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Abstract—Traditional runway condition reporting is limited due
to its reliance on runway contamination information and pilot
reports of braking action. A database of 4.9 million aircraft
landings by Aviation Safety Technologies, labeled with runway
condition codes computed from aircraft sensor outputs provides
a unique opportunity to enhance and modernize condition
reporting using data-driven methods. This paper introduces a
machine learning model trained on this landing database, which
predicts runway condition codes using a cascading Xgboost
architecture. The method incorporates a novel multiple-ROC
threshold setting procedure for linked classifiers which maintains
the shape of the runway condition code distribution. Notably,
the model can be used in a forecasting setting as it only requires
weather information from METAR reports, a description of the
runway, and aircraft type as input. To test its effectiveness,
the method is applied to a collection of 30 historical runway
excursion incidents, consistently assigning at best ”Medium to
Poor” braking action to all cases with reduced friction. The
model can serve as a valuable decision aid for aircraft operators,
complementing traditional runway condition reporting. Addi-
tionally, it can function as a forecasting tool to inform runway
maintenance decisions.

Keywords—runway condition assessment; degraded braking;
runway overrun prevention; forecasting; applied machine learn-
ing; xgboost

I. INTRODUCTION

Runway excursion incidents upon landing have been an
issue of major concern in aviation safety in the 21st century.
According to the Airbus Statistical Analysis of Commercial
Aviation Accidents [1], runway excursions were the third
leading cause of fatal aviation accidents and the primary cause
of hull loss accidents between 2002 and 2021. The contribut-
ing factors to these incidents are widely acknowledged to
involve the interaction of braking action between the runway
and the aircraft wheels and the situational awareness and
decision-making of the pilot [2].

In 2007, the Federal Aviation Administration (FAA)
launched the Take-off and Landing Performance Assessment
(TALPA)1 initiative in response to Southwest Airlines Flight
1248, which overran the runway upon landing in a snowstorm
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1www.faa.gov/about/initiatives/talpa

at Chicago-Midway International Airport2. The TALPA ini-
tiative introduced Field Condition Notices to Air Missions
(FICON NOTAMs) as a means to communicate up-to-date
and reliable information about braking performance on the
runway to pilots, helping them make the right decisions
during landing.

FICON NOTAMs contain information about the contam-
ination of the runway and the associated braking action
which is determined using the Runway Condition Assessment
Matrix (RCAM) [3]. Airport operators utilize the RCAM to
evaluate the level of contamination in each third of the runway
and assign a Runway Condition Code (RwyCC) to each
third. The RwyCC scale ranges from 6, indicating a ”Dry”
condition, to 0, representing extremely slippery contaminants
like wet ice.

In certain cases, FICON NOTAMs also include Pilot Re-
ported Braking Action (or simply Pilot Report) provided by
a pilot who landed within the past 15 minutes. Pilot-reported
braking action ranges from ”Good” braking action to ”Nil”.
The RCAM establishes a mapping between RwyCCs and pilot
reports. As pilot reports are issued exclusively for a non-dry
runway, a RwyCC of 6 has no associated pilot reported label,
but a 5 is mapped to ”Good” and 0 is mapped to ”Nil”.

RwyCCs are not a perfect surrogate for pilot-reported brak-
ing action as they, on average, overestimate it as shown in [4].
Pilot reports themselves are not an ideal reporting mechanism
due to the potential unavailability of up-to-date reports and the
subjective nature of braking action experienced by individual
pilots. Additionally, the current methods of assessing runway
conditions do not allow for forecasting as they rely on the
assessment of runway contamination and/or on pilot reports.

The availability of large amounts of aircraft landing data
from flight data recorders with objective braking information,
and the remarkable progress of the machine learning field in
recent years, provide a unique opportunity to enhance runway
condition reporting using data-driven methods. This paper
introduces a supervised learning method aimed at predicting
runway conditions in the form of RwyCCs using widely
available information from weather reports and runway speci-
fications. Notably, the method can be applied in a forecasting

2This overrun resulted in 12 injuries and 1 death as the aircraft crashed
into car traffic beyond the runway.



context by incorporating weather forecasts as input. The
method was trained on processed data for 4.9 million landings
labeled with computed RwyCCs provided by Aviation Safety
Technologies.

