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Abstract—
Helping Air Traffic Controllers (ATCOs) to solve conflicts is

challenging because ATCOs only have a partial control on pilots
reaction time and trajectory change, and cannot estimate very
precisely the aircraft speed. A previous research [1] proposed
a method to estimate ATCOs’ uncertainty margins during their
deconfliction task. It was shown that, given a predefined un-
certainty model, it is possible to learn uncertainty parameters
on two-aircraft exercises resolved by an automatic solver. In
this article, we collect new data on a more realistic simulator
showing a Singaporean En-Route sector and estimate individual
and collective uncertainties. These uncertainties are then used
in the automatic solver and the resolutions are compared to the
actual maneuvers given by the ATCOs. Results on 6 ATCOs
who performed several hours of control show that common
uncertainties could be estimated with an error of the same range
as individual uncertainties. When these uncertainties are used in
the automatic solver the solutions are conform to the ATCOs
decisions 77 per cent of the time which is 15 percent higher than
without considering uncertainties.
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I. INTRODUCTION

Offering tools to help air traffic controllers (ATCOs) in their
separation task is difficult for many reasons. Different ATCOs
may have different behaviors depending on many factors
such as habits, mental workload, uncertainty perceptions. The
conflict resolution problem may also have many equivalent
solutions and chosing between one or another can be very
subjective. ATCOs have to face the lack of accuracy in their

trajectory prediction. They neither control the pilots reaction
time nor the precise trajectory change and therefore need to
anticipate maneuvers with enough margins to maintain safe
trajectories. A computed solution can be helpful to an ATCO
if it chooses to maneuver the same aircraft than the ATCO’s,
if the maneuver starts at the same time, is of the same type,
and offers extra margins that an ATCO is expecting. Learning
uncertainties from observing ATCOs behavior is challenging
and a method was introduced in [1] to address this issue.

In this article we go further by applying the method pro-
posed in [1] to a more realistic dataset and then statistically
compare the resolutions proposed by an automatic conflict
resolution solver to the maneuvers decided by ATCOs. The
dataset was built on a Singaporean airspace sector on which
6 French ATCOs performed simple conflict resolutions on
hundreds of examples.

The current Air Traffic Control System has been historically
organized into filters in order to ensure a tolerable level of
complexity to ATCOs in their real time (5/10 minutes) tactical
control tasks. The conflict detection and resolution en-route
task ensured by ATCOs remains one of the least automated
task in the whole system, even though a lot of research has
been done to build automated solvers.

En-Route ATCOs use a 2D horizontal visualization to
control the traffic. Aircraft are represented by plots and its
past positions are materialized by a comet. The speed vector
is represented by a line segment showing the future positions
of the aircraft in 3, 6 or 9 minutes. On demand, ATCOs can
also check distances between points but this information is not
permanently displayed on their screen.

ATCOs can be assisted in the conflict detection task by
tools. The Short Term Conflict Alert (STCA) tools are pro-
gressively introduced in En-Route displays in order to help
the conflict detection. However they are not always reliable
because the trajectory prediction used remains very simple. It
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has been shown that managing correctly uncertainties plays a
key role in air traffic control.

In [2], Consiglio et al. measured the impact of pilot delay
response on the safety of airbone separation. The range of
delay studied was extended to 240 seconds showing that this
parameter plays a great part in conflict resolution. In [3],
Corver et al. explored sources of uncertainties and manage-
ment strategies adopted by ATCOs. They show some uncer-
tainties in trajectory prediction are constant, while others grow
with time. Corver et al explains that ATCOs need to understand
how alerts work, how prediction tools are designed and how
the system can handle increasing uncertainties. Experiments on
ATCO assistance tools for detection and resolution were first
carried out in the 1990s. HIPS [4], [5] the Highly Interactive
Problem Solver, issued from ARC2000 [6] introduced an
interactive view of the conflict zones, called no-go-zones for
a chosen aircraft. No-go-zones could take into account uncer-
tainties. The concept was reintroduced in the Solution Space
Based Diagram [7] to deal with 4D Trajectory Management. In
[8], Bakker et al. compare different conflict prediction models
using uncertainties. HIPS uses ellipses growing with time
to model aircraft future positions and compares the distance
between ellipses to the separation standard. Bakker and Blom
compare the geometric conflict predictor and the probabilistic
model used by [9] and later adopted by [10] in the American
project URET (User Request Evaluation Tool). A third conflict
predictor based on a collision risk approach is also introduced.
The conflict predictor used by [10] in URET was introduced
by [9] in the 90s. The model can display conflict probabilities
in complex situations. A gaussian distribution, calibrated on
observed data models the conflict probe. However very few
details are given by Erzberger on how the uncertainties were
adjusted. The conflict probe was also used by [11] to assist s in
their detection task. [12] showed in 2008 to check how new
displays of conflicts and an interactive conflict solver could
help ATCOs deal with very dense traffic.

