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Abstract—Low visibility can severely reduce the airside capacity
of an airport and can cause ground delays and runway/taxiway
incursions. With the advent of digital towers, enabled through
live camera feeds, computer vision can contribute to airside
surveillance to enhance safety and improve operational effi-
ciency. However, digital camera technology presents its chal-
lenges where technical issues may affect the video quality,
resulting in low-fidelity transmission effects such as blurring,
pixelation, or JPEG compression. Furthermore, poor weather
conditions in an aerodrome, including rain, fog, and mist, can
greatly reduce visibility, whether based on digital video or out-
of-tower view, which can reduce visual situational awareness
for tower controllers. This paper proposes a computer vision
framework and deep learning algorithms to detect and track
aircraft in low-visibility (due to bad weather) and low-fidelity
(due to technical issues) environments to enhance visibility using
digital video input. The framework adopts a Convolutional
Neural Network to detect aircraft and applies a Kalman Filter
technique to track aircraft, especially under low visibility con-
ditions. The performance of the proposed framework is further
improved by pre/post-processing algorithms, including object
filtering, corrupted image detection, and image enhancement.
The proposed framework achieves a tracking accuracy of 0.91
for clean videos and 0.79 and 0.74 for low-fidelity and low-
visibility environments, respectively. The framework is found to
be effective on the airport video dataset from Houston airport
in improving visibility in poor weather conditions.

Keywords—Airside Surveillance; Computer Vision; Digital
Tower; Low Visibility.

I. INTRODUCTION

Adverse weather conditions significantly impact air traffic,
both on the ground and in the air. A study conducted by
NTSB indicates that meteorological conditions contributed to
20 percent of total aviation incidents worldwide during the
period of 2003 to 2007 [1]. Low visibility can lead to reduced
airport capacity, delays, and runway/taxiway incursions [2].
Daily average delay data from US domestic flights between
2000 to 2005 reveals that delays on days with adverse weather
conditions are 14 minutes longer than on clear days [3].
Similarly, O. R. Tambo International Airport reported 1425
hours of delay related to weather during the period of 2010 to
2013 [4]. Although the Advanced Surface Movement Guid-
ance and Control System (ASMGC-S) has improved airside
operations in poor visibility, the separation between aircraft
still needs to be enlarged due to ground traffic control [5].

Therefore, effective airside surveillance systems are essential
for better traffic management in adverse weather conditions.

The concept of a digital remote tower has been developed
to enhance safety and improve the operational efficiency of
airport airside operations [6]. A digital remote tower utilizes
a network of high-resolution cameras that covers a 360-
degree view of airports to offer many advantages over an
out-of-window view of a conventional tower [7]. However,
several technical challenges need to be addressed to fully
utilize the digitization of the tower environment. For example,
the upper limit of transmission delay between the remote
airport and the tower center should be below 500 ms [8]. The
experiment in [8] shows that during good conditions such
as high bandwidth and no image processing algorithms, the
average delay of long-transmission time is 300ms. In addition,
smart cameras that are optimized for video recording even
under adverse environmental conditions can easily exceed a
delay of 500 ms [8]. Furthermore, the continuous transmission
of video data can also lead to image corruption, including
dropped frames, blurring, or pixelation, due to factors such as
data congestion, delay accumulation, and hardware problems.

A computer vision-based framework is proposed in this
paper for airside surveillance to track aircraft in low visibility
and low fidelity environments. The framework is illustrated
in Figure 4 and consists of modules to address specific
environmental issues arising from low fidelity and low vis-
ibility. The first module uses AirNet [28], a customized
Convolutional Neural Network, to detect aircraft. Then, by
associating newly detected aircraft with aircraft from previous
frames, these detected aircraft are tracked by a Kalman Filter.
The framework also includes additional modules, such as
object filtering to reduce false alarms, image enhancement to
improve visibility during rain and fog, and image corruption
detection to identify corrupted frames.

The remainder of this paper is organized as follows. In
Section II, a review of previous related work is presented,
and the video data and engineering approach are described
in Section III. Section IV presents the overview of the
proposed framework to address low visibility and low fidelity
environmental conditions. The experimental design and the
video dataset are outlined in Section V, followed by the
results in Section VI. Finally, the paper concludes with a
summary and discussions in Section VII.



