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Abstract—Network performance is very sensitive to weather
and uncertainty in its prediction. We address these challenges
through the contribution to an Artificial Intelligence (AI)-
based Network Operations Plan. This plan is enhanced by
including a probabilistic weather prediction tailored to ATFM,
ATM and weather data integration and demand and capacity
imbalance characterization at the pre-tactical and tactical phases
of ATFM. We integrate all these modules into a visualization tool
aimed at supporting human’s decision-making. An operational
assessment has been conducted. The improvements for FMPs
and NM in pre-tactical and tactical ATFM are: 1) Ability to
understand the weather convective prediction and to identify
critical weather areas; 2) Ability to understand and manage the
capacity reduction prediction; 3) Ability to manage the situation
at the network level; 4) Ability to improve the efficiency and
productivity of human performance (workload, usability).
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I. INTRODUCTION

Despite the COVID crisis and the war in Ukraine, aerial
traffic is close to recovering 2019 levels (85% in Europe).
Traffic forecasts expect air traffic to increase a 10-20% over
the next 7 years1 and the analysis of actual conditions sug-
gests that all-causes Air Traffic Flow Management (ATFM)
delays may increase exponentially. It becomes critical for net-
work management to address demand and capacity balancing
in an efficient way so that the associated measures actually
contribute to minimise delays at network and local levels.

Network prediction and performance is very sensitive to
weather and the uncertainty in its prediction. In addition,
current ATFM operations are not evaluated from a systematic
perspective. These two factors together lead to a strong
dependency on the experience of human operators.

In this paper, linked to the EU project ISOBAR2, we ad-
dress these challenges through the contribution to an Artificial
Intelligence (AI)-based Network Operations Plan. This plan
is enhanced by including in its scope a probabilistic weather
prediction tailored to ATFM, ATM, weather data integration
and demand and capacity (DC) imbalance characterisation.

1EUROCONTROL - STATFOR Team, “EUROCONTROL Seven-Year
Forecast February 2022,” Brussels, 2022.

2https://isobar-project.eu/

Indeed, the possibility of using Artificial Intelligence (AI)
techniques is emerging with great force in various fields. In
a recent Nature communications survey [1] the authors claim
that AI can enable the accomplishment of 134 targets across
all the goals established in 2030 Agenda for Sustainable
Development, yet it may also inhibit 59 targets. This includes
Earth sciences (and meteorological prediction) [2] and the
aviation domain [3]. Nevertheless, the use of AI in problems
related to ATFM operations is still scarce.

Early work aimed at assessing the impact of convective
weather on ATFM began in the United States building a model
to estimate aircraft deviation probabilities in the vicinity of
convective weather for terminal areas based on historical
analysis of traffic flows and weather information [4]. Then,
this model was further developed to deal with en-route
traffic [5] which later gave rise to the convective weather
avoidance model (CWAM) [6]. Later on, this model became a
cornerstone of the Route Availability Planning Tool (RAPT),
an automated decision support tool of the Federal Aviation
that improves management of flight departures at airports
during thunderstorms [7]. In addition, nowadays CWAM is at
the core of the NextGen Weather Processor (NWP). On the
contrary, the implementation of such decision support tools
in operation is still a pending aspect in Europe. Nonetheless,
initiatives like the Cross Border Weather Forecast promoted
by EUROCONTROL Network Manager show a strong deter-
mination in this regard [8].

Instead of addressing the problem from a pure trajectory
perspective, other works have attempted to measure the im-
pact of convective weather into ATFM in terms of Air Traffic
Control (ATC) sector capacities drops. By applying graph
theory, [9] measures sector capacity drops as a function of
traffic flow complexity and blockage. In [10], the impact of
convection on sectors in the US network is quantified based
on the fraction of the sector’s area covered by convective
weather forecasts. Finally, in [11], sector capacity drop were
estimated by estimating the maximum workload that the
respective Flow Management Position (FMP) team assigned
to a sector can manage safely [11].

