
Fifteenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2023)

The Curse of Time Horizon
in Detect & Avoid Algorithms

David GIANAZZA, Richard ALLIGIER, and Nicolas DURAND
ENAC

University of Toulouse
Toulouse, France

{lastname}@recherche.enac.fr

Abstract—This paper introduces a centralized collision avoid-
ance algorithm based on a Differential Evolution, for the purpose
of studying the time horizon effect, a pathological behavior
previously identified in Detect & Avoid (D&A) decentralized
algorithms based on geometric methods. This pathological be-
havior, called time horizon effect, is most likely to occur during
constant-speed encounters, when the lateral maneuvers issued by
the D&A system postpone the crossing of trajectories beyond the
horizon of conflict detection by maneuvering the flights toward
parallel tracks. In such cases, the flights might end up locked
on parallel tracks, missing their destination.

The proposed centralized algorithm selects the best direction
changes at each time step for all flights, with the primary
objective to maintain a minimum separation between the flights.

We show that the time horizon effect also occurs when using
such a centralized optimization algorithm having full knowledge
of the flight intents, and propose mitigating strategies. This
suggests that the horizon effect is not related to the distributed
nature of many D&A methods found in the literature, but is
rather a more general effect due to the myopic nature of the
decision process.

Keywords—Unmanned Aerial Systems, detect & avoid, colli-
sion avoidance, time horizon effect, differential evolution

NOTATIONS
τ Time horizon (or anticipation) for the con-

flict detection
∆ Standard lateral separation
ψi Current direction of flight fi, between 0

and 2π
αi Maneuver of flight fi, expressed as the

angular deviation from its current direction
ψi. αi ∈ [−π, π]

φi Preferred direction of flight fi towards its
destination. φi ∈ [0, 2π]

βi Angle between the candidate direction ψi+
αi and the preferred direction φi. βi ∈
[−π, π].

x =

α1

...
αn

 Vector of decision variables for a problem
involving n flights.

I. INTRODUCTION

The traffic of Unmanned Aerial Systems (UAS) is expected
to increase dramatically in the near future [1], posing a num-
ber of potential safety issues to the Air Traffic Management

(ATM) system. In the current ATM system, trajectory conflicts
are solved by human controllers that might not be able to cope
with the number and variety of unmanned systems that will
fly soon.

Several solutions are currently envisioned to address this
issue. Among the most popular is the idea to delegate the
separation task to the UAS themselves. In this distributed
approach, each UAS would embark a Detect & Avoid (D&A)
logic [2] that would ensure self-separation from the other
UAS, and possibly from the commercial flights sharing the
same airspace, if any. Actually, segregating the UAS traffic
from the commercial one might be safer: The disparity of
airspeeds between UAS and commercial flights and the lack
of knowledge of the each other’s intent can make it very
difficult for the UAS to maintain a safe separation with the
commercial flights [3].

In any case, there remains the problem of self-separation
among UAS, and the problem of certifying – or at least pro-
viding convincing scientific evidence – that such a distributed
system would actually be safe, robust and efficient.

Providing some guarantees on the Detect & Avoid (D&A)
algorithms is central to this process. The primary objective
of a D&A algorithm is to ensure collision avoidance. This
objective is usually achieved by extrapolating the current
positions of the own and surrounding flights, and by deciding
evasive vertical or lateral maneuvers when a loss of separation
is anticipated within a given finite time horizon. To be safe
and efficient, such algorithms should take into account a
number of factors related to the distributed nature of the
decisions made by the UAS, the uncertainties on the positions
and velocities of the other UAS, and the coordination of
the maneuvers, either explicitly through the broadcasting of
messages, or implicitly through a shared logic.

A very common belief concerning D&A is that a system
that ensures collision avoidance among the flying agents is
a safe one. For example, the safety requirements suggested
in [4] focus solely on two major accident types related to
airborne operations: mid-air collisions and ground impact.
Safety cases for UAS (e.g. [5]) mostly focus on ensuring
separation and preventing mid-air collisions. Consequently,
one might think that implementing a D&A logic that is
guaranteed to prevent mid-air collisions is safe enough for
UAS operations. This might not be the case, however.



In the following, we focus on a pathological behavior,
called time horizon effect, that was – to our knowledge –
first identified by Durand in [6], [7] when applying distributed
geometric anti-collision methods initially designed for robots
to aircraft flying at constant speeds or having very limited
acceleration and speed ranges. In some cases, the flights end
up locked in parallel tracks, and miss their destination, which
is a critical issue both in terms of safety and efficiency. It
was initially suggested in [6] that the distributed nature of
the D&A logic and the partial knowledge that each flight has
on the others’ intents might be the underlying cause of the
effect, or at least that it might be an obstacle to solving this
issue, and that a centralized approach would solve it.