(a) The Houston airport layout is captured by six surveillance cameras. The runway and taxiways are highlighted by red and
green color, respectively.

(b) Aircraft trajectories are captured by the surveillance cameras. Each color represents a different camera.

(c) Aircraft trajectories are recorded by ASMGC-S. The different colors are corresponding with different cameras.

Figure 1: Houston airport airside layout captured from a camera system with the corresponding ASMGC-S information. The
displayed trajectories from these two sources are identical.

II. RELATED WORKS

A. Single Object Tracking

Object tracking can be categorized as either single-object
tracking or multiple-object tracking. Single-object tracking
involves the tracking of each object by one tracker, whereas
multiple-object tracking involves one tracker monitoring ev-
ery object. As objects are required to be separated from each
other in an airport airside environment, this research focuses
on single-object tracking. However, since cameras lack depth
information, multiple single trackers may be necessary to
track objects that overlap with each other.

Object tracking algorithms can be grouped in various ways.
As this paper focuses on low visibility, the object tracking
algorithms are divided into temporal approaches and spatial
approaches. Temporal approaches predict the future location
given a set of previous locations with the Kalman filter [9],
[10] being the best candidate for this approach. Although
simple and fast, the Kalman filter requires frequent updates
with actual object locations and a series of previous locations
to stabilize the model.

Spatial approaches associate objects in current frames with
target objects in previous frames. The state-of-the-art methods
are based on correlation [12]. By performing correlation oper-
ations between the target (in previous frames) with the target
candidate area (the current frame), the method can locate the
target position in the current frame. The target and target
candidate area are represented as features before applying the

correlation operation. The features can be extracted by hand-
crafted methods [13]–[15] or deep learning methods [16]–
[18]. As these approaches rely on spatial information, a low
visibility environment decreases the detection performance.
Therefore, low-visibility handling algorithms are proposed to
overcome this problem.

Therefore, a spatial-temporal approach is appropriate for
low visibility, which combines spatial and temporal mod-
els [11], [19], [20]. When the target is captured in frames, it
is tracked by a spatial model, and the captured target updates
a temporal model. If the target cannot be captured because of
low visibility, a temporal model predicts a potential location
until the target is re-captured.

B. Low Visibility Handling

Object detection in low-visibility environments can be
categorized into two groups: general and specific. The general
category improves detection performance for every type of
low visibility by integrating enhancements including sensor
fusion [21], multiple scale network [21], [22], histogram
equation [22] or larger networks [22]. In contrast, the specific
category improves detection performance for only a particular
condition, such as deblurring [23], rain removal [24], or
defog [25]. Intuitively, specific approaches achieve better re-
sults than general approaches, as the particular environmental
condition is known. However, they require low-visibility data
for training, which are challenging to obtain.



Figure 2: Synthesized low-fidelity samples. Left to right:
clean, corrupt level 1 and corrupt level 3 samples. Top to
bottom: blurring, pixelating and JPEG compression.

Due to the data limitation, the proposed approach follows
a general approach to improve overall detection performance.
The detection model is trained only on clean (original) data
while it is validated on different types of low-visibility data.
The approach also divides low visibility into two scenarios:
weather or technical issues. As technical issues cannot be
predicted, a corruption detection model is developed to detect
corruption events. Meanwhile, as weather conditions typically
last longer, image enhancement is proposed to enhance image
quality.