The work in this paper builds upon recent efforts in
data-driven runway condition assessment. Klein-Paste et al.
[5] used a rule-based model called the IRIS model that
maps weather and contaminant information into pilot-reported
braking action (based on SNOWTAM records [6], the ICAO
analog to FICON NOTAMs). In addition to using a rule-based
method, Vorobyeva et al. [7] used various ML techniques to
predict RwyCCs from SNOWTAM records based on available
weather and contaminant data but also the previously reported
RwyCC. Zhang et al. [8] then proposed a data pipeline that
fuses FICON NOTAM information with METAR and runway
surface data in order to be used to predict RwyCCs and pilot
reports in the future.

All of the aforementioned approaches rely on RwyCCs or
pilot reports from FICON NOTAMs as their ground truth
labels, which are not ideal truth labels for a data-driven
method as mentioned earlier. The work in this paper is most
closely related to work presented by Midtfjord et al. [9]
who used Xgboost to predict whether landings would be
friction limited. Friction limit is the condition whereupon
applying more brake pressure during landing, the rate of
deceleration does not increase and the anti-skid system is
engaged. Following the identification of potentially friction-
limited landings, Midtfjord et al. employed regression to
predict the friction coefficient (µ), which can be correlated
with pilot-reported braking action. The Friction limit and
µ labels are objective as they are based on aircraft sensor
information, similar to labels used in this paper. In contrast
to Midtfjord et al.’s two-stage approach, the method presented
in this paper used a cascading model structure and did not
explicitly deal with the µ parameter.

All of the methods mentioned above share a common
component; they rely on runway contamination information
for primary features in addition to using easily accessible
weather data and runway specifications. Access to up-to-date
runway contamination information is only available minutes
before the landing, which restricts these methods to be used in
a nowcasting setting. In contrast, the method presented here
can be used in a forecasting setting, relying solely on weather
forecasts and runway specifications without requiring runway
contamination information from field condition reports.

A previous iteration of this work [10] showed the possibil-
ity to predict friction-limited conditions for landings, similar
to [9]. This iteration of this work expands the previous model
in order to allow for the prediction of RwyCCs. More detail
about the methodology and a feature importance analysis for
the model presented here can be found in [4].

II. DATA PROCESSING

The work in this paper centers around a database of
4.9 million landing records provided by Aviation Safety
Technologies (AST). AST specializes in processing of flight
data records to derive objective and standardized measures
of braking action experienced during each landing, including

synthetic RwyCCs computed directly from sensor data. The
AST database also contains information about the time of
landing, airport and runway identifiers, and aircraft type.
In addition to the AST database, the Iowa State Iowa En-
vironmental Mesonet (IEM)3 was used to obtain weather
information about each landing in the form of Meteorological
Aerodrome Reports (METAR) and runway data was retrieved
from the National Airspace System Resource (NASR) 28-day
subscription4.

The goal of the data processing step was to generate labels
and features for each of the 4.9 million landing records, suit-
able for supervised learning. Figure 1 provides an overview
of the data processing workflow.
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Figure 1: Data processing diagram

The truth labels used to train the supervised model were
RwyCCs computed by AST, which were available for 4.9
million recorded landings between February 2017 and June
2019. AST utilizes aircraft sensor information from jet aircraft
operated by various US airlines to calculate friction conditions
for aircraft landings using their proprietary software. Some
landings experience a friction limit, defined by AST as
follows:

”A friction limit occurs when the pilot commands
more deceleration from wheel braking but the rate
of deceleration doesn’t increase, e.g., the runway
does not support additional deceleration due to
surface contaminants, rubber build-up, feathering,
etc.”

