flights. But in a future environment where 
international CDM, Space-Based ADS-B and satellite 
communication protocols are a reality, absorption of larger 
delays in cruise will become viable.    

Such a concept needs to be supported by automation that is 
more sophisticated and more inter-connected between ANSPs. 
On such larger distance scales, factors such as winds and 
weather need to be integrated in the trajectory calculations. To 
date, no system exists that can do that across ANSPs. Winds 
have large impacts on the ground speed flown and weather on 
the routes length that will be actually flown due to deviations 
around weather. The longer the time and distance, the larger 
these uncertainties become. All these aspects should be the 
subject of future research that, given the nature of the LR-ATFM 
problem, would greatly benefit from international collaboration 
such as the one initiated for the development of this paper.  
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