III. DATASET AND DATA ENGINEERING

The airport video dataset is collected from George Bush
Intercontinental Airport (IATA: IAH, ICAO: KIAH), also
known as Houston Airport. This airport is referred to as
Houston Airport for the remainder of the paper. The dataset
comprises one hour of video data recorded by six cameras
from a digital tower at Houston Airport, as shown in Figure 1.
As the airport airside is a wide and complex environment,
each camera captures a different size of the airport with differ-
ent brightness conditions. Specifically, the areas captured by
the edge cameras are larger than those covered by the central
cameras, causing an aircraft to appear differently sized during
its maneuvering phase. In addition, the images captured by
the cameras exhibit distortions, making the runways and
taxiways look curved instead of straight lines, thereby causing
the aircraft trajectories to appear non-linear. Consequently,
the Houston airport videos pose a significant challenge for
object detection and tracking. To create the dataset, images
were extracted from the six cameras every second, generating
21600 images, and the aircraft were manually labeled as
bounding boxes. Subsequently, images that did not capture
aircraft or had captured stationary aircraft were removed,
resulting in 3725 images with a resolution of 1080 × 1080.
Since obtaining low-visibility videos is difficult, this research
initially synthesizes these corrupted videos.

Figure 3: A low-visibility sample is synthesized by blending
rain and fog templates to an original image.

A. Low Fidelity Image Generation

Although digital tower systems have numerous safeguards
to prevent image corruption, most digital video systems are
susceptible to corruption risks. To evaluate the performance
of computer vision models in the presence of such corruption,
intentional corruption was introduced to the images. The
effect of corruption can vary depending on the encode/decode
algorithms used. In this study, the three most common types
of image corruption, which are blurring, pixelating, and
JPEG compression, were chosen, as shown in Figure 2.
Blurred images were created by convolving the image with
a low-pass filter kernel. Pixelated images were produced by
downsampling the image resolution and then upsampling
it with a linear interpolation algorithm. JPEG-compressed
images were generated by transforming an image into a vector
using Discrete Cosine Transform [27], truncating the vector
dimension, and then transforming it back. For each type
of image corruption, three different levels of corruption are
generated for each image.

B. Low Visibility Image Generation

This study examines the impact of weather on airside
visibility, with a focus on two common weather phenomena:
rain and fog. Figure 3 illustrates the image generation pro-
cess to simulate these effects. First, a rain structure transfer
algorithm [26] generates a synthetic rain image based on an
exemplar rain image. As rain typically reduces the brightness,
the “Lightness” channel in the HLS color space is reduced
by half. The next step is to blend the rain image (R) to a fog
image (F), using Eq. (1). The value of α channel increases
in a near-distance view to generate less fog and decreases
to generate more fog in a far-distance view. Similarly, image
corruption is applied at three different levels.

I = α ∗ R + (1− α) ∗ F, 0 < α < 1 (1)



Figure 4: The proposed framework where aircraft are detected by customized Convolutional Neural Network, called AirNet.
Detected aircraft are then associated with the previous frame. Finally, aircraft are tracked by a Kalman Filter based on the
association results.

IV. METHODOLOGY

A. Overview

Figure 4 illustrates the computer vision framework for air-
craft surveillance. First, aircraft are detected by a customized
Convolutional Neural Network developed by authors, called
AirNet [28]. The detected aircraft are then associated with
the aircraft in the previous frame. Finally, the aircraft are
tracked by a Kalman Filter [9] based on the association
results. Specifically, if an aircraft is newly detected, a Kalman
Filter tracker is initialized. If an aircraft is detected in both
frames, the Kalman filter tracker is updated. If an aircraft
from the previous frame cannot be detected in the current
frame, the tracker predicts the aircraft’s location.

The AirNet framework was developed to detect objects in
an airport airside environment and outperformed the state-of-
the-art ConvNets in an airport dataset [28], [29]. Generally,
AirNet is customized to detect objects in a high-resolution
image, which is 1080 × 6480 in this project. With multiple
feature maps on different scales, the AirNet framework can
cover a wide range of aircraft dimensions. Moreover, the
AirNet architecture is divided into nearly identical blocks
governed by a limited number of parameters. As a result,
the AirNet framework is flexible to be adopted for the given
problem.