Research on automatic conflict resolution in the last 30
years [13], [14], [15], [16], [17], [18], [19], [20] shows that
most of conflict situations can now be handled by automatic
solvers. However hypotheses and uncertainties used to model
the trajectories are generally not realistic enough to use such
algorithms in practice, so that even in the most realistic models
using simple maneuvers [13], [20], the solutions found by
automatic solvers are never really compared to real ones. More
recently, [21] has worked on a machine learning framework for
predicting ATC Conflict Resolution Strategies. The idea was
to learn ATCOs’ preferences using machine learning methods.
The idea was new but the amount of data necessary to reach
a good result is huge and cannot be easily collected.

In a previous article, presented at ATM R&D Seminar in
2021 [1], we introduced a method to learn a simple uncertainty
model from a real data set. The uncertainty model takes into
account the aircraft speed, the pilot answer delay and the
maneuver angle precision. In this article, we go further and
try to check the conformance of the maneuvers obtained with
an automatic solver using learned uncertainties.

In part II, we detail our modeling of the ATCOs prediction
uncertainties. In part III, we summarize the uncertainties

learning method introduced in [1] and detail the data used in
part IV. In part V, we compare the maneuvers calculated by
our automatic solver using these uncertainties with the actual
maneuvers chosen by the ATCOs.

II. MANEUVER AND UNCERTAINTY MODEL

We use a model similar to the previous research presented
in [1] to model the maneuvers and represent uncertainties.

A. Maneuvers

We first consider that the aircraft is initially on a straight
path between an origin point O and a destination point D.
Maneuvers are heading changes of α degrees, starting at time
t0 and ending at time t1. α is relative to the current heading.
Figure 1 illustrates a maneuver example.

O

t0 t1

D

α

Fig. 1: Maneuver model.

B. Uncertainties

We use the uncertainty model presented in [1], with one
simplification. In our previous article, the pilot reaction time
could be different at the beginning and the end of the maneu-
ver. We decided to define a unique reaction time (δt0 = δt1 )
in the present model.

Thus, we model three different sources of uncertainties:

• When pilots get maneuver orders, they can react more
or less quickly. An uncertainty δt ∈ [0,∆t] representing
the maximum reaction time for beginning a maneuver or
resuming the initial route is associated with time t (see
figure 2);

• An uncertainty εα ∈ [0, EαMax
] is associated with the

heading change angle α (see figure 3);
• Aircraft speeds are also subject to an εs ∈ [0, EsMax

]
error such that future positions of aircraft are spread over
a range which grows with time (see figure 4);
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Fig. 2: Pilot execution time uncertainty: δt model.
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Fig. 3: Maneuver angle uncertainty: εα model.
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Fig. 4: Speed uncertainty: εs

III. UNCERTAINTY LEARNING METHOD

In this section, we briefly summarize the learning method
used in [1] to determine the uncertainties from solved conflicts.

In order to calibrate the uncertainty model presented in
part II, we adjust the various uncertainty parameters until the
trajectories’ envelopes between aircraft are separated by an
average distance nd. Indeed, we suppose that ATCOs try to
keep a distance between aircraft which can be bigger than
5 nautical miles. This is why this targeted distance nd is an
additional parameter to measure.