If we resort to the usage of machine learning to shape
models that can leverage historical traffic and weather data to



Figure 1: Concept Figure.

enhance ATFM processes during convective weather events,
previous work is limited. In [12], the authors compare differ-
ent supervised machine learning architectures for predicting
sector entry counts, sector weather regulation activation and
regulated entry counts in the Masstric Upper Area Control
Centre (MUAC) airspace. The same sector-based approach
was used by [13] to develop a decision support tool for
FMP units aimed at predicting the intervals of time at which
an specific traffic volume must be regulated. Results show
that proposed methodologies can predict ATFM measures
due to convective weather accurately at a sector level which
could eventually help traffic managers to detect overloads
and sector clousures at a tactical level. However, from a pre-
tactical level, a network-centric approach capable of predict-
ing system-wide implications is still lacking. Moreover, the

integration of the Dynamic Airspace Configuration (DAC)
concept will require to assess the impact of convective
weather on ATFM from a holistic view, as the airspace
sectorisation will be dynamically adjusted to match airspace
capacity with traffic demand.

All in all, we present for the first time an AI-based,
network-centric prototype to assess capacity-demand imbal-
ances due to convective weather at the pre-tactical and tactical
phases of ATFM. The ISOBAR prototype (as we coin it)
leverages an AI-based Meteorological prediction module (see
Section II), a capacity and hotspot characterization module
(see Section III), and a visualization tool aimed at aiding
human’s decision-making (Section IV). The operational as-
sessment of the ISOBAR prototype is provided in Section V.
See Figure 1 for a concept overview.
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II. AI-BASED WEATHER FORECASTING

An AI-based approach was used to accurately predict and
improve situational awareness around convective weather.
Several AI-based models were developed utilizing a combi-
nation of weather forecast and weather observation data to
train machine learning algorithms to predict the occurrence of
convective weather including characteristics such as severity,
cloud top altitude, overshoots, and lightning up to 36 hours in
advance. The enhanced digital weather information produced
by the AI-based weather forecast has the potential to improve
the planning processes and mitigation strategies of air traffic
management when dealing with disruptive weather events.

A dataset of historical weather data was provided by the
organizations Agencia Estatal de Meteorologia (AEMET),
Météo-France and Earth-networks to develop the AI-weather
forecasting models. The AI model learning tasks were formu-
lated to utilize data from the numerical weather products as
input and predict the observational data as output. A separate
model was created for each NWP product. In this way, the
models are capable of interpreting the raw data from the
NWPs to provide a representation of the expected convective
weather.

Three AI algorithms were trained, validated, and tested
using three sources of numerical weather prediction (NWP)
products. Each of the forecasts exhibited differences with
respect to the geographical region of coverage, set of available
parameters, and spatial resolution, providing several use cases
to trial the AI-based methodology for convective weather
prediction.

• The European Centre for Medium-Range Forecast En-
semble Prediction System, which covers the pan-
European area;

• The high-resolution regional forecast gammaSREPS
product, produced by the Spanish meteorological agency
AEMET;

• The high-resolution regional forecast AROME product
produced by Météo-France.

From each NWP product, parameters were selected based
on their ability to provide information related to atmospheric
factors such as instability, moisture, and triggering mecha-
nisms that could lead to convection.

To create the target function, or ”labeled data” for each
of the models, two sources of thunderstorm observation data
were utilized; satellite observations and lightning detection
data. Satellite observations were obtained from the Rapid-
Development Thunderstorm (RDT) developed by Météo-
France within the EUMETSAT NWC-SAF framework. This
product employs geostationary satellite data to provide infor-
mation about clouds related to significant convective systems
from the mesoscale (100–1000 km) down to tenths of kilome-
ters [14]. The lightning detection data was provided by Earth-
networks’ Total Lightning Network product. Characteristic of
the observational data utilized from these sources is provided
below:

• The RDT product provided convective cell polygons
at 15-minute frequency. Each polygon provided char-
acteristics related with the storm severity rating (Low,

Medium, High, and Very High) and the cloud top alti-
tude.

• Earth-Networks Total Lightning Network product pro-
vided the timing, location, and peak current measure-
ments of both intra-cloud and cloud-to-ground flashes.

In order to train the models, it was necessary to blend
the forecast and observational data. This blending process
allowed for a spatial-temporal resolution harmonization be-
tween the NWPs and observations for each model. Further-
more, the observational thunderstorm characteristics such as
severity, cloud top altitude, and overshooting tops were trans-
formed into binary code representation. The final training,
validation, and test data sets covered convective periods from
the summers 2018 and 2019.