A detected aircraft in the current frame (Bt) is asso-
ciated with the previous frame (Bt−1) by the Hungarian
method [30]. First, a distance matrix is constructed:

∆(Bt, Bt−1) = {δi,j}, δi,j = ∥ci − cj∥

i ∈ [0, nt], j ∈ [0, nt−1]

where nt and nt−1 are the number of detected aircraft in
frames t and t− 1 and c is the center of a detected aircraft.
Then, based on the distance matrix, the Hungarian algorithm
assigns detected aircraft between the current frame and the
previous frame. However, when a distance is greater than a
given threshold, an assigned pair is rejected. The algorithm
outcome can be separated into three cases, as shown in

Figure 4. The first case is new detection where a detected
aircraft in the current frame is not associated with any aircraft
in the previous frame. The second case is the successful
detection of a previously detected aircraft where a detected
aircraft in the current frame is associated with an aircraft in
the previous frame. The third case is missed detection where
an detected aircraft in the previous frame is not associated
with any aircraft in the current frame.

The association result is used for aircraft tracking by a
Kalman Filter [9]. Each aircraft is tracked by one Kalman
Filter tracker. The Kalman Filter tracker uses aircraft his-
tory position to predict the next position. As the original
Kalman Filter [9] is created for one-dimensional prediction,
the tracker is modified to predict two-dimensional positions.
Therefore, a state vector includes six variables which are
x, y, δx, δy, δ2x, δ2y where x and y are the position of the
aircraft, δ and δ2 are aircraft velocity and acceleration corre-
sponding with the axes. The tracker tracks aircraft based on
association results. In the first case, a new tracker is initialized
while the tracker parameters are updated in the second case. In
the third case, the tracker predicts the new location. Moreover,
during the third case, the tracker can be terminated if the
predicted position is out of the frame or the aircraft cannot
be detected for a long period of frames.

B. Aircraft Tracking in Low Fidelity Environments

Aircraft tracking in low-fidelity environments is performed
by the proposed framework as follows. It is to be noted that
the AirNet framework in this research is trained only on
clean images. To reduce false alarms on aircraft detection,
this research incorporates negative samples during the training
process, as suggested in [32]. False alarms are further reduced
by an object filtering module, which rejects detected aircraft
based on their sizes. In addition, an image corruption detector
algorithm, based on a background subtraction algorithm [31],
is implemented to detect corrupted images. The framework
relies more heavily on temporal information for corrupted
frames instead of spatial information for clean frames.



The object filtering module is created as a linear regres-
sion model. First, the wingspans and lengths of aircraft are
collected from Aircraft Characteristics Database published
by Federal Aviation Administration1. Then, the relationship
between aircraft position (X = (x, y)) and size (S) is
constructed, as shown in Eq. (2), where S =

√
wing2 + len2

and z =
√
width2 + height2 are the actual size and a pixel

size of aircraft. Diagonal sizes are used to be invariant with
aircraft orientation. W is the weight learned from the data
during the training process, f(.) can be viewed as the feature
extraction function, and ϵ is the irreducible error that occurs
when collecting the data. Naturally, f(X) is chosen as a
polynomial function with degree k, as shown in Eq. (3).

S̃

z
= Wf(X) + ϵ (2)

f(x, y) =

k∑
i=0

i∑
j=0

xjyi−j (3)

During validation, the linear regression model predicts
detected object sizes based on their position. Detected objects
are rejected when their sizes are smaller than a certain
threshold. In this research, the threshold is set to 100ft.

The image corruption detector to detect corrupted frames
is implemented as follows. First, the detector initializes a
template from a history of clean frames. During the validation
phase, the detector calculates the difference between the
current frames and the template. When the difference exceeds
a certain threshold, the frame is considered to be corrupted. If
a current frame is not corrupted, the frame is used to update
the template.

The spatial information in corrupted frames is not reliable.
Therefore, the confidence scores of the newly detected aircraft
are increased. In other words, the framework aims to maintain
the tracking of existing aircraft and discourage the tracking of
new aircraft. In addition, the tracking termination decision is
disabled. That is, the framework does not terminate trackers
in which an aircraft is not detected during corrupted frames.