3www.mesonet.agron.iastate.edu
4https://www.faa.gov/air traffic/flight info/aeronav/Aero Data/NASR

Subscription/

www.mesonet.agron.iastate.edu
https://www.faa.gov/air_traffic/flight_info/aeronav/Aero_Data/NASR_Subscription/
https://www.faa.gov/air_traffic/flight_info/aeronav/Aero_Data/NASR_Subscription/


Landings, where a friction limit occurred, were labeled
friction limited. In such cases, AST processed aircraft sensor
information into a synthetic RwyCC (using proprietary soft-
ware5) on a 0-5 scale based on how severe the lack of friction
was. Non-friction limited landings were assigned a RwyCC
value of 6. Among the total number of 4.9 million recorded
landings, there were 8693 which were labeled as friction
limited, which is less than 0.2% of all landings. This presented
a severe class imbalance, requiring special approaches to be
used as discussed in section III. The distribution of synthetic
RwyCC values for friction-limited landings is depicted in
Figure 2. The values shown are in percent of all landings
to illustrate the class imbalance for each RwyCC category
compared to RwyCC=6 (which makes up 99.8% of landings).
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Figure 2: Distribution of Runway Condition Codes (RwyCCs)
computed by AST, as a percentage of all 4.9 million landings,
used to create truth labels for model training. RwyCC=6 is not
shown but constitutes 99.8% (interpreted as a dry runway).

It will be shown in section III that models were not trained
to explicitly predict a given RwyCC value, but rather to
predict whether the RwyCC would be below or equal to a
given value between 0 and 5. To enable this approach, six
binary labels, denoted as Yr, were defined for each landing:

Yr =

{
1 if RwyCC ≤ r

0 otherwise
for r ∈ {0, 1, 2, 3, 4, 5} (1)

It is worth noting that Y5 = 1 is equivalent to saying that
a landing is friction-limited.

A number of informative features were generated for each
landing by processing data from the three databases shown in
Figure 1. These features can be categorized into three groups:
Weather, Runway and Aircraft Type.

5www.aviationsafetytechnologies.com/solution/methodology/

The Weather features were derived from the METAR data
and included:

Weather Features:
• Temperature, Relative humidity
• Pressure, Pressure altitude
• Sky coverage, Sky altitude (Cloud Ceiling)
• Visibility, Ice accretion
• Headwind & Crosswind
• Precipitation type & intensity (qualitative)
• Precipitation intensity [in/hr], Time since precip.
• Cumulative precip

The majority of the features mentioned above were directly
available in the METAR reports and did not require additional
processing. Categorical features, such as sky coverage, and
precipitation type and intensity were one-hot encoded6 from
their corresponding weather codes. Headwind and crosswind
features were generated by decomposing the wind vector
using the runway’s true heading.

Although a useful feature itself, precipitation intensity in
[in/hr] only captured information about current precipitation
at the time of landing. In order to capture information
about precipitation history, a number of other features were
generated by numerically integrating precipitation intensity.
These features captured information about how much total
precipitation descended on the runway in a given period of
time before the landing. The cumulative precipitation in the
N minutes before landing CPN was calculated by integrating
the precipitation intensity over the corresponding time period
as shown in Equation 2:

CPN =

∫ τland

τland−N

1

60
(Precip inten. at τ ) dτ (2)

Where τ is time and τland is the time of landing. Cumula-
tive precipitation in the 15, 30, 45, 60, 120, 180, and 1440 (1
day) minutes before landing was calculated. In Figure 3 one
can see what these cumulative features would have looked like
on March 12th, 2017 at Atlanta International Airport (KATL).
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Figure 3: Cumulative precipitation features at KATL on
3/12/2017

6One-hot encoding is a technique used to convert categorical data into
numerical features that can be easily understood by machine learning
algorithms. In this process, each category is represented by a set of binary
features, where each feature corresponds to a specific category. These features
are binary indicators, where a value of 1 represents the presence of the
category and a value of 0 represents its absence. For example, if there are
three sky coverage categories (clear, scattered, and overcast), they would be
encoded as three binary features, with one feature active (set to 1) for each
category and the rest inactive (set to 0)

www.aviationsafetytechnologies.com/solution/methodology/


The runway features used in the analysis were obtained
from the 28-day NASR subscription, which provides infor-
mation about runways in the United States, Canada, and
the Caribbean. This meant that landing records from airports
outside of these areas had to be discarded as they lacked this
runway information. The database was hence limited to 4.78
million total records, including 7234 friction-limited records.

The following runway features were used:

Runway Features:
• Length, Width, Elevation, Slope
• Surface type, Condition & Modification
• Weight-bearing capacity
• ILS type, Glide slope, Threshold crossing height

Categorical runway features such as surface type (e.g.,
asphalt, concrete), surface condition (e.g., excellent, good)
and modification (e.g. grooved) were one-hot encoded to
represent them as binary features.