Thus, we defined a function dω(εs, δt, εα) that calculates the
minimum distance between trajectories, given the uncertainty
parameters (εs, δt, εα), on the scenario ω. Function dω can be
applied to a benchmark Ω of deconflicted aircraft scenarios
and our objective is to minimize:

DΩ(εs, δt, εα, nd) =
∑
ω∈Ω

[dω(εs, δt, εα)− nd]
2 (1)

For the benchmark Ω, the minimum of DΩ returns the
uncertainty parameters for which resolutions comply the most
with nd when these uncertainties are applied and thus cali-
brates the values of these uncertainties on the benchmark.

We use the same simple evolutionary algorithm (EA) to find
the four parameters εs, δt, εα and nd that minimize DΩ on a
benchmark of solved scenarios Ω.

The elements in our EA population are coded by four
variables:

• The velocity uncertainty (between 0 and 40 %) εs ∈
[0; 0.4];

• The pilot answer uncertainty at the beginning and at the
end of the maneuver δt ∈ [0; 120];

• The heading uncertainty during the maneuver εα ∈
[0; 10];

• The separation standard targeted nd ∈ [5;ndsup].
In section V, we first perform experiments with nd =

ndsup = 5 NM, (we suppose that the controllers target the
separation standard of 5 nautical miles). We then perform
experiments with ndsup = 10 where the nd can vary between
5 and 10 nautical miles.

Because the EA searches for a maximum, we used the
following fitness function to minimize the difference between
dω and nd for each ω ∈ Ω:

f(εs, δt, εα, nd) =
|Ω|

|Ω|+DΩ(εs, δt, εα, nd)
(2)

IV. DATA

A. Experiments and exercise selection

Data were collected from six French ATCOs from ENAC.
Four of them performed twice a two hour session, and two of
them only one session of two hours. Figure 5 gives an example
of conflict solved by the six ATCOs.

Fig. 5: Example of an exercise resolved by all ATCOs

In order to collect data, experiments done by Guleria et
al. [21] were extended at ENAC with 6 French ATCOs. The
traffic simulation performed by Guleria’s software introduces
an en-route Singaporean sector. Guleria’s software uses two
windows: a radar view on which ATCOs can observe the traffic
sector (see Figure 6) and a maneuver selection window in
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which users can give maneuvers (see Figure 7). The exercises
proposed are simple two-aircraft conflicts for which aircraft
speeds and altitudes are constant.

Fig. 6: Radar view

Fig. 7: Maneuver selection window

In our maneuver model, we consider that aircraft fly from
an origin point O to a destination point D directly. However,
the routes proposed by the simulations are not always direct:
there are portions of trajectories, at the entrance and exit of the
sector, where the heading of the aircraft may vary to follow a
beacon. In order to deal with this pattern, we filtered exercises
for which aircraft are maneuvered on a direct section of the
route, and keep these sections of trajectories only. We also
filtered exercises for which controllers maneuvered only one
aircraft and only once which is the most common situation.
In table I, the second column shows the number of filtered
exercises for each ATCO, and the third column shows the
number of filtered exercises for which no conflict remained.
These exercises were used for the uncertainty learning phase.
We can notice that 7 exercises remained unsolved by some
ATCOs.

B. Trajectory Prediction Start Time

Figure 8 illustrates the trajectory envelopes for a maneu-
vered aircraft when maneuver starts at time t = 0 sec. (a.) and

TABLE I: Numbers of exercises kept

Candidate Filtered Exercises Ex with no remaining conflict

1 53 52
2 124 119
3 124 123
4 33 33
5 31 31
6 44 44

Total 409 402

at time t = 60 sec. (b.). The envelopes including uncertainties
are drawn in white and the conflict zones are in red. Even if
the same uncertainties are considered in both cases, envelopes
are not identical. Indeed, the more we move forward in time,
the more precise the future positions of the aircraft become.