In this paper, we propose a centralized anti-collision al-
gorithm based on Differential Evolution. This optimization
algorithm has a full view of all the traffic and computes
optimal direction changes at each time step, with the pri-
mary objective to avoid trajectory conflicts (i.e. anticipated
separation losses), and with the secondary objective to guide
each flight toward its destination. These are exactly the same
objectives as in the autonomous approach of [6] and other
similar approaches, except that we optimize an objective
function at each time step, instead of relying on a distributed
geometric logic coordinating the maneuvers.

In this study, we show that the time horizon effect still oc-
curs in such a centralized context, which suggests that simply
adopting a centralized approach is not sufficient to prevent
it. We also examine how the horizon effect is influenced
by the design of the objective function, and by the fact that
maneuvers are shared among conflicting flights or not. Be it
in a centralized or distributed context, the main issue is that
the D&A algorithm does not plan beyond the horizon of the
conflict detection, and that its primary objective is to maintain
separation, not to reach the destination. This suggests that
additional strategies such as [8] might be necessary to help
flights to cross paths. Such strategies should plan beyond the
horizon of the collision avoidance logic.

The rest of the paper is organized as follows. Section II
gives some background on the collision avoidance problem
in air traffic management. Section III formalizes the col-
lision avoidance problem as an optimization problem. The
centralized algorithm used to solve this problem is described
in Section IV. The time horizon effect is shown on a case
study with two flights in Section V, where we also suggest
some strategies to reduce its occurrence. Results on dense
traffic scenarios are then provided in Section VI. Section VII
concludes the paper.

II. BACKGROUND ON ANTI-COLLISION, CONFLICT
RESOLUTION, AND DETECT & AVOID

Several concepts coexist in Air Traffic Management (ATM)
that deal with the objective of avoiding mid-air collisions,
usually by maintaining a safe separation between the flying
aircraft or UAS.

The Traffic Alert and Collision Avoidance System (TCAS),
also known as ACAS (Airborne Collision Avoidance Sys-
tem) [9] is an airborne system deployed on commercial
aircraft, independent from the Air Traffic Control, that alerts

the pilots on the traffic at proximity and gives resolution
advisories to avoid collisions. Traffic alerts and resolutions
advisories are issued less than a minute ahead of the antici-
pated collision. In the current version, only vertical advisories
are issued. Future versions (TCAS III, ACAS III, ACAS-X)
are envisioned, that would advise lateral maneuvers as well
as vertical ones. Research on next-generation ACAS explore
new anti-collision algorithms, with a number of approaches
including Dynamic Programming [10], deep reinforcement
learning [11], [12], or deep neural networks [13].

Air traffic controllers detect and solve trajectory conflicts
(i.e. anticipated losses of separation) several minutes ahead
of the potential loss of separation, before the TCAS triggers.
Many research have been conducted on the automation of
the conflict resolution task. They include centralized global
optimization approaches based on genetic algorithms [14],
[15], mixed-integer linear programming [16]–[18], hybrid
non-linear and mixed-integer programming [19], constraint
programming [20], and hybrid methods based on the co-
operation of combinatorial solvers [21]. Autonomous, dis-
tributed approaches have also been proposed, using sliding
forces to coordinate the aircraft maneuvers [22], potential
fields [23], electric repulsion forces [24] which inspired the
Modified Voltage Potential (MVP) of the Airborne Separation
Assurance System (ASAS) in [25]. ASAS was tested in the
Mediterranean Free Flight experimentations [26].

With the rapid development of Unmanned Aerial Systems
(UAS), and the research being conducted on new vehicles
for Urban Air Mobility (UAM), the need for a decentralized
separation assurance system becomes more apparent. Some
of the approaches developed for the next-generation ACAS
or in the context of Free Flight could be envisioned for UAS
self-separation, as well as a variety of other approaches [27],
including multi-agent reinforcement learning methods [28]–
[31], a geometric implementation of the Right of Way
rules [32], or other geometric methods initially developed for
robot anti-collision.

Anti-collision has been a subject of study in the field
of robotics for a long time. The Velocity Obstacles (VO)
method introduced in [33] allows a mobile robot to avoid
static obstacles, but it does not work correctly when multiple
agents actively maneuver to avoid each other. To cope with
this coordination problem, Van den Berg et. al. introduced
the Reciprocal Velocity Obstacles (RVO) in [34], and then the
Optimal Reciprocal Collision Avoidance (ORCA) in [35]. The
principle of the ORCA method is to move the relative velocity
vector of conflicting robots outside a reciprocal velocity
obstacle materializing the domain where a collision would
occur in a given time horizon. ORCA guarantees that the
maneuvers are implicitly coordinated among all the robots.