All landing records in the database corresponded to Boeing
737 (B737) or Airbus A319-A321 series aircraft. The Boeing
aircraft appeared more frequently, accounting for 88% of the
records (88%). The specific aircraft types were:

Aircraft Type Features:
• B737-900, B737-800, B737-700, B737-400
• A320, A319, A321

Similar to the categorical weather and runway features, the
aircraft type was one-hot encoded, resulting in seven binary
features.

It is worth noting that certain additional features that
could have potentially improved the model’s performance
were intentionally excluded. Firstly, runway contamination
features, which provide information about the type and depth
of contamination on the runway, were not included. Although
these features would have been valuable, they are often
correlated with easily observable weather features (such as
precipitation history), and their exclusion was not expected
to significantly hinder model performance.

Secondly, information about the aircraft’s state during
landing, such as the speed and weight was also omitted. This
was done to allow the model to be used in a forecasting
setting when the weight and speed of the aircraft are generally
unknown. Previous research [4] demonstrated that including
such features had only marginal performance benefits.

III. MODELLING APPROACH

The labeled data with features were used to train a model
pipeline for predicting RwyCCs. The prediction pipeline
consisted of 6 classifiers arranged in a cascade, as depicted
in Figure 4. Each classifier was trained to predict one of the
Yr labels, indicating whether the RwyCC for a given landing
would be less than or equal to r, where r ∈ {0, 1, 2, 3, 4, 5}.
The process started by passing the landing’s features to the
RwyCC ≤ 0 model. If the model’s output was ”Yes”, the
landing was assigned a prediction of RwyCC=0. If the output
was ”No,” the landing proceeded to the RwyCC ≤ 1 model.
A ”Yes” output from this model resulted in a prediction
of RwyCC=1, while a ”No” output led to activation of
the RwyCC ≤ 2 model. This sequence continued for the
subsequent RwyCC ≤ 2, RwyCC ≤ 3, RwyCC ≤ 4,
and RwyCC ≤ 5 models. If none of the six models
produced a ”Yes” output, the landing was eventually assigned
a RwyCC=6.

Each of the RwyCC ≤ r models was a classifier with an
operating point chosen to balance sensitivity and false positive
rate. These models were individually trained to predict Yr

labels. The training process of a single RwyCC ≤ r model
is illustrated in Figure 5.
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For each RwyCC ≤ r model, training records were used
to train a classifier that predicts the corresponding label Yr

based on the given features. Xgboost [11] was chosen as
the classifier, but it was compared to three other classifiers:
Logistic Regression, Decision Tree, and Random Forest. Each
algorithm had a different set of hyperparameters7 which were
tuned using a grid search while validating on the validation
records. Validation was done to maximize the Area under the
Receiver Operating Curve (AUC), which is a metric invariable
to class imbalance.

Using methods suited for large class imbalance was essen-
tial, as the Yr labels were very sparse; Yr = 1 values appeared
in fewer than 0.2% of all records as earlier illustrated in
Figure 2. Accuracy could not be used as the guiding metric
for model performance as 99.8% or higher accuracy was
achievable purely by guessing the majority (Yr = 0) class. In
a safety-critical setting such as runway condition assessment,
it is imperative to detect Yr = 1 cases (cases with decreased
RwyCC) reliably. In other words, the correct detection of the
Yr = 1 class is valued more than the correct detection of the
Yr = 0 class. This problem is typically addressed using the
Receiver Operating Curve (ROC) which is constructed for
each classifier and can be used to evaluate its performance
using the area under the curve (AUC). By choosing an
operating point on the ROC curve it is then possible to find a
suitable balance between correct detections and false alarms.