During the development, several machine-learning algo-
rithms were explored. In all instances, the learning tasks were
formulated as supervised binary classification problems using
cross-entropy loss functions. during the training process.
Early versions of the model were conducted using simple
neural networks (NN) architectures, these architectures only
considered the values of a set of parameters provided at a
grid point to provide a convection prediction at that loca-
tion. However, later versions explored more complex model
architectures such as long-short-term memory (LSTMs), to
account for the temporal behavior of the input parameters,
and Convolutional Neural Networks (CNNs) to exploit the
spatial characteristics within the NWP data. While some so-
phisticated model architectures performed better at predicting
certain features such as thunderstorm severity and cloud top
altitude, overall all models showed positive results indicating
that an AI-based approach can be utilized to predict the
occurrence of convection. An operational assessment of the
results found that forecasts covering a large area such as the
ECMWF EPS could be best employed when dealing with
weather problems on the network-wide scale, while high-
resolution forecasts such as the gammaSREPS and AROME
are better suited for dealing with weather issues at the local
level. Results from the various NWP forecasts can be seen in
Figure 2.

The use of machine learning for convection prediction
allows for the implementation of an automatic digital warning
system to provide ATM Flow Managers and other decision-
makers with accurate hourly predictions of convective weather
at longer lead-times. The current research also tackled integra-
tion challenges of translating the results from the neural net-
work models into an ATFM operational environment. Proper
visualization of model results is required to provide users
with a format that is ready for uptake within ATM operations.
Model results are transformed into polygons using the defined
convection risk matrix, shown in Figure 3, providing decision-
makers with a visualization that they are already familiar with.
A visualization of final model results in the final format is
provided in Figure 4.

The digital solution can be easily integrated with existing
ATM tools and systems using an API. The tool also allows
for the customization of convection risk tolerance depending
on the user or region in question. Based on the enhanced
weather information provided by the AI algortihms, weather
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Figure 2: Results showcasing AI-based models skill at pre-
dicting thunderstorm, severity, altitude, lightning and over-
shoots.

decisions impacting re-route and sector capacity adjustments
can start being addressed at the pre-tactical planning phase,
allowing for more efficient mitigation measures.

III. CAPACITY AND HOTSPOT PREDICTION

We present a model that, given a convective weather
forecast, predicts capacity reduction (in entries per hour) at
individual traffic volumes (TVs). As a result, by providing
the expected capacity reduction ahead of the weather event,
this component supports the preparation and negotiation of
mitigation measures. The model was built on the assumption
that the greater the airspace volume affected by convective
weather, the greater the capacity loss. The precise relation-
ship between these two quantities, however, is not evident.
Accordingly, developing a model with rules established by
experts would be a time-consuming and error-prone effort.

Figure 3: Convective weather risk levels used in operation

Instead, the capacity prediction model was trained on his-
torical capacity and weather data using cutting-edge machine
learning techniques to learn this relationship without the need
for human intervention.

Specifically, the model used in this work is an ensemble of
gradient-boosted decision trees (GBDTs) [15]. This type of
model was selected because GBDTs have been demonstrated
to outperform NNs in various applications, particularly on
tabular datasets like the one presented in this section [16].
Additionally, GBDTs are more interpretable than NNs, mak-
ing them more likely to be trusted by human operators.

The GBDTs model uses as input (1) the total volume of
the airspace sector associated with the TV; (2) the proportion
influenced by the various weather risk levels shown in Fig. 3
(green, yellow, orange, red and violet) at a specific time,
which are provided by the AI-based weather forecasting
model presented in Section II; (3) the nominal capacity when
the weather is clear; and (4) the identifier of the ACC to which
the airspace sector belongs. As such, the model is fed with
seven numerical and one categorical feature as observation
vector x per TV and time, and outputs a scalar y representing
the predicted capacity reduction. Figure 5 illustrates the
computation of features for a simple example, which is in
2D merely for visualisation purposes. The reader must keep
in mind that, in reality, the features of the observation vector
are computed in terms of volume rather than area.

It is worth noting that convective weather is typically
reported at specific flight levels. To determine the volume
intersections, we first compute the overlapping area in two
dimensions using the Shapely Python package, and then
consider the height of the airspace sector, as well as the
vertical separation with the next and previous flight levels
where weather was reported. This process is highly efficient
and does not require a significant computational burden.

The model was trained and tested using the convective
weather forecasts from the AI-based weather forecasting
model. In particular, the experiment focused on the months
with the highest number of en-route air traffic flow man-
agement (ATFM) regulations caused by weather all over the
European Civil Aviation Conference (ECAC) area during
2018 and 2019: June, July and August (i.e., summer).

