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Abstract—Modern navigation systems such as Area Naviga-
tion (RNAV) yield new challenges for developing data-driven
algorithms and new perspectives in defining the safety and
complexity of the terminal airspace due to the complicated
maneuvers of aircraft. In this paper, we propose a complex-
ity estimation framework for RNAV terminal airspace. The
framework integrates our previously developed algorithms for
trajectory pattern identification, multi-agent trajectory predic-
tion, and Gaussian mixture model-based anomaly detection. All
algorithms are developed to be implemented in the complex
situation of RNAV terminal airspace. The estimated complexity
prompts researchers and air traffic controllers to investigate
situations where the complexity is abnormally high for potential
risks or operational errors. The proposed complexity estimation
framework is tested with real air traffic surveillance data
recorded in Incheon International Airport, South Korea.

Keywords—airspace complexity, area navigation, trajectory
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I. INTRODUCTION

Continuous growth in the demand of air traffic has made
the terminal airspace more crowded and complex than ever,
with an average growth rate of 2.6 percent for the next
20 years forecast by the Federal Aviation Administration
(FAA) [1]. In response to such growth, Air Traffic Controllers
(ATCs) have to direct the air traffic flow more frequently,
resulting in potential safety hazards. Therefore, it is important
to accurately estimate the complexity of the airspace.

Airspace complexity has been an area of interest for many
years and extensive research has been conducted in the past
two decades. One of the first works is done by NASA in
[2–5]. In those works, the concept of dynamic density and
complexity factors that mainly focus on the number of aircraft
in a sector and other characteristics such as the relative
position between aircraft are proposed. Extensive experiments
and efforts have been done to review the accuracy of the
computed complexity. In [6], Kopardekar and Magyarits first
collect subject-matter experts’ ratings of the complexity, and
then compare how well the different dynamic density metrics
fit to the ratings by using a linear regression method. The
authors find that a unified metric with complexity factors
from different literature performs the best, and the dynamic
density performs better than the simple aircraft count, which
was the basis of the complexity measure at that time. Besides
using complexity factors, topological methods are also used to

evaluate airspace complexity. Delahaye et al. model the set of
aircraft trajectories by a linear dynamical system and compute
the Kolmogorov entropy as the complexity [7]. The authors
later extend the algorithm by using a non-linear dynamical
system and add the time dimension in order to compute
the complexity in a 4-dimensional space [8]. In addition,
as big data analysis becomes popular, data with complexity
levels labeled by subject matter experts are built, allowing
researchers to use machine learning techniques to discover
complexity factors from the labeled data. Andrasi et al. use
a feedfoward neural network to find the correlation between
complexity factors and the subjective complexity scores [9],
and Cao et al. use deep learning to train a classifier that can
categorize the air traffic data based on low, normal, and high
complexity [10].

The above mentioned works all focus on the complexity in
the en-route airspace. However, terminal airspace is the most
complex part of the airspace and where most fatal accidents
happen [11]. Therefore, Netjasov et. al proposed a metric for
measuring complexity of traffic in a given terminal airspace
[12, 13]. In those works, the terminal airspace complexity
is divided into static complexity and dynamic complexity.
The static complexity accounts for the complexity from the
airspace structure such as standard terminal arrival routes
and the dynamic complexity accounts for the complexity
from the interactions between aircraft such as conflicts. Now
with the emergence of new navigation systems such as Area
Navigation (RNAV), aircraft have more freedoms and ATCs
tend to give more vectoring commands for more efficient
sequencing and scheduling. Although vectoring commands
improve the airspace efficiency, they can make the airspace
much more complex. Since previous works focus on the en-
route airspace or typical terminal airspace, which do not have
as complicated maneuvers and traffic volume and situation as
the RNAV terminal airspace, a new RNAV terminal airspace
complexity metric is needed. The most recent effort in this is
done by Gariel et al. where vectoring flights are considered
for the first time and the complexity is computed as the
entropy contributed by abnormal flights in the airspace [14].
However, as we deepen our research in various fields such
as trajectory pattern identification and anomaly detection,
we realize the abnormal flights classified in [14] can be