C. Aircraft tracking in Low Visibility Environments

Aircraft tracking in low-visibility environments is per-
formed by the proposed framework. Similarly, the AirNet
framework is trained only on clean images and an object
filtering module is applied to reduce false alarms. As the
weather (rain and fog in this research) tends to last longer
than image corruption caused by technical issues, the images
are enhanced to improve detection performance. The enhance-
ment, as shown in Figure 5, is inspired by the defogging
process in [25]. First, the image brightness is increased
from the low-visibility image. Due to the nature of fog,
the near-view distance is brighter than the far-view distance.
Therefore, a global increase in image brightness does not
solve this problem. Hence, gamma correction changes the
image brightness non-linearly, as shown in Eq. (4). With γ
smaller than 1, an under-exposed image is created to focus

1https://www.faa.gov/airports/engineering/aircraft char database

Figure 5: Image enhancement. First, The brightness of the
low visibility image (bottom left) generated from the original
image (top left) is increased (bottom middle). Then, under-
(top middle) and over-exposed (bottom right) images are
created by gamma correction. The final image (top right) is
an average of two differently-exposed images.

on the far-view distance. Similarly, an over-exposed image
is created to focus on the near-view distance with γ larger
than 1. The final result is obtained by averaging these two
differently exposed images.

O = αIγ (4)

V. EXPERIMENTS

The training process in this work is similar to AirNet [28].
However, negative images are included to reduce false
alarms [32]. As the negative images should be diversified,
they are collected from the COCO dataset [33]. Since the
image resolution in COCO ranges from 480 to 640, a training
sample is created by stitching four images together. The first
half of the Houston airport video is used for training and the
second half is used for testing. During the training process, the
number of negative images is equal to the number of positive
images. It is worth highlighting that the model is only trained
and validated on clean (original) images.

The detection model and the tracking framework are tested
separately. The detection model is tested on clean, low vis-
ibility, and low fidelity images. Low-fidelity images include
three separate types of image degradation, which are blurring,
pixelating, and JPEG compressing artifacts. In addition, each
corrupted type has three degrees of corruption, as shown
in Figure 2. Three evaluation metrics are used, which are
precision, recall, and average precision (AP ). A high recall
detector aims to detect as many objects as possible, which
helps to reduce false negatives. In contrast, a high-precision
detector aims to detect objects as precisely as possible, which
helps to reduce false positive detections (false alarms). Each
detection threshold (confidence score) produces a different
pair of precision and recall. Hence, AP is an important
metric that calculates the average precision over all possible



Figure 6: Detection results of different corruption types with
multiple levels. Level 0 is a clean dataset.

thresholds. In other words, AP , ranging from 0 to 1, indicates
the detector’s performance regardless of detection thresholds
(i.e., the higher AP the better performance).

The tracking framework is tested differently in different
scenarios. The clean scenario can be used as a benchmark
where the tracking framework is performed normally on
clean, uncorrupted videos. As the weather normally occurs
consistently, a low-visibility environment (rain and fog) is
generated on the whole test videos with different levels of
corruption (level 1 to 3). However, as technical issues occur
randomly, a low-fidelity environment is generated randomly
with different duration. For example, in the “low fidelity 2s”
scenario, there are two seconds of corrupted frames with
random types of corruption, for every four seconds. As the
results are different every time an experiment is performed,
the experiment is performed 10 times and the average results
are reported. Four evaluation metrics are validated for the
tracking framework: tracking length and accuracy are used to
validate tracking performance [34], while precision and recall
are used to compare with detection performance. Tracking
length [34] reports the number of successfully tracked frames
from the tracker’s initialization to its first failure. This metric
evaluates the robustness of the tracker. Accuracy [34] eval-
uates the accuracy of the tracker by the following formula:

TP
TP+FN+FP where TP , FN , and FP are true positive, false
negative, and false positive, respectively.

VI. RESULTS

A. Detection Results

Figure 6 shows the AP metric of AirNet for different
image corruption types of different degrees. Naturally, the
highest performance occurs on the clean dataset (level 0),
which is 0.98 while the lowest performance occurs on the
most corrupted datasets (level 3). The AirNet framework is
more robust with JPEG compression, whose AP is 0.87 at
level 3 while the AP of the remainder is around 0.3 at level
3. In addition, image enhancement improves the performance

significantly where the AP at level 3 increases from 0.28 to
0.68.

TABLE I. Detection results with different confidence scores
for low fidelity environment.