These anti-collision methods, initially designed for robots,
have inspired a number of methods for air traffic separation.
Balasooryan in [36], or d’Engelbronner et. al. in [37] have
proposed methods inspired from the Velocity Obstacle (VO)
algorithm. Similarly to the VO method, these methods do
not coordinate the maneuvers of the flying aircraft or UAS.
Snape and Manocha [38] extend the ORCA 2D-model –
which does coordinate maneuvers – to the 3-dimensional



space. They consider spherical protection volumes around the
aircraft, which does not account for the different vertical and
horizontal standard separations currently employed. In [3],
Alligier et. al. propose a more realistic 3D-model inspired
from ORCA, but only in the context of a 1 − vs − n anti-
collision problem, where one UAS tries to avoid uncoopera-
tive commercial flights.

In [6], [7], Durand first identified the pathological time
horizon effect that is the focus of the current paper, and
that may occur when ORCA is applied to aircraft or UAS
flying at near-constant speeds: A trajectory conflict might be
solved simply by postponing its resolution beyond the time
horizon of the conflict detection. In such situations, some
flights might be set on parallel courses, never reaching their
destinations. To mitigate this problem, Durand proposed a
Constant-Speed Optimal Reciprocal Collision Avoidance (CS-
ORCA) algorithm for aircraft and UAS.

Alligier et. al. showed in [8] that CS-ORCA does not
completely solve the parallel-track issue, and introduced a
Dual-Horizon Reciprocal Collision Avoidance (DH-ORCA)
that showed better performances.

In the current paper, we study the time horizon effect in the
context of a centralized approach, where collision avoidance
is considered as a global optimization problem to be solved
by finding the optimal velocity directions, for all flights, at
each time step.

III. COLLISION AVOIDANCE AS AN OPTIMIZATION
PROBLEM

As we have seen in the previous section, many anti-
collision algorithms are implemented as distributed logics
where decisions are taken separately onboard each air-
craft/UAS. Here, we have chosen a centralized approach to
emphasize the fact that the horizon effect – which is the main
focus of our study – is not necessarily related to the distributed
nature of the logic. It may occur even when an optimization
algorithm with a global view of the traffic has full control of
all the flights.

In order to exhibit this horizon effect, we consider specific
scenarios where all aircraft or UAS fly at the same constant
speed at a same altitude. The centralized anti-collision algo-
rithm operates in the horizontal plane only, controlling the
directions of the velocity vectors at every time step. In our
scenarios, time is discretized with a time step δt (5 seconds
in our experiments).

For a situation involving n flights at a given time tc
(current time step), the vector of decision variables is x =
(α1, . . . , αn)T , where αi is a lateral maneuver expressed as
the angular deviation of flight fi from its current direction ψi.

At each time step, we would like to find an optimal value
for x, i.e. optimal direction changes, so that all flights can
reach their destination as quickly as possible while remaining
separated one from the others.

In order to prevent separation losses, the optimization
algorithm will try to solve the trajectory conflicts detected
within a finite time horizon τ , considering clusters of conflicts
such as the one illustrated on Fig. 1. Conflicts are formally
defined in definition III.1.

Figure 1: Conflict detection within a finite time horizon,
assuming each flight follows a straight direction.

Définition III.1 (Conflict between two flights). Given a
time horizon τ , a standard horizontal separation ∆, and
considering two flights fi and fj at current time tc, there
is a conflict between fi and fj if and only if:

∃ t ∈ [tc, tc + τ ] dist(Pi(t), Pj(t)) ≤ ∆ (1)

where dist is the distance in the horizontal plane and Pi(t)
and Pj(t) are the extrapolated positions of flights fi and fj
at time t.

Conflicts occurring in a traffic situation can be character-
ized by their number of occurrences and their severity, both
in terms of duration and worst infringement of the standard
separation.

Définition III.2 (Conflict occurences). Denoting C the set of
pairs (i, j) such that fi and fj are in conflict within the time
horizon τ , the cost related to the conflict occurrences will
simply be expressed as Nc = |C|, i.e. the cardinal of C.

Définition III.3 (Conflict severity, in terms of lateral separa-
tion). Let us denote dclosest(i, j) the closest lateral separation
achieved by two flights fi and fj within the time horizon τ .
If dclosest(i, j) ≤ ∆, where ∆ is the standard separation, then
the two flights are conflicting and the severity of the conflict
is defined as follows:

Sdist(i, j) =
∆− dclosest(i, j)

∆
(2)

Définition III.4 (Conflict severity, in terms of duration).
Considering a conflict occurring between two flights fi and
fj within the time horizon τ , the severity of the conflict in
terms of duration is defined as follows:

Stime(i, j) =
conflict duration(i, j)

τ
(3)

where conflict duration(i, j) is the duration of the conflict
(bounded by τ , as potential future separation losses occurring
beyond time tc + τ are not accounted for).