much more refined in the RNAV terminal airspace. For
example, in airports where RNAV is widely adopted, various
vectoring patterns, trajectory patterns that deviate from the
procedures, are generated. There may be vectoring patterns
that deviate from the procedures so much that they seem
to be abnormal but actually normal in terms of the daily
operation in the airspace [15]. In addition, energy-related
anomalies have been proposed to be critical to safety [16], and
with the existence of complex vectoring patterns, detecting
energy-related anomalies becomes more tricky [17]. Thus,
the complexity estimation cannot reflect the true complexity
and workloads that ATCs perceive unless the special traf-
fic situation in the RNAV terminal airspace is taken into
account. Without a faithful estimation of the complexity,
ATCs’ workload and some algorithms’ performance such
as 4D trajectory optimization are difficult to be quantified
and compared. Operational and more potential anomalies can
also be overlooked. Therefore, this paper proposes a new
RNAV terminal airspace complexity estimation framework.
The framework not only includes typical abnormal flights
such as go-arounds and holding flights, but also abnormal
flights in vectoring patterns, interactions between aircraft,
and energy-related features. Each part utilizes our previously
developed algorithms, i.e., trajectory pattern identification
and classification [15], multi-agent trajectory prediction [18],
and Gaussian mixture model-based anomaly detection [17],
respectively.

The rest of the paper is organized as followed: Section II
describes the data being used to test the proposed complexity
estimation framework. Section III presents and explains each
component in the framework. The test results are presented
in Section IV, and conclusion is given in Section V.

II. DATA DESCRIPTION AND PREPARATION

The data being used to test the proposed complexity esti-
mation framework is the Automatic Dependent Surveillance-
Broadcast (ADS-B) data recorded in the Incheon International
Airport (ICN) in South Korea, and Aeronautical Information
Publication (AIP) data. The ADS-B data contain the aircraft’s
states (longitude, latitude, altitude, ground speed, vertical
speed, and course angle) as well as time and the flight
information. The AIP data provide important information
about an airport’s operations, regulations, and routes. One of
the uniqueness of ICN is that it widely uses Area Navigation
(RNAV) for its arrival procedures. In fact, there are in total
14 RNAV Standard Terminal Arrival Routes (STARs) in ICN,
shown as black lines in Figure 1, while only 1 RNAV STAR
is used in the John F. Kennedy International Airport [17].
Each triangle marker in the black lines represents a fix in
that STAR. The four red markers represent the four entry
fixes which are where the flights enter the ICN terminal
airspace. After entering the airspace, the flights travel to one
of the Initial Approach Fixes (IAFs), the green markers in
Figure 1, and enter the approach phase where the fixes are
represented by the black circles. The flights then enter the
landing phase when they reach one of the Final Approach
Fixes (FAFs), the yellow markers in Figure 1. For data
preparation, we preprocess the ADS-B data by cutting the

Figure 1: STARs, FAFs, and IAFs in ICN

flights from 70 nm away from the airport to the FAFs because
70 nm is roughly where the flights are just before they enter
the terminal airspace and the FAFs are where they enter the
landing phase. When the traffic is light, Air Traffic Controllers
(ATCs) often give flights direct-to commands, in which case
the flights directly go to the farther fix by skipping fixes in
between. However, when the traffic is heavy, ATCs often give
vectoring commands that deviate flights from the STARs.
Figure 2 shows an example of a vectored flight. It can be
seen that the flight follows the STARs after it enters from
OLMEN, but then deviates to the West where there is no
STAR related to OLMEN at all. Although that flight may
seems to be abnormal, it is actually common in the operation
of ICN for maintaining the sequencing and scheduling under
high traffic volume. To further illustrate this, Figure 3 shows

Figure 2: A vectored flight

all arrivals on May 23 where almost every flight deviates from
the STAR. Therefore, ICN’s RNAV terminal airspace is very
complex and when estimating the airspace complexity, such
vectoring must be taken into account and cannot be simply
treated as abnormality.



Figure 3: All arrivals on May 23

III. METHODOLOGY

The proposed complexity estimation framework is shown
in Figure 4. The complexity estimation is a linear combination
of each component in the framework.