Each observation (x, y) of the dataset corresponds to one
TV at a specific time. It should be noted that, despite the fact
that the operational assessment described in Section V only
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Figure 4: AI-based weather forecasting dashboard provides digital weather information

Figure 5: Example of observation vector computation

focused on Spanish and French airspace, all TVs regulated
over the ECAC area during the period under consideration
were taken into account when creating the dataset, with the
goal of training a model with the ability to generalise as
much as possible. For each observation, the eight features that
compose x were determined as explained above, whereas y
is the entry rate of the ATFM regulation applied to the TV.

The observations corresponding to the last month of the
period under consideration (i.e., August 2019), as well as
the dates selected for the operational assessment presented
in Section V, were used for testing (i.e., to evaluate the
performance of the model on unseen data), whereas the
remaining 13K observations were used for training purposes.

Table I compares the regression metrics for the AI-based
capacity reduction model predictions on the test set to a
dummy baseline that assumes no capacity reduction.

According to Table I, the model predicted the actual
capacity of the regulated TVs during the times considered in
the test set with a mean absolute error (MAE) of 2.8 entries
per hour, reducing the prediction error of the baseline by 3.7
entries per hour (57%). Table I reveals similar and even more

TABLE I. Regression metrics on the test set. Units are entries
per hour except for the R2, which is dimensionless

Model MAE MSE R2 MAXAE

Baseline (zero capacity reduction) 6.5 64.0 0.09 23
AI-based capacity reduction model 2.8 13.0 0.81 16

remarkable findings for the remaining regression metrics: the
mean squared error (MSE), the coefficient of determination
(R2), as well as the maximum absolute error (MAXAE).

It should be noted that the GBDTs model was not the only
one designed during the project to predict capacity reduction
using AI techniques. Rather than constructing a structured
dataset3 suited for tree-based models by determining the inter-
section of convective weather risk polygons and the airspace
sectors associated with the TVs, a more pragmatic approach
consists of processing the convective weather forecast as if
it were an image using CNNs, then pool the result into a
latent vector, and finally use a standard feed-forward neural
network with as many outputs as possible TVs to determine
the predicted capacity reduction of each one.

Like with many machine learning tasks, however, training
a neural network requires far more data than training a tree-
based model. A neural network trained on only 13K observa-
tions is unlikely to reach the same performance as the GBDTs
model (see Table I). Furthermore, another advantage of tree-
based models is that they are relatively easy to interpret. A
well-known method for interpreting the predictions of a tree-
based model is the Shapley method [16], which is build on
principles from game theory. Mathematically speaking, the
Shapley value a specific feature i for a given observation
represents the average marginal contribution of i on the output

3In the machine learning terminology, a structured dataset consists of a
table with as many rows as observations and as many columns as features.
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Figure 6: Learned contribution of the risk ratio features (in
entries per hour, as the model output)

of the model across all possible combinations of features. This
method is becoming more popular in the literature as machine
learning applications need model interpretability, particularly
in high-risk applications or those where errors could result in
considerable financial losses. The details about the Shapley
method are beyond the scope of this paper, so the reader is
directed to the original article for more information.

Figure 6 shows the dependence plot for the proportion of
airspace sector (0 means no intersection, and 1 means fully
covered) influenced by the various convective weather risk
levels. In this kind of graph, the horizontal axis represents
the value of the input feature, and the vertical axis is the
contribution on the model output (i.e., the Shapley value).
Each dot represents one observation, and the Shapley values
are expressed in the same units as the model output.

The hypothesis stated at the beginning of this section is
supported by Figure 6: the greater the ratio of airspace volume
affected by convective weather, the greater the capacity loss.
Furthermore, and as expected, the higher the risk, the greater
the capacity loss. For instance, when a TV is fully covered
of high severity and probability convective weather (violet),
the capacity drops by 2 to 4 entries per hour only due to this
feature. It should be noted that other features may contribute
to a further drop in capacity. The vertical dispersion observed
for a given value in the horizontal axis results from the fact
that the Shapley value of a feature for a specific observation
is dependent on the value of the other features (e.g., the total
volume of the TV or the ACC identifier).