The primary objective of the centralized optimization algo-
rithm is to prevent separation losses by avoiding conflicts. If



conflicts are unavoidable, the algorithm should favor solutions
where conflicts are the less severe, in terms of lateral distance,
and as short as possible. For this purpose, let us define two
cost functions related to the conflict severity in terms of
distance and time.

Définition III.5 (Cost function related to conflict severity in
distance). Considering a situation involving n flights, and a
vector x = (α1, . . . , αn)T of candidate lateral maneuvers,
the overall conflict severity in terms of lateral separation
infringements is defined as the worst separation infringement
among all conflicting pairs of flights, assuming each flight fi
follows its candidate direction ψi + αi:

CSdist
(x) = max

(i,j)∈C
Sdist(i, j) (4)

where C is the set of conflicting pairs of flights.

Définition III.6 (Cost function related to the duration of
conflicts). The overall conflict severity in terms of duration
of the conflicts is defined as the average value of Stime over
all conflicts:

CStime
(x) =

1

Nc

∑
(i,j)∈C

Stime(i, j) (5)

where C is the set of conflicting pairs (i, j such that flights
fi and fj are in conflict.

Also, each aircraft or UAS should fly toward its destination
as directly as possible, while avoiding conflicts. With our
model, this can be expressed very simply by the fact that
the velocity of each flight fi, once corrected by the assigned
maneuver αi, should preferably be pointing toward its desti-
nation. This can be expressed through the following angular
deviation cost.

Définition III.7 (Angular deviation cost). Considering a
situation involving n flights, and a vector x = (α1, . . . , αn)T

of candidate lateral maneuvers, we define the following cost
function related to the deviations from the preferred direction
toward destination.

Cangle(x) =

n∑
i=1

|βi|η (6)

where η is a chosen parameter and βi is the angle between
the candidate direction ψi + αi and the preferred direction
φi toward the destination of flight fi.

A. Optimization Problem Formulation

Our collision avoidance problem can be expressed as an
optimization problem where the primary objective is to avoid
conflicts, and if they occur to have conflicts as less severe
as possible, and the secondary objective is to fly toward the
destination. These prioritized objectives can be expressed very
simply by the following objective function returning a tuple
of costs:

fc,a(x) = (Nc, CSdist(x), CStime(x), Cangle(x)) (7)

where Nc is the number of conflict occurrences, CSdist and
CStime(x) are the distance and time severity costs of conflicts,

and Cangle(x) is the angular deviation cost, as defined in the
previous subsection.

This formulation allows us to prioritize our costs. When
comparing two values of the objective function fc,a, the costs
will simply be compared in their lexicographic order. The
subscripts c, a in fc,a are here to remind the reader that
the objectives of this function are to avoid conflicts (c) or
minimize their severity, and also to minimize the angular
deviations (a), in this order of priority.

Implementing a centralized anti-collision logic will consist
in solving, at each time step t, the following unconstrained
optimization problem P(F ,∆, τ, t):

(P(F ,∆, τ, t)) : min
x∈D

fc,a(x) (8)

where:
• F is the set of airborne aircraft or UAS flying in the

considered geographic area at time t,
• ∆ is the standard separation,
• τ is the anticipation horizon used to detect conflicts,
• x = (α1, . . . , αn)T is the vector of n = |F| candidate

maneuvers (i.e. direction changes) used as decision vari-
ables,

• D is the domain of the angular maneuvers x determined
by the maximum turning rate of each aircraft or UAS.

IV. A CENTRALIZED COLLISION AVOIDANCE
ALGORITHM

A. Algorithm Description

Algorithm 1 describes the proposed centralized anti-
collision algorithm used in this study, with the sole purpose
of studying the time horizon effect. At each time step, the
algorithm updates the set F of flights present in the con-
sidered area using function UPDATEFLIGHTS, and solves the
optimization problem P(F ,∆, τ, t)) described in the previous
section, using the function SOLVEPROBLEM. This function
returns a set of optimized maneuvers. The direction changes
are then implemented by CHANGEDIRECTIONS.

Algorithm 1 Centralized Anti-collision Algorithm.
Require: tstart, tend, time step δt, and flight plans Fp with initial

positions and velocities, entry times, and flight destinations
1: t← tstart

2: F ← ∅ . Active flights
3: xbest ← None
4: while t ≤ tend do
5: F ← UPDATEFLIGHTS(F , Fp, t)
6: xbest ← SOLVEPROBLEM(P(F ,∆, τ, t))
7: F ← CHANGEDIRECTIONS(F , xbest)
8: t← t+ δt
9: end while

In algorithm 1, we could directly use any suitable opti-
mization algorithm A to implement SOLVEPROBLEM, con-
sidering all n flights present in the area at time t, and
optimizing in the n-dimensional space of decision variables
x = (α1, . . . , αn)T . However, some of these flights might not
be in conflict with any other at that time, or the conflicting
pairs might be grouped into several separate clusters.