Fig. 8: Trajectories envelopes size

Consequently, we must determine for each exercise an
appropriate starting time from which we will consider uncer-
tainties. Two steps need to be considered: first, the time used
by the ATCO to take a decision. Second, the duration of the
ATCO’s action to apply this decision.

For the first step, we do not have a lot of indicators to
approximate the numbers of seconds required by the ATCO
to take a decision. As the ATCO is estimating a dynamic
evolution of a sector, we can suppose that between 10 and 20
seconds of reflection (tr) are required to choose the aircraft
to be maneuvered and a maneuver for this aircraft.

Then, the ATCO needs to put this order in the simulator
using the maneuver window presented in figure 7.

In order to calculate the time of the maneuver order action,
we use the Keystroke-level model which predicts the required
time for the user to complete a task without error using an
interactive computer system. With this method, we use 3 action
types:

• H : Homing the hand on the mouse (0.4s);
• P : Pointing (1.1s);
• B : Press button (0.1s);
The successive steps executed by the ATCO to order a

maneuver are the following:



5

TABLE II: Comparison between ATCOs on same exercises

Number of ATCOs (nc) 2 3 4 5 6

Number of exercises 57 38 7 7 10

SASD (%) 79 87 43 57 60

• Take the mouse (H);
• Select the maneuvered aircraft (P + B);
• Select the deviation amplitude (P + B);
• Confirm (P + B).
The action of mental activity is included in the decision time

of the ATCO stated earlier. Finally, we estimate that the sum
of time to decide the maneuver and enter it in the simulator
could vary between 14 and 24 seconds. We fixed this lag to
20 seconds in the experiments.

C. Data analysis

A first analysis of the collected data illustrates ATCOs
behavior.

In this article, we decided to simply compare the resolutions
of the different ATCOs according to the direction of the
maneuvered aircraft.

If we consider all the exercises solved by at least two
different ATCOs, we can distinguish maneuvers with the
following criteria:

• aircraft1 is turned to the left;
• aircraft1 is turned to the right;
• aircraft2 is turned to the left;
• aircraft2 is turned to the right.
On average, 1.17 different solutions out of 4 options were

proposed by ATCOs for each exercise.
Table II shows the number of exercises solved by 2 to 6

ATCOs and the percentage of these exercises for which all
ATCOs maneuvered the same aircraft in the same direction
(SASD). In a majority of cases, ATCOs make the same deci-
sions. However, when we focus on exercises solved by more
ATCOs (nc ≥ 4), the percentage of agreement statistically
decreases.

When we consider all the exercises solved by at least
two ATCOs, we count 433 pairs of ATCOs who solved 119
different exercises and 84% of the time ATCOs took the
same decision. In the following, we denote by Ωall the set
of exercises solved by at least 2 ATCOs.

V. EXPERIMENTAL RESULTS

A. Learned Uncertainties

With the Evolutionary Algorithm (EA) presented in part III,
we determined uncertainties for all participants with ndsup = 5
NM, (second table III), and with ndsup = 10 NM (third table).

We also tried to evaluate ATCOs all together (last column).
Indeed, it would be simpler for an operational use to determine
common uncertainties for all ATCOs. But in [1], we found a
large model error in the evaluation of ATCOs all together and
decided to learn uncertainties on individuals and on the whole
group in order to compare the results.

TABLE III: Uncertainties found and errors obtained after
learning

ATCO (n) 1 2 3 4 5 6 All

nbsn 52 119 123 33 31 44 402
νinit 3.39 2.71 3.81 3.62 4.4 3.59 3.44
σinit 1.6 1.33 1.57 1.94 1.8 1.88 1.68

ndsup = 5 NM

ϵs 0.014 0.02 0.022 0.01 0.0 0.02 0.018
δt 51 47 69 85 72 114 85
ϵα 4.5 0.3 1.3 3.9 8.2 0. 0.85

ν 1.07 0.88 0.94 1.35 1.33 1.1 1.12
σ 0.82 0.7 0.89 1.12 0.71 0.87 0.91

ndsup = 10 NM

ϵs 0.015 0.021 0.023 0.01 0.0 0.021 0.018
δt 56 52 65 96 62 115 87
ϵα 4 0. 1.4 3.4 4.7 0 0.87
n2
d 25 25 25 25 39 25 25