IV. ISOBAR PROTOTYPE

A prototype has been built to run a human-in-the loop
validation exercise to assess the operational acceptability
and performance of AI components. The exercise covers the
use case of detection of a severe convective weather and
detection of France/Spain cross-border imbalances in pre-
tactical phase (D-1) and re-assessed in the tactical phase (D-
0). The objective was to validate the local FMP (ANSP) and
Network Manager operators interactions with AI components
to manage convective weather situations. The prototype is

Figure 7: ISOBAR Prototype Architecture

structured on two main components (Convective Cells and
Storm Prediction, and Demand and Capacity Characteriza-
tion).

The prototype was built-up on two ATFM simulators de-
veloped by EUROCONTROL:

• INNOVE is a ATFM real-time simulator emulating the
full capabilities of the Network Management functions
with B2B web service connectivity and REST services.
The simulations are based on data recorded by the
operational NM system. Traffic data is based on allFT+
data files and airspace data on DDR2 data files.

• PLANTA connected to the INNOVE B2B back-end sim-
ulator offers the full HMI look and feel capabilities em-
ulating the FMP and NM working positions. Additional
HMI capabilities have been developed to visualize the
convective weather prediction and the predicted capacity
reduction.

The two components, AI Met Engine and AI Capacity
Reduction, have been integrated into the architecture shown
in Figure 7 with information flow.

Two HMI capabilities have been developed to display
convective information and capacity reduction. In the figure
below is an illustration of the convective geographic map on
which end users can select the level of probability and severity
to display.

Four prototype positions have been set-up to run French
ACCs (Reims, Marseille), Spanich ACC (Barcelona) and the
Network Manager to perform the evaluation assessment. See
the visualization of one of this prototypes in Figure 8.

V. OPERATIONAL ASSESSMENT

The Met Engine was subject to a formal evaluation of its
operational impact in pre-tactical Air Traffic Flow Manage-
ment (ATFM) process. The evaluation was part of a more
ample exercise focused on validating human interactions with
Artificial Intelligent (AI) components supporting the manage-
ment of convective weather situations. The Met Engine was
one of this components, which was also previously tested
outside the operational context loop, in order to assess the
level of accuracy of the resulting forecasts.
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Figure 8: Prototype – Convective Weather Visualization (Left map : high probability and high severity, right map : low probability
and high severity).

The evaluation exercise was performed including a forecast
of a weather-induced critical situation with negative impact
on airspace capacity, requiring pre-tactical ATFCM interven-
tion. The cross-border scenario encompassed various capacity
hotspots in en-route sectors of Spain and France forming a
network spot or netspot. Therefore the participation of EU-
ROCONTROL, as Network Manager, and Flow Management
Positions (FMP) of ENAIRE and DSNA, as Air Navigation
Service Providers (ANSP) of both states, was required.

In the following Table II, more details of the operational
assessment are included.

TABLE II. Operational Assessment details

Mode Human-In-The-Loop Real-Time experimentation

Platform PLANTA/INNOVE

Participants

3 FMP from DSNA

1 FMP from ENAIRE

1 NM ops from EUROCONTROL

1 meteorologist from MeteoFrance

Simulation dates 26th July, 27th July and 27th August (2019)

Simulation area
Reims and Marseille ACCs for DSNA

Madrid and Barcelona ACCs for ENAIRE

Number of trials Three, one per simulated date

The exercise covered the use case Detection and Resolution
of a Netspot in Pre-Tactical Phase (D-1) and re-assessed in
the Tactical Phase (D-0), exploring how human actors (NM
and FMP controllers) can manage:

• the processing of new information dealing with convec-
tive weather prediction and weather capacity reduction.

• the enhanced cross-border collaborative process involv-
ing NM and FMPs.

The method for the evaluation of the Use Case was to con-
front the air traffic controllers with a critical weather induced
situation affecting the capacity of various en-route sectors
within the geographical scope of the exercise. The Real Time
simulation platform displayed different information in each
position, with the relevant geographical granularity, capacity
and traffic data for each actor. The information at D-1 focused
on meteorological forecast and on estimation of impact on
the sectors’ capacities, according to the calculations of the
module for capacity and hotspot prediction. The platform
allowed the controllers to select the capacity reduction of
each sector, the traffic impacted and the mitigation measures
needed. An updated forecast was displayed to simulate the
situation at D-0, in order to evaluate stability of the solutions
selected at D-1 in view of the new, more accurate, data. The
assessment of the operational usability and acceptability of
the enhanced ATFM procedure was based on observations
of researchers, general de-briefings and questionnaires after
each simulation session.