The output of a classifier is the probability of the given
label is 1, given the set of input features X . Take the
RwyCC ≤ 5 model as an example. The output of the
RwyCC ≤ 5 model is P (Y5 = 1|X), with 0 ≤ P (Y5 =
1|X) ≤ 1. Since the prior probability of the label be-
ing 1 is very small (P (Y5 = 1) is small), the output
P (Y5 = 1|X) tends to be small as well, and its average
is close to P (Y5 = 1) (smaller than 0.2%). Typically, one
would use P (Y5 = 1|X) to decide that the RwyCC for
that landing should be marked as smaller or equal to 5 if
P (Y5 = 1|X) ≥ 0.5, where 0.5 is referred to as the detection
threshold t. One can see that a 0.5 threshold setting is only
suitable in cases where the prediction classes are balanced.
On the other hand, when the prior P (Y5 = 1) is very small,
the output of the model will almost never cross 0.5 and all
cases will be marked as having a RwyCC larger than 5.
Since the correct detection of low RwyCC landings is of
more importance than the correct dismissal of landings with
high RwyCCs, the detection threshold t had to be lowered
to allow for more correct detections of low RwyCC. This
means that a landing was labeled as having RwyCC≤ 5 if
P (Y5 = 1|X) > t where t ∈ [0, 0.5].

As the detection threshold is lowered below 0.5, the
classifier makes more correct detections (higher sensitivity
or true positive rate) but also experiences a higher false
alarm rate (or false positive rate). The combination of t,
the corresponding sensitivity, and the false positive rate is
referred to as the Operating Point. Sweeping the values of t
and plotting the false positive and true positive rates generates

7Hyperparameters are parameters that affect the performance of the model
but are not learned through training, e.g. the depth of a tree

a Receiver Operating Curve (ROC) [12]. An illustration of
a ROC curve with various annotated threshold t settings is
shown in Figure 6.
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Figure 6: ROC with different threshold t settings

One can see that when t is decreased, the sensitivity and
false positive rate both increase. The closer the curve is to the
top left corner of the graph (100% sensitivity and 0% false
alarms) the more informative the model is considered to be.
Figure 7 shows an illustration of ROC curves for models of
differing performance. The AUC, or the area under the curve,
is the common metric that can be used to compare different
models. The higher the AUC, the better the model, with the
optimal value being 1.
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Figure 7: ROCs for models of varying performance

When the model is used in operation, a threshold t has
to be chosen, which will carry an associated sensitivity and
false alarm rate. There are different approaches to choosing an
appropriate threshold. Swets [13] discussed how an optimal
operating threshold may be found using the prior probabilities
of the two classes and their relation to the slope of the
ROC curve, depending on how much the operator of the
model values true positives over true negatives. Kuchar [14]



adopted a similar methodology to aircraft alerting systems.
Alternative ways to choose an operating point are simply to
set a maximum false positive rate or a minimum sensitivity.

However, these methods are only suitable for setting op-
erating points for individual and independent classifiers. In
the cascading pipeline of RwyCC ≤ r models, individual
operating points cannot be chosen independently. This is be-
cause the nature of model errors differs from a simple binary
case where only false positives and false negatives occur.
In the cascading model, there are different misclassification
errors with varying severity. For instance, misclassifying a
sample with RwyCC=0 as RwyCC=1 is less severe than
misclassifying it as RwyCC=6. Fortunately, due to the nature
of the cascade, severe errors are unlikely because a sample
would have to go undetected by all six classifiers.

In the cascade, earlier models are expected, but not guar-
anteed, to detect low braking action landings. Addition-
ally, earlier models may detect some landings with higher
RwyCCs (e.g., some RwyCC=5 landings are detected by the
RwyCC ≤ 0 model). If the false alarm rate of upstream
models is very high, the downstream models may become
obsolete since few samples with the corresponding RwyCC
would reach them.

By individually setting the operating points of each model
in the cascade, arbitrary distributions of output RwyCCs
below 5 (friction limited) can be created. For instance, thresh-
olds can be set to heavily skew the output distribution toward
lower RwyCC values, resulting in a highly conservative
model. Alternatively, the distribution can be skewed toward
high RwyCCs, leading to a lenient model that rarely predicts
low braking action. However, it is desirable for the output
distribution to follow the true RwyCC distribution from AST,
as shown in Figure 2.

Let Rr denote the fraction of friction-limited (RwyCC≤ 5)
samples where RwyCC=r. The actual Rr values read off from
Figure 2 graph were: R0 = 0.028, R1 = 0.155, R2 = 0.142,
R3 = 0.300, R4 = 0.302 and R5 = 0.073.