C = αvCv + αsCs + αaCa (1)

The parameters, αv, αs, and αa, are each component’s co-
efficient. In this study, we treat each coefficient as equal.
However, it may be adjusted based on human expert feedback
or computed by linear regression with labeled complexity
measure from human experiments. Each part implements our
previously developed algorithms and the framework integrates
them in a careful manner to accurately estimate the RNAV
terminal airspace complexity. The following subsections ex-
plain individual components in the framework and how are
they combined to estimate the complexity.

Figure 4: Proposed complexity estimation framework

A. Vectoring complexity

Vectoring is common in the RNAV terminal airspace such
as ICN, but although vectoring looks random, there actu-
ally exist some common behaviors which form vectoring
patterns. Unlike regular trajectory patterns, or clusters, vec-
toring patterns are more overlapped, and thus much harder
to be identified. In [15], we propose a trajectory pattern
identification and classification framework that can clearly
identify various vectoring patterns and classify a flight into
one of them in real time. The framework first utilizes the

Dynamic Time Warping (DTW) to measure the dissimilarities
between flights and constructs a dissimilarity matrix. The
dissimilarity matrix is then used for the hierarchical clustering
where a certain number of clusters (vectoring patterns) is
selected based on the criteria, i.e., whether or not most
flights in the clusters follow the same set of fixes. By using
the trajectory pattern identification framework, complicated
vectoring patterns in an RNAV terminal airspace can be
clearly identified. Figure 5 shows the centroid of the identified
vectoring patterns formed by all flights that enter from the
OLMEN entry fix in ICN. As discussed in [15], the trajectory

Figure 5: All vectoring pattern centroids for OLMEN

pattern identification framework inevitably produces some
trajectories that do not belong to any vectoring pattern due
to their uncommon behaviors. Therefore, they contribute to
the total complexity in the airspace while other trajectories
are treated as normal operations and do not contribute to the
total complexity. In this paper, the vectoring complexity is
calculated using the referenced vectoring pattern centroid that
is closest to the unusually vectored flight, determined through
DTW. Consider a flight Xf ∈ RTf×N and the referenced
pattern centroid Xr ∈ RTd×N where Tf , Td, and N are the
total number of time steps of the flight, the total number
of time steps of the referenced pattern centroid, and the
number of features, respectively. Note that all centroids are
resampled into a fixed number of steps but each flight has
its own total flight time. Thus, to compute their distance, the
DTW is used [19]. In general, DTW finds a warping function
that connects every pair of data points in the two time-
series sequences that delivers the minimal distance, which
minimizes the time discrepancies between them. Given a time
period that starts at Tstart and ends at Tend, Cv in every time
step t ∈ [Tstart, Tend] is defined as:

Ct
v =

Mt
v

∑
i=1

tf

∑
j=tfstart

√
(Xfi,hori

j −Xri,hori

dtwj
)2

tfstart =
⎧⎪⎪⎨⎪⎪⎩

tf −∆t, if tf > ∆t

1, otherwise

(2)



where tf is the time step in Xf that is matched to t, and thus
tfstart is tf minus a time window ∆t, which is 2 minutes
in this paper. Xfi,hori

j is the longitude and latitude in the
ith flight Xfi at time step j, and X

ri,hori

dtwj
is the longitude

and latitude at the time step dtwj in Xri , which is paired
to the time step j in Xfi by the warping function from
DTW. Note that only the horizontal plane is considered in
this paper because when ATCs make vectoring commands,
they mainly focus on vectoring on the horizontal plane due to
the flight level restrictions. M t

i is the total number of flights
in the airspace at time step t that are unusually vectored,
so Xfi is the ith flight and Xri is the referenced pattern
centroid corresponding to that flight. If multiple time steps
are paired to time step j, the step that delivers the minimal
distance is chosen. In general, Ct

v is an accumulated distance
to the referenced centroid within a time window, which is to
make sure the unusually vectored flight does not contribute
to the complexity during its entire flight. We find that this
is more realistic since the unusually vectored flight barely
contributes to the complexity after it returns to one of the
vectoring patterns, e.g., during its approach phase. Cv is
normalized between 0 and 1 when it is used to compute
the total complexity C for the ease of interpretation and
comparison to other components.