The questionnaires were designed around three evaluation
objectives relevant for the operational evaluation of the Met
Engine [17]. These objectives have been established in refer-
ence to the gradual introduction of higher levels of automation
enclosed in the European ATM Master Plan [18]. Each
objective has been addressed to each one of the levels defined:
level 1 (support in information acquisition and analysis), level
2 (task support) and level 3 (actions selection).

The three objectives, along with the aimed research ques-
tions and the hypotheses proposed for their evaluation, are
presented in the subsection below, followed by another sub-
section presenting the key results.
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A. Objectives and Hypothesis

OBJECTIVE 1 - Integration of convective weather infor-
mation.

This objective aimed at the following research questions:
• How to represent the severity of the convective phe-

nomenon and the probability of occurrence to support
the awareness and understanding of operational actors?

• Which is the most digestible way of visualization of
convective information for operational actors?

Three hypothesis were formulated to verify this objective:.
– H1.1: a convective risk matrix mixing the severity of

the convective phenomenon and the probability of occur-
rence supports the understanding of the weather situation
by operational actors.

– H1.2: the convective information displayed as coloured
polygons (according to risk matrix) on a geographical
map allows a very good understanding and analysis of
weather phenomenon by the operational actors.

– H1.3: the convective information displayed superim-
posed to sector information allows the operator to assess
the impact on each traffic volume.

OBJECTIVE 2 - Enhancement of ATFCM process facing
weather critical situations at pre-tactical and tactical levels.

This objective aimed at the following research question:
• Which procedure is best from pre-tactical D-1 to tac-

tical D0 to improve the weather-related problems and
solutions, integrating weather information and DCB de-
tection and resolution in a collaborative process?

Two hypothesis were formulated to verify this objective:
– H2.1: a workflow from pre-tactical D-1 to tactical D0

supports a collaborative process to better manage in
an anticipated manner the weather-related problems and
solutions.

– H2.2: the workflow is split in two parts: to prepare a
weather scenario and implement some measures in the
pre-tactical phase and to reassess the situation and to
manage residual imbalances in the tactical phase.

OBJECTIVE 3 - Precise characterisation of demand and
capacity imbalances due to convective weather

This objective aimed at the following research questions:
• Which is the most digestible way of visualization of the

predicted DCB impact for operational actors?
• Which object can support the management of cross-

border convective weather?
Three hypothesis were formulated to verify this objective:
– H3.1: the predicted DCB impact displayed as alerts in

the configuration dashboard allows a very good detection
of weather-related DCB impact by the operational actors.

– H3.2: the predicted DCB impact displayed as a threshold
in the traffic volume monitoring allows a very good un-
derstanding and analysis of weather-related DCB impact
by the operational actors.

– H3.3: the Netspot object is the proper reference to
manage the cross-border weather operations and is easily

manageable by operational actors for its creation/ modifi-
cation/ cancellation and to classify its coordination status
as proposed/ coordinated/ implemented.

Figure 9 summarizes the objectives, research questions, and
hypotheses for the Operational Assessment.

Figure 9: Objectives, research questions and hypotheses for
the operational assessment
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B. Results

Regarding OBJ. 1, both FMP and NM reported that the
convective risk matrix allowed to assess the severity
and probability of weather phenomena as low, medium
and high helping them to easily identify the areas requiring
pre-tactical actions. They added the proposal of using this
matrix as a selection tool for more granular or combined
information selecting the particular combination of severity
and probability to display.

Both actors also reported that the colour code for risk
representation was understandable and helpful to assess
the weather situation in terms of severity and probability
of occurrence. The granularity of convective information dis-
played in simplified polygons was usable and understandable,
so all actors could easily identify the convective areas and
their depicted forecasted evolution through time.

The weather information was found adequate and very
useful] to determine the set of traffic volumes (TVs) with
potential capacity reduction. From here, it was intuitive
to cross-check that information with the predictions of the
capacity and hotspots prediction model.

➤ As a future improvement for maturing the Met Engine
tool, all actors agreed that the best option will be to
present the operator either a single aggregated out-
put fed by the different providers (GSREPS, ECMWF,
AROME), or a combination of the different weather
forecasts incorporating a dispersion metric representing
their degree of similarity.