The threshold setting method proposed here was designed
to generate predictions that maintain the shape of the RwyCC
distribution for samples with RwyCC below or equal to 5 but
increase their overall fraction with respect to samples with
RwyCC=6. To achieve this, the parameter RFL is defined,
which represents the rate at which the cascade predicts

friction-limited RwyCC codes (≤ 5). Due to the severe class
imbalance, the fraction of samples with RwyCC=6 that are
misclassified as having a lower RwyCC (false positive rate)
is close to RFL.

The threshold setting procedure that leverages the vali-
dation set is relatively simple. Let Nval be the number of
validation samples. The threshold for each RwyCC ≤ r
model is determined using Algorithm 1.

Note that X are the features for the samples that reach
the RwyCC ≤ r model in the cascade (they do not include
samples detected by upstream models). The algorithm was
executed for each model in the cascade consecutively, finding
the appropriate t for each model, which carried an associated
false positive rate fpr and true positive rate tpr.

Since Rr is set based on the true distribution, then the
only parameter that can affect the resulting t settings is the
friction-limited prediction rate RFL. This rate can be selected
based on user preference for model conservativeness. If RFL

is high, the model is conservative and RwyCC predictions
between 0 and 5 are more likely than when RFL is low. One
way to select a RFL is such that the positive and negative
errors of the model are balanced. Model error for a given
sample was defined according to Equation 3:

Error = Predicted RwyCC− True RwyCC (3)

Predicting a RwyCC that is larger than the true RwyCC
is referred to as a positive error. Predicting a RwyCC that is
smaller than the true RwyCC is a negative error. The balance
of positive and negative errors can be described by the ratio
of the sum of positive errors over the sum of negative errors
on all validation samples with true RwyCC≤ 5.

In this case, when RFL ≈ 0.075 the error ratio was 1,
meaning that positive and negative errors were balanced.
This was hence the ratio that was selected. Note that there
are other ways to select RFL; if one is more willing to
accept negative errors than positive errors, a higher RFL can
be chosen and vice versa. Alternatively, a cost function for
different misclassification errors can be written, and the RFL

that minimizes cost can be chosen.
The shown method of choosing RFL based on the balance

of positive and negative errors is just one option among
many. For more background on the threshold setting method
presented here refer to [4].

Algorithm 1 Threshold Setting Algorithm

1: procedure FIND THRESHOLD(Model (RwyCC ≤ r), Rr, RFL, X , Yr)
2: Nreq ← Nval ·RFL ·Rr ▷ Required number of samples to detect
3: p← Model.predict(X) ▷ Predicted probability that RwyCC ≤ r
4: roc← roc curve(p, Yr) ▷ ROC curve with thresholds t in descending order
5: for fpr, tpr, t ∈ roc do
6: Npos = Count(p ≥ t) ▷ Number of positive predictions given t
7: if Npos ≥ Nreq then return t ▷ t at which requirements satisfied
8: end if
9: end for

10: return None ▷ The requirements cannot be satisfied
11: end procedure
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(a) RwyCC ≤ 0 model
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(b) RwyCC ≤ 1 model
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(c) RwyCC ≤ 2 model
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(d) RwyCC ≤ 3 model
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(e) RwyCC ≤ 4 model
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(f) RwyCC ≤ 5 model

Figure 8: Classifier ROC comparison on the test set for all RwyCC ≤ r models.

IV. RESULTS

The Xgboost algorithm was compared to three other classi-
fiers: Random Forest, Logistic Regression, and Decision Tree.
All RwyCC ≤ r models were trained for each classifier. The
hyper-parameters for each algorithm were optimized by grid
search, to avoid overfitting to the extent that was possible. An
ROC curve comparison for each RwyCC ≤ r model for the
test set can be seen in Figure 8. One can see from the ROC
curves that Xgboost performed best across all RwyCC ≤ r
models, except for the RwyCC ≤ 0 model where the much
simpler Logistic Regression outperformed it. This is likely
due to overfitting of the Xgboost model, as there were only
122 training samples with RwyCC of 0, out of the nearly three
million training samples. Nevertheless, using regularization
parameters of the Xgboost algorithm it was still possible to
achieve very good performance on the validation and test set,
reaching an AUC of around 0.97. Since Xgboost performed
best across all but one model, it was selected as the algorithm
of choice for the cascade. One could instead use logistic
regression for the RwyCC ≤ 0 model and Xgboost for all
the consecutive models but this unnecessarily complicates the
pipeline as the two algorithms require different handling of
input features and interfaces between them would have to be
developed. This was rejected as it would only bring marginal
improvement on the RwyCC ≤ 0 model but complicate the
pipeline significantly.