B. Separation complexity

ATCs usually go through a situational awareness process
in their minds before executing any decisions [20] and the
separation between aircraft has been proven to be important
in the reviewed literatures in Section I. Thus, the trajectory in
the future can represent the complexity and ATCs’ workload.
To obtain the predicted separation, we use the multi-agent
trajectory prediction framework that we proposed in [18]. The
framework implements a sequence-to-sequence Transformer-
based structure and is trained scenarios by scenarios. In the
framework, the agent-aware attention [21] is used to help the
neural network pay attention to other agents (flights) in the
airspace so that the traffic situation is taken into account.
We modify the framework so that it generates a 2-minute
prediction every time step with the information in the last 2
minutes. The prediction is made for every arrival flight in the
airspace. An example is shown in Figure 6. The prediction
starts at the blue circle located at the end of every blue line,
which is the input of the trajectory prediction framework.
The blue tail from each blue circle is the position of the
flight in the last 2 minutes. The red points are the 2-minute
predictions. The separation complexity at every time step t ∈
[Tstart, Tend] is defined as:

Ct
s = Ct

shori
+Ct

svert

Ct
shori

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−min(Xt,hori
pred

)
shori

+ 1, if min(Xt,hori
pred )

≤ shori
0, otherwise

Ct
svert

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−min(Xt,vert
pred

)
svert

+ 1, if min(Xt,vert
pred )

≤ svert
0, otherwise

(3)

Figure 6: An example of the multi-agent trajectory prediction

where Xt,hori
pred and Xt,vert

pred are the absolute value of the
predicted horizontal and vertical separation distance between
all flights in the airspace except themselves, at time t. shori
and svert are set to be as 5 nm and 1000 ft, respectively,
based on the separation rule in the terminal airspace [22].
Equation (3) is designed in a way that Ct

shori
and Ct

svert

increase linearly from 0 to 1 when the separation is less
than the minimum requirement. Similar to the vectoring
complexity Cv , the separation complexity Cs is normalized
between 0 and 1.

C. Anomaly complexity

Although anomalies may not always lead to unsafe events,
they have large potentials to cause significant operational
safety risks [23]. Therefore, anomalies need to be consid-
ered for estimating the complexity. Anomalies in the RNAV
terminal airspace are different and more difficult to define
and detect than those in en-route or other terminal airspace.
To be more specific, anomalies need to be defined based on
the vectoring patterns and traffic situation. In [17], we pro-
posed an online anomaly detection framework. The anomaly
detection framework is based on the Gaussian Mixture Model
(GMM), which uses a weighted sum of the probability density
functions of Gaussian components to best fit the training data
distribution [24]. The number of Gaussian components is
selected using sensitivity analysis with the Bayesian infor-
mation criterion [25]. Each Gaussian component represents a
vectoring pattern, and anomalies are detected by the Z score
of each feature of the flight. The Z score is a widely used
statistical measure for anomaly detection [26, 27]. When the
Z score of a certain feature is greater than 2, this flight is
anomalous in that feature [17]. Since energy management
is tightly related to safety [16], anomalies in energy-related
features are considered in this paper, i.e., ground speed,
Specific Potential Energy Rate (SPER), and Specific Total
Energy (STE). SPER and STE are derived from the ADS-
B data by using the equations provided in [16]. Other than
energy-related anomalies, this paper also considers opera-
tional anomalies. However, the daily operations in ICN is
very different from what is written in the AIP data. For
example, we can often find a certain runway being used in



Figure 7: Total number of flights (left), complexity estimated by the proposed framework (middle), and complexity estimated
by the comparison method (right)

irregular hours. Therefore, we include only go-arounds and
holding flights as the operational anomalies in this paper. With
more data available, more operational anomalies can be easily
included.

Let the total number of flights in the airspace at time t
be M t, those having energy-related anomalies in the kth

feature, k ∈ [1,N], be M t
ek

, and those having operational
anomalies be M t

o. If a flight has both energy-related anomalies
and operational anomalies, it is counted only once to avoid
M t

a being larger than M t. We use the entropy from the
information theory [28] and define the anomaly complexity
Ca at every time step t ∈ [Tstart, Tend]as:

Ct
a = −

M t −M t
a

M t
log

M t −M t
a

M t
− M

t
a

M t
log

1

M t

M t
a =M t

e +M t
o

M t
e =

N

∑
k=1

M t
ek

(4)

The entropy measures the disorder of the airspace with respect
to normal operations. If all flights are normal, the anomaly
complexity is 0. The anomaly complexity Ca is normalized
between 0 and 1.