ν 1.06 0.88 0.94 1.37 1.32 1.1 1.11
σ 0.82 0.70 0.88 1.11 0.72 0.88 0.91

The first three lines indicate the number of exercises (Ωn

cardinal, nbsn), the mean value of |dω − 5| and the standard
deviation of |dω − 5| (σinit) without considering any uncer-
tainty. The following lines of each table give the different
uncertainties found : εs, δt and εα for the second table, and
εs, δt, εα, and nd for the third table. The last two lines in each
table give the mean and standard deviation of |dω−nd|, which
represent the model errors.

In general, the speed uncertainties determined are very small
(2% on average). The heading uncertainties vary between 0
and 8.2 degrees depending on ATCOs with a mean value
around 3 degrees when the separation distance targeted is 5
nautical miles and 2.25 degrees when the separation distance
targeted is 5.27. However, the uncertainty regarding the pilot
reaction time δt is quite large, and varies a lot between
participants, ranging from 47 to 115 seconds with a mean
of 87 seconds when the whole group is considered. When
considering ATCOs all together, the error of the model is
similar to the errors observed on each ATCO (last two lines
of the tables).

B. Model errors and distributions

For all ATCOs, the standard deviation of |dω − nd| is
lower when uncertainties are applied than without uncertainties
(σinit), whether ndsup = 5 or ndsup = 10, which was
expected.

Figure 9 represents, for ATCOs separately, the distributions
of the minimum separation distances between trajectory en-
velopes without considering uncertainties (in red) and con-
sidering individual uncertainties determined with the learning
method (in green) when ndsup = 10 nautical miles.

Figure 10 represents, for ATCOs all together, the distri-
butions of the minimum separation distances between trajec-
tory envelopes without considering uncertainties (in red) and
considering the common uncertainties determined with the
learning method (in green) when ndsup = 10 nautical miles.
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The distributions are mostly less spread out with the un-
certainties found, which is consistent with the decrease in the
standard deviation of the model error.

Fig. 9: Minimum distance distributions with individual
uncertainties

Fig. 10: Minimum distance distribution with the common
uncertainties

C. Resolutions found with the automatic solver

1) Automatic solver conformance: In order to check if our
automatic solver is able to find the maneuvers chosen by the
ATCOs, we use the uncertainties learned and run the automatic
solver with these uncertainties. The automatic solver used in
our experiments is an Evolutionary Algorithm described in
[13] and [22] but uses the uncertainty model presented in
this article. It finds optimal maneuvers (t0, t1, α) for each
aircraft of a scenario with the uncertainty parameters chosen.
The EA creates a population of 50 random solutions. It first
tries to find conflict free-solutions without trying to optimize
maneuvers and then spends an extra 20 generations minimizing
the number of maneuvers and finally minimizing the generated
delays. In order to compare the results on the same dataset
as in part IV-C, we only take into account exercises in Ωall

TABLE IV: Comparison between ATCOs and solver
resolutions on common exercises

ATCO (n) 1 2 3 4 5 6 Total

|Ωn| 22 107 114 33 31 44 351

Without uncertainties

SASD (%) 68 62 65 67 61 50 62

With individual uncertainties

SASD (%) 91 83 80 64 65 61 76

With common uncertainties

SASD (%) 77 84 74 82 77 61 77

(exercises solved by two or more ATCOs). In table IV, Ωn is
the exercise set of the nth ATCO where ∀ω ∈ Ωn, ω ∈ Ωall.
SASD gives the percentage of maneuvers complying to the
ATCO’s choices. On average, with the common uncertainties
the automatic solver agrees with the ATCOs 77 per cent of the
time, which can seem low considering that ATCOs agree with
each other 84 per cent of the time. However, the automatic
solver used without uncertainties agreed with ATCOs only 62
per cent of the time, showing that considering uncertainties
improves the automatic solver compliance.