The optimization process can be greatly improved by
considering these clusters – i.e. the connected components of
the graph of conflicts – as sub-problems that can be optimized
separately. The function SOLVEPROBLEM that implements
this strategy is described in Algorithm 2.

Algorithm 2 Problem Solving
Require: An optimization algorithm A

1: function SOLVEPROBLEM(P(F ,∆, τ, t))
2: xtrial ← TOWARDDESTINATION(F) . Initial candidate

maneuvers, toward the destinations or as close as possible
3: Ftrial ← CHANGEDIRECTIONS(F , xtrial) . Candidate

flights with updated directions
4: C ← DETECTCONFLICTS(Ftrial)
5: L ← MAKECLUSTERS(C) . Independent sub-problems

(connected components of the conflict graph)
6: Lold ← ∅
7: while L 6= ∅ and L 6= Lold do
8: l← SOLVESUBPROBLEMS(L,A) . Solve each

sub-problem independently, using algorithm A
9: xtrial ← CONCATSOLUTIONS(x0, l) . Concatenate the

sub-problem solutions to form a candidate global solution
10: Ftrial ← CHANGEDIRECTIONS(F , xtrial)
11: C ← DETECTCONFLICTS(Ftrial)
12: Lold ← L
13: L ← UPDATECLUSTERS(C,Lold)
14: end while
15: return xtrial

16: end function

In Algorithm 2, an initial vector of maneuvers xtrial is
computed, maneuvering each flight toward its destination.
Due to the maximum turning rate constraint, flying directly
in the preferred direction – toward destination – might not
be possible. In this case, the initial candidate maneuver aims
at the feasible direction closest to preferred one. The set of
flights Ftrial returned by CHANGEDIRECTIONS is the same
as F , except that the velocities now follow the candidate
directions.

The set C of conflicting pairs of flights is then computed
(DETECTCONFLICTS), assuming the flights follow these can-
didate directions, and the clusters L are computed from the
graph of conflicts (MAKECLUSTERS).

The function SOLVESUBPROBLEMS simply applies an
optimization algorithm A to each cluster in L and returns
the optimized maneuvers for each sub-problem. In this study,
we have used a Differential Evolution algorithm, described
in the next subsection IV-B. The new candidate solution xtrial

for the global situation involving all flights is obtained by
aggregating the partial solutions, using CONCATSOLUTIONS.

Solving the sub-problems in L independently is not suffi-
cient to ensure that the new global candidate solution xtrial is
without conflicts: We might have solved all conflicts within
each cluster, but created new ones with flights from other
clusters, or with flights that were initially not in conflict with
any other.

In such cases, we have to reconsider our clusters (UP-
DATECLUSTERS), either by merging them, or by adding new
flights, and we have to solve these new sub-problems, until
there remain no conflicts in the overall situation (C and L are
empty), or until the clusters are unchanged. This last case may

occur when the optimal solution is not without conflicts. This
process is implemented by the “while” loop in Algorithm 2,
which checks if the clusters L after a solving iteration are
different from the previous ones Lold.

B. The Differential Evolution Algorithm

Let us now describe the Differential Evolution (DE) al-
gorithm that we used to solve the anti-collision problems.
Differential Evolution is a metaheuristic, proposed by R.
Storn and K. Price in [39], for optimization problems with
real-valued decision variables. We chose this algorithm for
its simplicity and its efficiency on multi-modal objective
functions.

The Differential Evolution algorithm applies a recombina-
tion and selection process to a population {x1, . . . , xpopsize}
of candidate solutions through a number of generations, as de-
scribed in Algorithm 3, and returns the best element(s) of the
population at the end. Each candidate solution xi is a vector
of dimension dim of floating-point values. The recombination
operator RECOMBINE is described in Algorithm 4.