IV. RESULTS AND ANALYSIS

This section tests the proposed complexity estimation
framework with arrivals in ICN between January 1 and 2,
2019. The sample time is 10 seconds, i.e., the complexity
is estimated every 10 seconds from 00:00:00 on January 1 to
00:00:00 on January 3. For comparison, we select the airspace
complexity measure proposed by Gariel et al. in [14] as the
comparison method because it is the closest work that we
can find in the literature. In [14], the airspace complexity is
computed by the entropy contributed by outlier arrivals and
fly-over flights. Note that we only consider arrivals in this
paper for simplicity. Therefore, fly-over flights are excluded.
Outlier arrivals are defined as flights that do not follow the
procedures, flights that are on holding pattern, and flights
that are executing a go-around. In ICN, flights that do not
follow the procedures are flights that are identified into the
vectoring pattern. For example, a non-vectoring pattern in
GUKDO south is shown in Figure 8 where all flights follow
the procedures, i.e., only execute a direct-to when they have

Figure 8: An example of non-vectored pattern

reached one of the direct-to fixes (fixes in the arc). Figure 7
shows the total number of flights, complexity in ICN terminal
airspace between January 1 and 2 estimated by the proposed
complexity estimation framework, and that estimated by the
method proposed in [14]. Due to the large size of air traffic
data, researchers need to read high-level figures such as those
in Figure 7 to discover traffic situations with relatively high
complexity. Therefore, we select three time intervals within
the total time period for case study to test the benefits of the
proposed framework. The three time intvervals are highlighted
and numbered in red in Figure 7. The detailed complexity
values of those three cases are presented in each case study.

The following subsections focus on the highlighted inter-
vals for further analysis on the traffic situation and discussion.
Consequently, the result shows our proposed complexity
estimation framework can better represent the complexity in
the RNAV terminal airspace than the number of flights and
the comparison method.

A. First Case

The first case’s time is between 16:48:00 and 16:58:00
in January 2 and the traffic situation is shown in Figure 9.
The black lines are the RNAV STARs in ICN. Each flight
is represented by a blue circle with a tail. The blue circle
is the current position of the flight and the blue tail is the



flight’s position in the last 1 minute, so the flight’s horizontal
speed can be inferred from the length of the tail. As shown
in Figure 10, the number of flights in this case is at the
highest (18 flights). Therefore, to maintain the sequencing
and separation, ATCs give a lot of vectoring commands. As
shown in Figure 9, the flights coming from REBIT all travel in
a straight line until they are close to merge with other flights,
where they turn their heading to the Southeast. ATCs do so
because the traffic volume from REBIT is heavier, and making
flights travel in a straight line saves time so that the separation
and efficiency are maintained. However, as a countereffect,
the flights coming from other directions, especially OLMEN,
need to be vectored in a path-stretch way to meet the required
delays.

Although the traffic volume in this case is the highest,
according to the complexity estimated by the proposed frame-
work, this case is relatively not complex, as shown in Figure
10. This is because although all flights are vectored, most of
them simply follow their preceding flights, especially in the
West where the traffic is the heaviest. In this case, ATCs
do not need to put much effort in their decision making
process. Most of their attentions are actually paid into how
to vector flights coming from other directions so that all
flights merge smoothly. In addition, no anomaly is detected
by the GMM anomaly detection model. Therefore, the real
complexity and ATCs workload are not very high, which is
accurately reflected by the proposed complexity estimation
framework. In contrast, our comparison method shows a
highest complexity due to all the vectoring flights.

B. Second Case

The second case is between 20:48:00 and 20:58:00 on
January 1, and it is shown in Figure 11. The red flights are
flights in holding patterns and the pink flights are anomalous
flights that have energy-related anomalies which are detected
by the GMM anomaly detection model. Note that some red
flights do not show they are holding because they complete
holding before 20:48:00. As shown in Figure 12, our pro-
posed complexity estimation framework estimates a highest
complexity. This is because there exist multiple holding flights
(two of them from the same entry fix) and multiple anomalous
flights. Although this case has less total number of flights (11
flights) than the first case, it has a much higher complexity
because there is only one runway open, and in order to
avoid runway congestions, ATCs need to hold multiple flights
and make flights heavily deviate from the procedures. For
example, the pink flight at 20:48:00 that seems to enter
from KARBU actually enters from GUKDO, but it vectors
to KARBU immediately after it enters the ICN airspace, and
then it vectors back to GUKDO’s STAR, which could be the
reason why its specific total energy is anomalous.