Several reasons could explain the fact that the automatic
solver does not reach a higher rate of compliance:

• Some constraints (such as the maneuver must start inside
the sector) are not taken into account in our automatic
solver (an example in the next section illustrates this phe-
nomenon); However, this may not explain the difference
in every case, because we noticed that ATCOs did not
always respect the border constraint as well.

• ATCOs may have extra habits besides the simple delay
minimization criteria used by the solver.

• Sometimes, choosing a maneuver or another does not
make a big difference in terms of delay. Humans tend
to reproduce habits whereas the automatic solver only
chooses the delay criteria.

In theory, for the same solved exercise, 4 different maneu-
vers are possible depending on which aircraft is chosen to
turn right or left. Consequently SASD could be as low as 25
percent. In practice, the automatic solver often shows that it
is possible to maneuver one aircraft or the other, but only on
one side, with little difference in delay, which would still keep
SASD around 50 percent. Consequently, a percentage of 77 per
cent is quite significant.

2) Example analysis: The automatic solver synchronizes
its resolution with the ATCO’s maneuver start time on each
exercise. Two different ATCOs may not start a maneuver at
the same time. Consequently, the automatic solver resolutions
can be different for the same exercise solved by two different
ATCOs even if we consider the same uncertainties.

Figure 11 illustrates a unique exercise solved by ATCOs
(green trajectories) and the automatic solver (red trajectories)
considering common uncertainties found. We can notice that
the maneuver start times (decided by ATCOs) vary, which
impacts the automatic resolutions. In this case, 5 ATCOs
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made the same decision, but one moved another aircraft. The
automatic solver takes the same decision as the majority here.

Figure 12 illustrates an exercise for which the aircraft moved
by the automatic solver generally differs from the one moved
by the ATCOs. One reason could be that with the automatic
solver, the maneuver sometimes starts before the aircraft enters
the sector. When the automatic solver agrees with the ATCO,
it starts the maneuver inside the sector. We did not add this
constraint in the automatic solver because on some exercises,
ATCOs did not respect the border constraints as well.

Fig. 11: Exercise example where automatic resolutions are
similar to ATCOs resolutions

Fig. 12: Exercise example where automatic resolutions are
not similar to ATCOs resolutions

VI. CONCLUSION AND FURTHER WORK

In this article we test an uncertainty learning model on
experimental data based on simulation sets that are closer to
ATCOs practice.

While results obtained in [1] tended to show that it was
necessary to determine the uncertainties of the ATCOs individ-
ually, the results of these experiments show that it is possible to
determine common uncertainties for ATCOs without degrading
the quality of our results. Using a real sector representation
and a more realistic simulator can probably explain this
result. ATCOs certainly had a more common estimation of

the standard separation and aircraft speeds than in the previous
experiments. They also had more chances to be in agreement
with each other dealing with only two aircraft. In [1], a more
random traffic involving up to 5 aircraft conflicts showed more
differences in ATCOs choices.

Using these uncertainties to tune an automatic solver al-
lowed us to compare automatic resolutions to ATCOs maneu-
vers. Results show that 77 per cent of the time the automatic
solver decided to move the same aircraft in the same direction,
which is higher with adding uncertainties to the solver than
without (the figure falls to 62 percent only). However this
result can appear disappointing considering that 84 per cent of
the time, ATCOs chose to move the same aircraft in the same
direction on the same exercise. Looking at examples helps
finding explanations. Unfortunately we did not constrain the
automatic solver to keep maneuvers inside the sector, because
the ATCOs did not always respect this constraint neither. Other
explanations may have an impact on these results. ATCOs may
have habits that are not taken into account by our solver.

In future work, we will improve our solver to comply with
the sectors constraints and only consider maneuvers solved
by ATCOs inside the sector. Our team also currently works
on collecting big radar datasets and ”demaneuver” trajectories
(remove ATCOs maneuvers) in order to compare automatic
resolutions and actual resolutions on more realistic and much
bigger datasets. We could imagine, in the long term future,
to collect ATCOs resolutions directly in operational centers in
order to learn transparently their behavior.
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