Algorithm 3 Differential Evolution Algorithm.
Require: Objective function f , problem dimension dim, popula-

tion size popsize, maximum number of generations maxiter,
crossing rate CR, amplification factor F

1: {x1, . . . , xpopsize} ← INITPOP(popsize, dim)
2: iter ← 0
3: while iter < maxiter do
4: for individual i = 1 to popsize do
5: Randomly pick xa,xb, and xc, with a, b, c, i all different
6: yi ← RECOMBINE(xi, xa, xb, xc)
7: xi ← yi if f(yi) < f(xi)
8: end for
9: end while

10: xbest ← arg max
x∈{x1,...,xpopsize}

f(x)

11: return xbest

Algorithm 4 Recombination Operator of the Differential
Evolution Algorithm.
Require: Dimension dim, crossing rate CR, amplification factor F

1: function RECOMBINE(xi, xa, xb, xc)
2: yi ← xi
3: r ← RANDOMINT({1, . . . , dim})
4: for j = 1 to dim do
5: rf ← RANDOMFLOAT([0, 1])
6: if j = r or rf < CR then
7: yi,j ← xa,j + F × (xb,j − xc,j)
8: end if
9: end for

10: return yi
11: end function

C. Applying Differential Evolution to the Collision Avoidance
Problem

Applying the DE algorithm to our anti-collision problem
is straightforward. We can use it directly as the algorithm A
required in Algorithm 2.

The dimension of the problem is dim = nc, where nc
is size of the cluster of flights in the sub-problem to solve.
The population is initialized by building popsize vectors



of maneuvers. Each vector is built by selecting random
maneuvers (i.e. direction changes) for the nc flights, with a
uniform distribution in the angular domain defined by the
maximum turning rate of each flight.

V. THE TIME HORIZON EFFECT – CASE STUDY WITH
TWO FLIGHTS

Let us now consider two flights entering a circular geo-
graphic area of radius 100 NM (nautical miles) at the same
time, both flying at 250 kts (knots) and set on courses
converging at an angle of 30 degrees. Figure 2 shows the
trajectories of these two flights when no collision avoidance
algorithm is applied.
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Figure 2: Initial trajectories of two flights converging at an
angle 30◦ at 250 kts, with start and end points on a circle of
radius 100 NM.

A. Illustration of the Time Horizon Effect

Figure 3 shows the trajectories for the same flights when
Algorithm 2 is applied with a parameter η = 2 for the angular
deviation cost (see Def. III.7), a population size of 30 for the
Differential Evolution, and parameters F = 7, CR = 0.1,
and maxiter = 2000. On Fig. 3 the simulated flight time
was limited to 1 hour. The time horizon τ for the conflict
detection is set to 10 minutes. We can observe that the two
flights are locked on parallel courses and that none of them
is able to reach its destination.

Such a situation is clearly an issue, both in terms of
efficiency and safety: The anti-collision algorithm does ensure
separation, but the flights never reach their respective desti-
nations. In real life, they would eventually run out of power
(or fuel, depending on the type of propulsion). This is what
would occur in the situation shown on Figure 4 which shows
the same traffic scenario, but with a flight time extended to
6 hours.

B. Causes of the Time Horizon Effect

The time horizon effect illustrated on Figs. 3 and 4 was
first identified, to our knowledge, by Durand in [6], [7]
when applying the distributed geometric algorithm ORCA to
constant-speed UAS. One could think that this effect might
be caused by the distributed nature of the D&A logic, and by
the lack of knowledge of the others intents when choosing a
lateral maneuver. This is not the case.
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Figure 3: Anti-collision solution for two flights converging
at an angle 30◦ at 250 kts, with parameter η = 2. One hour
of flight was simulated.
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Figure 4: Anti-collision solution for two flights converging
at an angle 30◦ at 250 kts, with parameter η = 2. Six hours
of flight were simulated.

From the examples Figs. 3 and 4, where we used a
centralized anti-collision algorithm with full knowledge of all
the flights, we can see that the time horizon effect has nothing
to do with the distributed nature of most D&A logics.

Actually, for any distributed or centralized algorithm for
which conflict resolution is the top priority, it might happen
that the easiest way to solve a conflict occurring within a
finite time horizon is to postpone the trajectories’ crossing
beyond the time horizon, by maneuvering toward parallel
tracks. This pathological situation is more likely to occur
when the conflicting aircraft or UAS are flying at similar
speeds and can only make slow and limited velocity changes.
This is typically the case for commercial flights flying at high
altitudes, and it might also be the case for some Urban Aerial
Mobility vehicles cruising in lower airspace in the future, or
for some existing fixed-wing UAS.

Ultimately, the true reason why the time horizon effect
occurs is that we use a myopic resolution strategy where the
actions taken at a given time step do not take account of
all the consequences on the future time steps. Even though
we use a global optimization algorithm to solve conflicts, the
whole optimization process over several time steps can be
considered as a greedy heuristic: the algorithm selects the



maneuvers that yield the best results at the current time step,
without planning beyond the horizon of the conflict detection.

C. Mitigating the Horizon Effect with Inequitable Maneuvers
Symmetry is clearly an aggravating factor for the horizon

effect, and any action that breaks the symmetries in a conflict-
ing situation is likely to help. Unfortunately, in many D&A
logics such as MVP [25], or ORCA [35] and its variants (e.g.
[7], the maneuvering effort is shared among the flights. It is
usually preferred to have two flights making small maneuvers
instead of only one making a bigger one.