Another way to evaluate model performance is to plot the
sensitivity of the cascade to samples with RwyCC≤ 5. I.e. to
plot the ratio of samples with a true RwyCC≤ 5 that received
a prediction RwyCC≤ 5 for each RFL setting. If a sample

had a true label RwyCC ≤ 5 and it was predicted any RwyCC
below or equal to 5 it was considered to have been detected
- it does not matter which RwyCC was actually assigned as
long it was not 6. The sensitivity vs. RFL for each version
is shown in Figure 9.
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Figure 9: Sensitivity to samples with RwyCC≤ 5 vs. RFL

on the test set.

One may notice that this curve is reminiscent of an ROC
curve. This was expected, as the extreme class imbalance
between RwyCC=6 and RwyCC≤ 5 means that RFL was
close to the false positive rate.



A. Testing on Historical Runway Excursion Events

The cascading model was further tested using historical
runway excursion events. A collection of 30 runway excur-
sion events between 2008 and 2013 was created using The
Aviation Herald8 as the main source.

Table I shows a list of the incidents used. Note that this
is not an exhaustive list of runway excursions between 2008
and 2013.

For each of these excursion events, available historical
METAR information was collected and converted to features
used in the model. Note that in some cases, the closest
METAR reports were more than an hour away from the time
of the incident. Similarly, runway information was collected
from airport and/or government websites. In many cases, the
runway surface condition and modification at the time of the
incident were unknown, in which cases the condition was
assumed to be good and no surface modification was assumed.

Landings were tagged as ”Pilot Error” if the accident report
from the Aviation Herald mentioned one of the following: 1.
the pilot landed too fast or failed to apply enough braking,
2. the pilot landed too far along the runway. There were 13
such cases.

In addition, cases, where friction was confirmed to have
been limited and/or the runway, was slippery were tagged as
”Degraded Braking”. There were 10 such cases.

The ”Model RwyCC Classification” column of Table I
shows the results of applying the cascading model to this

8www.avherald.com

set of incidents.

One can see that more than half of the records (19/30) were
classified as having RwyCC lower than or equal to 2. In fact,
all ten degraded braking cases were given a RwyCC≤ 2 (2
translates to ”Medium to Poor” braking action in the RCAM).
This shows that the cascading model does reliably predict
degraded braking cases.

Additionally, of the 11 cases that were assigned a RwyCC
higher or equal to 3, seven were tagged as pilot errors. Two
records that were classified as RwyCC=6 did not contain any
reported ”Pilot Error” or ”Degraded Braking”. However, one
of these was the landing at LPLA on 3/10/2011 which was
impacted by the closure of half of the runway leading to veer-
off from the runway due to ”approach aids not being aligned
with the new resulting runway center line”9. The other case
was a high-altitude (9230 ft) landing at SEQU in Ecuador on
11/30/201210. One would expect the cascade to characterize
this landing as at least RwyCC≤ 5 due to having experienced
heavy rain. However, since the model was trained on landings
in the US, it may be the case that it was not able to extrapolate
to extreme altitude cases such as this one in Ecuador. In
fact, this is likely as the airport with the highest elevation
encountered in the training set was KLAR in Laramie, WY,
with an elevation of 7284 ft, almost 2000 ft lower than SEQU.

9www.avherald.com/h?article=4391e170
10www.avherald.com/h?article=459d34b4

TABLE I. Collection of 30 historical runway excursion events in 2008-2013 with model runway condition code classifications.