The workflow for the enhancement of ATFCM process
facing weather critical situations stated in the OBJ. 2 was
very positively rated by the actors involved. It resulted very
helpful for anticipating critical situations at D-1 providing
a better decision-making and a better network stability to
avoid last-minute snow-ball effect and smooth their workload.

In addition, the splitting of the workflow in two parts
between pre-tactical and tactical phases was also very pos-
itively assessed. It served for a better anticipation of problems
and solutions starting at D-1 and managing residual problems
at D0. The workflow led to a reliable performance compared
to the use of meteo observations, although a meteorologist
was considered necessary for refining the analysis.

It was observed a very good stability along time of
the capacity reduction prediction caused by convective
weather situations between D-1 and D0, making possible
to start planning solutions at D-1. In the Figure 10, this high
stability of predictions at D-1 and D0 is illustrated, showing
the impacted polygons in similar severity colors.

➤ Although the workflow was well defined, the imple-
mentation strategy for the mitigation solutions at pre-
tactical phase was not very clear for the actors involved.
Further investigations should be conducted to propose
new working methods for a better design of the strategy.
At the same time, this investigation will help to confirm
the ATFM solvers stability performance.

In respect of OBJ. 3, the operational staff agreed on the
relevance, realism and precision of the weather-related

Figure 10: Predicted Capacity Reduction, July 27th at 08:00

capacity reduction values. They also reported positively the
possibility of comparing the value of the maximum demand
expected with the predicted capacity value. This, together
with the possibility of easily adjusting the monitoring values
in the case of convective weather, supported the operators
situational awareness while detecting weather imbalances.

The configuration dashboard helped to reach to a com-
mon understanding of the cross-border weather problems,
allowing to visualize in detail the weather-related capacity
drop in the entry count schemes. The display interface (see
Figure 11) also allowed the operators to compare the demand
with the initial monitored capacity value and the weather-
related capacity reduction values.

Finally, both FMP and NM reported that the Netspot was
the proper object to identify the cross-border weather
problems. Thanks to it they were able to identify easily
the cross-border convective events with the weather-related
capacity reduction prediction and to understand the imbalance
propagation at the network level. In the same way, they
declared the Netspot an easily manageable concept when
creating, modifying or canceling it and coordinating its status.

➤ Further characterization of demand and capacity im-
balances due to convective weather should incorporate
filtering options to the capacity reduction predictor, as
well as the possibility of crossing the information of the
impacted TV with its resulting reduction on the visual
map. In this way, operational staff would more easily
detect and, consequently, analyse weather-related DCB
impact helping to maintain their situational awareness.

VI. CONCLUSIONS AND RECOMMENDATIONS

We have shown how Artificial Intelligence enhances
weather prediction up to 36 hours ahead and predicts capacity
drops at individual traffic volumes, resulting in a promising
methodology to assess capacity-demand imbalances due to
convective weather at pre-tactical and tactical level.

To illustrate the benefits of the methodology, a prototype
has been built on two ATFM EUROCONTROL simulators
(INNOVE and PLANTA) to run human-in-the-loop evaluation
exercises. Results show that decisions can be better antici-
pated at D-1 because predictions on capacity reduction caused
by convective weather exhibit reasonable stability over time.
Besides, decisions on colour code on risk representation and
dashboard configuration are helpful in flow manager tasks.
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Figure 11: Snapshot of the configuration dashboard – Entry counts along with the Monitoring Value Threshold (red) and the
Weather Capacity Reduction (orange)

To sum up, the operational and performance improvements
for FMPs and NM in pre-tactical and tactical ATFM are:

• Ability to understand the weather convective prediction
and to identify critical weather areas.

• Ability to understand and manage the capacity reduction
prediction.

• Ability to manage the situation at the network level.
• Ability to improve the efficiency and productivity of

human performance (workload, usability, . . . ).
Future research steps will focus on three main paths. First,

AI-Based weather forecasting should present a unified result
from a single weather product or a combination of them. At
the same time, the tool should be able to self-evaluate the level
of accuracy of the forecast and show it to the user. Second,
a study on the mitigation solutions devoted to the workflow
for the enhancement of ATFCM process should be done for
a better design of the strategy. Finally, the characterization of
demand and capacity should incorporate filtering options and
enhancement in the visualization containing the impacted TV
with the prediction of capacity reduction value.
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