Note that according to the AIP data, all runways operate
between 20:48:00 and 20:58:00, but as shown in Figure 11,
only one runway is in use, which suggests that there could
be some situations at the airport such as a high number of
departures that make other runways closed to arrivals. The
comparison method estimates the complexity in this case
lower than that of the first case, which is untrue as explained

above. Researchers and ATCs can benefit from the proposed
framework by investigating highly complex situations like this
to discover more potential operational anomalies.

C. Third Case

The third case is between 6:23:00 and 6:33:00 on January
2, and it is shown in Figure 13. This case has much less
number of flights than the first case, but is highlighted by
the proposed framework in Figure 7 because as shown in
Figure 13 at 06:25:00 and 06:29:00, the horizontal separation
becomes too small twice (flights in the red circles). It can be
seen that a large number of flights enter from GUKDO in a
short period time and ATCs try to delay some of them so that a
proper sequencing is maintained. However, it is not sure why
the ATCs do not choose to vector some flight to KARBU like
what they do in the second case or put some flights in the
holding position. Possible reasons could be communication
issues, pilot’s nonconformance, or weather. In addition, this
case shows that too many flights from the same entry fix could
result in safety risks, horizontal separation being violated in
this case, and ATCs responsible for sectors outside of ICN
should take note of this and avoid such situations.

Note that although the comparison method computes a
higher complexity than the proposed framework, it fails to
highlight this case in Figure 7, i.e., the complexity in case 3
does not stand out enough to be noticeable. However, as dis-
cussed above, this case exists safety risks and therefore needs
to be discovered and investigated. In general, the three case
studies show that the proposed complexity estimation frame-
work can highlight special situations better, which means it
can estimate the complexity in RNAV terminal airspace more
accurately than the comparison method and assist researchers
and ATCs to discover potential traffic situation anomalies.

V. CONCLUSION

Area Navigation (RNAV) can improve the efficiency in
the terminal airspace to meet the growing air traffic demand,
but the terminal airspace becomes more complex than ever,
especially for airports that widely adopt RNAV. In this pa-
per, a new RNAV terminal airspace estimation framework
was proposed. Unlike other terminal airspace complexity
estimation methods, the proposed framework, for the first
time in the literature, considers vectoring patterns, aircraft
separation, and anomalies together. Each component in the
proposed framework modifies and implements our previously
developed algorithms, i.e., trajectory pattern identification and
classification, multi-agent trajectory prediction, and Gaussian
mixture model-based anomaly detection. The total complexity
is defined as a linear combination of the vectoring complexity,
the separation complexity, and the anomaly complexity. The
proposed framework was tested with the Automatic Depen-
dent Surveillance-Broadcast (ADS-B) data recorded in the
Incheon International Airport in South Korea between January
1 and 2 in 2019, and the Aeronautical Information Publica-
tion data. Three case studies were performed to show the
advantages of the proposed framework over the comparison
method. The result showed that the proposed framework can
help researchers and air traffic controllers discover operational



Figure 9: First case

Figure 10: Airspace complexity of the first case estimated by the three methods



Figure 11: Second case

Figure 12: Airspace complexity of the second case estimated by the three methods



Figure 13: Third case

anomalies that may be overlooked and improve the safety of
the RNAV terminal airspace.

Note that the proposed complexity estimation framework
has the following limitations: (i) Only arrivals are considered.
Although based on our study, arrivals are more complex than
departures, including departures can deliver a more complete
picture of the airspace. (ii) Only ADS-B data are used. If
more data such as ground operation data were available, we
may be able to explain some high-complexity situations such
as the second case. (iii) The proposed complexity estimation
framework has not been validated by feedback from real air
traffic controllers, which could change the coefficient of each

complexity component or add more complexity components.
The limitations are considered as our future work and will
be studied to improve and further validate the proposed
framework.
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Figure 14: Airspace complexity of the third case estimated by the three methods
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