In our centralized algorithm, we can implement this equity
objective by choosing a parameter value η > 1 in the cost
of the angular deviations (see Def.III.7). For example, with
η = 2, the cost of deviating both of two flights of 1 will be
12 + 12 = 2, whereas this cost will be 22 = 4 if only one is
deviated of 2 and the other is not deviated. Consequently,
the optimization algorithm will guide the search toward
solutions where the maneuvers are shared among the flights,
as illustrated on Fig. 3 in section V-A.

At the opposite, choosing η < 1 will favor inequitable
maneuvers. For example, with η = 0.9, the cost of two
deviations of 1 each is still 2 (10.9 + 10.9) but it is now
greater than the cost of a single deviation of value 2, which
is 20.9 < 2, so the optimization algorithm will favor solutions
deviating only one of the two flights.
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Figure 5: Anti-collision solution for two flights converging
at an angle 30◦ at 250 kts, with parameter η = 0.9.

Figure 5 shows the result obtained with η = 0.9 for the
same two flights as in section V-A. Only one of the two
flights is maneuvered to avoid collision. It still has to follow
a parallel track until the other reaches its destination. The
deviated flight can then resume its navigation toward its own
destination.

Favoring inequitable maneuvers with η < 1 does not
completely solve the parallel track issue, but at least both
flights end up at their respective destinations, which was not
the case with equitable maneuvers (η = 2)

In a previous work [8], we proposed a distributed geometric
algorithm – the Dual-Horizon Reciprocal Collision-Avoidance
(DH-ORCA) algorithm – where the shorter time horizon is
used to enforce separation, and the broader horizon is used to
help cross the trajectories when necessary. A similar strategy
could be used in the centralized algorithm proposed here.

Whatever the chosen mitigating strategy, the important
point to emphasize here is that a D&A logic that prioritizes
collision avoidance over all other objectives does not solve
all issues and does not by itself guarantee the safety of the
overall system.

VI. RESULTS ON RANDOM TRAFFIC SCENARIOS

A. Traffic Scenarios
In this section, we use dense random scenarios (approx.

8.5 flight/10 000 NM2) that are specifically designed to be
more likely to exhibit the time horizon effect (constant speeds,
lateral maneuvers only). The objective here is not to simulate
realistic environments, but to test the limits of the collision
avoidance algorithm.

In our scenarios, all UAS fly at constant speeds uniformly
drawn between 230 and 270 knots, at the same altitude. We
consider only lateral maneuvers to avoid collisions, with a
maximum turning rate of 3 degrees per second. The time
horizon for the conflict detection is set to τ = 10 minutes.

The flight entry times are randomly generated following a
Poisson distribution having an average incoming flow of 60
entries per hour. Once the entry times are selected, the entry
point of each incoming flight is randomly chosen within the
available domain on a circle of radius 150 nautical miles,
considering protection zones around the previous flights, and
assuming these flights follow direct routes toward their des-
tinations. The entry point selection is illustrated in Figure 6.
These exclusion zones of radius ∆entry = 4 × ∆ around the
other flights are here to avoid separation losses at entry, and
to give room for the entering flights to maneuver.

Admissible
entry domain

Figure 6: Entry point selection in the admissible domain,
considering exclusion zones defined around previous flights.

The route of each flight is then randomly chosen as
illustrated on Fig. 7 by drawing in a uniform distribution
[−α, α], with α = 70◦. The exit point is then simply the
intersection of the route with the circular boundary.

These scenarios are designed so that no loss of separation
occurs at entry if all UAS fly directly toward their destination.
When a D&A algorithm modifies the trajectories to avoid
collisions, these modified trajectories might interfere with
entering flights. In such cases, the entering flights are delayed
until they can enter while respecting the exclusion zones
around the other UAS.



Entry

Exit

Figure 7: .

B. Results with η = 2 (shared maneuvers)

Figure 8 shows the trajectories obtained by applying Al-
gorithm 2 every 5 seconds when simulating 6 hours of the
traffic scenario described in section VI-A. The parameter η
of Eq. (6) in definition III.7 of the angular deviation cost is
here set to η = 2. With this value of η > 1, the optimization
algorithm will favor solutions where maneuvers are shared
among the flights.
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Figure 8: Anti-collision solution for 6 hours of dense traffic
scenario with an average incoming flow of 60 flight per hour,
with parameter η = 2.

The Differential Evolution parameters are the same as in
section V, except for maxiter, the maximum number of
iterations, which was set to 20000, to be on the safe side.
A more extensive parameter study would be required to tune
the parameter values. The 6 hours of traffic were simulated
in 6236 seconds of CPU time (approximately 1 hour 50
minutes) on an Intel(R) Core(TM) i9-9940X CPU
@ 3.30GHz.