Airport code Date Aircraft type Airline Tagged causes Model RwyCC
Classification

Interpreted braking
action

EPKT 3/12/2013 737-800 Travel Service Degraded Braking 0 Nil
YBCG 1/28/2013 737-800 Virgin Australia Degraded Braking 1 Poor
WIOO 12/30/2012 737-400 Lionair N/A 1 Poor
RJSY 12/8/2012 737-800 Nippon Airways Degraded Braking 1 Poor
UWUU 11/18/2012 737-800 UTAir N/A 1 Poor
WIOO 10/19/2012 737-400 Sriwijaya Pilot Error 1 Poor
WIBB 7/17/2012 737-800 Garuda N/A 1 Poor
KMDW 4/26/2011 737-700 Southwest Pilot Error 1 Poor
WIBB 2/14/2011 737-900 Lionair Degraded Braking 1 Poor
EGNT 11/25/2010 737-800 Thomson Degraded Braking 1 Poor
WIOO 11/2/2010 737-400 Lionair Pilot Error 1 Poor
VOML 5/22/2010 737-800 Air India Express Pilot Error 1 Poor
WAUU 4/13/2010 737-300 Merpati Nusantara N/A 1 Poor
EGPK 12/23/2009 737-800 Ryanair Degraded Braking 1 Poor
LTBA 10/4/2009 737-300 JAT Airways Degraded Braking 1 Poor
URRR 9/3/2013 737-800 Orenair Pilot Error 2 Medium to Poor
WIOO 6/1/2012 737-400 Sriwijaya Degraded Braking 2 Medium to Poor
WIBB 2/15/2011 737-900 Lionair Degraded Braking 2 Medium to Poor
URRR 4/12/2011 737-400 Donavia Degraded Braking

& Pilot Error
2 Medium to Poor

KCMH 4/19/2013 737-800 Delta Airlines N/A 3 Medium
CYYE 1/9/2012 737-700 Enerjet Pilot Error 3 Medium
SYCJ 7/30/2011 737-800 Caribbean Airlines Pilot Error 3 Medium
EHAM 10/2/2010 737-400 Corendon Air Pilot Error 3 Medium
GUCY 7/28/2010 737-700 Mauritania Airways Pilot Error 3 Medium
MKJP 12/23/2009 737-800 American Airlines Pilot Error 3 Medium
GCRR 3/21/2008 737-800 Air Europa Pilot Error 4 Good to Medium
URRR 12/1/2012 737-800 Yakutia N/A 5 Good
SEQU 11/30/2012 737-800 Copa Airlines N/A 6 -
URRR 4/6/2012 737-400 Globus Airlines Pilot Error 6 -
LPLA 3/10/2011 737-800 Travel Service N/A 6 -

www.avherald.com
www.avherald.com/h?article=4391e170
www.avherald.com/h?article=459d34b4


V. CONCLUSION

This paper demonstrated a data-driven approach for runway
condition assessment. The presented method was a cascading
architecture of six Xgboost models trained on a database of
4.9 million landings by Aviation Safety Technologies (AST)
to predict Runway Condition Code labels (RwyCCs) which
had been computed by AST using aircraft sensor outputs.

The method addresses multiple limitations of traditional
runway condition assessment practices. Firstly, it provides
consistent and objective assessment thanks to labels based
on aircraft sensor information. Assessment objectiveness is
not guaranteed through pilot reports of braking action in
current FICON NOTAMs as they are issued by individual
pilots, each of whom may experience a landing differently.
The method also does not require a physical examination of
the runway by airport operators as it only relies on easily
accessible up-to-date METAR data, and does not require
runway contamination information. This also allows for the
model to be used in a forecasting setting - where weather
forecasts would be used instead of METARs. This opens the
possibility for advanced runway maintenance planning.

A novel procedure was used to set the detection threshold
on the ROC curve of each individual model in the cascading
architecture, which maintained the shape of the true dis-
tribution of RwyCCs while detecting a significant portion
of samples with reduced RwyCC and maintaining a low
false positive rate. The method was successfully tested on
a collection of 30 historical runway excursion events, where
it predicted a ”Medium to Poor” or worse braking action for
all 10 cases where degraded braking was reported as one of
the causes of the incident.

The model could be used at airports in a nowcasting
manner together with traditional runway condition assessment
to determine whether the two are consistent. It may also be
used in the novel forecasting setting to examine whether it
brings an operational benefit to airport operators.

Finally, note that the model can only be applied to B737
and A319-A321 series aircraft as those were the only aircraft
types appearing among training samples. The method can be
extended to wide-body aircraft, regional jets, and others if a
sufficient number of landing samples with braking measure-
ments becomes available.
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