In this dense scenario, 65 separation losses between flights
were observed, with a severity loss of 0.04 (i.e. a 4%
infringement of the standard separation, at most). The total
duration of the separation losses is 1240 seconds. The total
delay for all flights is 315 seconds.

We can see on Fig. 8 that several flights are subject to
the pathological time horizon effect, with trajectories locked

on parallel tracks and missing their destination. The total
time spent locked on parallel tracks is 31185 seconds, from
which 10905 were spent flying away from the destination.
The mathematical expressions for these parallel track metrics
can be found in [8].

C. Results with η = 0.9 (inequitable maneuvers)

With η = 0.9, the optimization algorithm assigns larger
lateral maneuvers to a smaller number of flights than with
η = 2, and it should be slightly less subject to the parallel
track issue.

Figure 9 shows the trajectories obtained on the same
scenario as in section VI-B. We can see that there are no
parallel tracks going away from the flights’ destinations.
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Figure 9: Anti-collision solution for 6 hours of dense traffic
scenario with an average incoming flow of 60 flights per hour,
with parameter η = 0.9.

The number of separation losses between flights is 48,
with a severity of 0.03, and a total duration of 770 seconds.
The total delay is 965 seconds. There are still some parallel
tracks, with a total time 2225 seconds. This is certainly due
to situations similar to the one shown on Fig. 5, where one
UAS flies directly toward its destination and the other has to
follow a parallel track until it can safely turn toward its own
destination. However, as opposed to the results obtained with
η = 2, the time spent on parallel tracks and flying away from
the destination is reduced to 0.

Table I summarizes the results on the dense traffic scenario,
when sharing the maneuvers (η = 2), or when inequitable
maneuvers are preferred (η = 0.9).

η = 2 η = 0.9
LoS 65 48
LoS severity 0.04 0.03
LoS duration (s) 1240 770
Total delay (s) 315 965
Parallel tracks duration (s) 31185 2225
Parallel and away (s) 10905 0

TABLE I. Results of the centralized collision avoidance
algorithm, with η = 2 (equitable maneuvers) and η = 0.9
(inequitable maneuvers), on a random scenario of six hours
of dense traffic – LoS= Loss of Separation.



VII. CONCLUSION

In this paper, we have introduced a centralized collision
avoidance algorithm based on Differential Evolution, for the
purpose of studying the time horizon effect that was identified
and studied in [6], [7] in a decentralized context.

We have shown that a centralized algorithm with full
knowledge of the flights’ intents can also be plagued by this
effect where trajectory crossings might be postponed beyond
the detection horizon, and where some flights might end up
on parallel tracks, missing their destination.

The primary cause of the time horizon effect is not the
distributed nature of most D&A logics. There are probably
several factors favoring the apparition of this undesirable
effect. One of them is the symmetry in some traffic situations,
and in such cases we have seen that sharing the maneuver
among the flights might not be a good idea. Another cause
is that conflicts are detected within a finite time horizon
and that the D&A logic prioritizes conflict resolutions over
the deviation costs. With this prioritization, the effect occurs
because of the myopic strategy that consists in selecting
the best action at the current time step – i.e. the best
set of direction changes that solves the collision avoidance
problem – without considering the consequences on the future
time steps beyond the detection horizon. In a sense, although
we are applying a global optimization algorithm at every time
step, we actually use a greedy heuristic when considering the
path finding problem over sequences of successive time steps.

By testing our centralized approach on dense random sce-
narios, we have shown that sharing the maneuver effort among
the flights is an aggravating factor. Favoring inequitable ma-
neuvers breaks the symmetry that may occur in pathological
situations. It actually improves the results to a certain extent:
Although all flights reach their respective destinations, there
still remain many pathological parallel tracks situations.

A more promising strategy would be to plan trajectory
crossings beyond the time horizon of the anti-collision logic.
The use of dual-horizon logics such as the one proposed
in [8] in a decentralized context can help mitigate the horizon
effect. Such approaches rely on two nested logics: one with
the longer time horizon which aims at crossing the trajectories
when intended so, and the other with the shorter time horizon
devoted to collision avoidance. In future works, we plan to
study such a dual-horizon approach in a centralized context,
and to compare distributed approaches with centralized ones,
implementing efficient dual-horizon strategies in both con-
texts.

The most important lesson that may be learned from the
current study is that prioritizing collision avoidance over all
other objectives does not guarantee the safety of the overall
UAS Traffic Management (UTM) system. The certification
process of the UAS D&A logics and of the UTM system as
a whole should not only focus on the conditions in which
separation losses may occur, but also on the conditions in
which the horizon effect may happen.
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