Scenario Metric Confidence Scores
0.3 0.5 0.7

Clean Recall 0.9849 0.9817 0.9722
Precision 0.6951 0.8704 0.9459

Blur 1 Recall 0.9595 0.9539 0.9396
Precision 0.4697 0.8277 0.9024

Blur 2 Recall 0.857 0.8094 0.7403
Precision 0.1337 0.6876 0.8519

Blur 3 Recall 0.5052 0.4091 0.3018
Precision 0.0893 0.1538 0.558

Pixel 1 Recall 0.9635 0.9539 0.9325
Precision 0.1847 0.2596 0.8976

Pixel 2 Recall 0.753 0.6521 0.5036
Precision 0.142 0.2388 0.8277

Pixel 3 Recall 0.4504 0.3384 0.2081
Precision 0.1434 0.27 0.7988

JPEG 1 Recall 0.9778 0.9714 0.9492
Precision 0.7095 0.8631 0.938

JPEG 2 Recall 0.9555 0.9349 0.8999
Precision 0.2777 0.5447 0.8282

JPEG 3 Recall 0.9023 0.8292 0.6751
Precision 0.3453 0.7856 0.9361

TABLE II. Detection results with different confidence scores
for low visibility environment.

Scenario Metric Confidence Scores
0.3 0.5 0.7

Clean Recall 0.9849 0.9817 0.9722
Precision 0.6951 0.8704 0.9459

Rain 1 Recall 0.892 0.8761 0.8181
Precision 0.6034 0.8277 0.9024

Enhance 1 Recall 0.8896 0.8777 0.8475
Precision 0.9098 0.9501 0.9656

Rain 2 Recall 0.699 0.6068 0.4821
Precision 0.712 0.8042 0.8634

Enhance 2 Recall 0.8491 0.8118 0.7228
Precision 0.8444 0.9133 0.9539

Rain 3 Recall 0.3233 0.2351 0.1668
Precision 0.5823 0.6948 0.7609

Enhance 3 Recall 0.6839 0.5941 0.467
Precision 0.7455 0.8452 0.9116

AP compares the overall performance between models or
datasets. Precision and recall with fixed confidence scores are
used to evaluate models in real applications. Table I and Ta-
ble II describe the precision and recall of the detection model
in low-fidelity and low-visibility environments, respectively.
Similarly, the clean dataset is used for benchmark purposes,
and each corruption type has three levels of corruption. By
increasing the confidence scores, the detection model detects
fewer objects, resulting in high false negative (low recall)
but low false positive (high precision). Therefore, confidence
scores are chosen based on the application. Although the
confidence scores range from 0 to 1, only three values are
displayed, which are 0.3, 0.5, and 0.7. The precision and
recall values can be interpreted as follows. The “Clean”
scenario with a confidence score of 0.5 has a precision of
0.87 and a recall of 0.98. Simply put, for every 100 objects,



the detection model can correctly detect 98 objects and gives
14 false alarms. To provide another example, the “Rain 2”
scenario with a confidence score of 0.5 has a precision of
0.8 and recall of 0.6. Meaning that for every 100 objects, the
detector can correctly detect 60 objects and gives 15 false
alarms.

B. Tracking Results

Table III shows the tracking results of the framework for
different scenarios. The “Clean” scenario can be used as a
benchmark. The tracking length is nearly 1, which means that
objects are successfully tracked from the first initialization to
the end. However, as the accuracy is only 0.91, there are some
false negatives and false positives. By analyzing the results,
the framework fails to detect aircraft at the early stage when
they are relatively small in size. The precision and recall of
the tracking framework are higher than the detector’s, due to
the effective prediction from the Kalman filter.

The results are similarly good in low-fidelity scenarios with
different interval times. This demonstrates that the proposed
framework can work well in low-fidelity environments. How-
ever, the framework performance is reduced in severe weather
conditions. The lower visibility, the worse the performance.
In addition, the precision values are relatively higher than
the recall values. This can be interpreted as the framework
tends to mis-detect aircraft rather than giving false alarms.
This tendency is caused by two reasons. First, aircraft can be
missed easily in low-visibility conditions. Secondly, the object
filtering algorithm reduces detected objects by dimensions.

TABLE III. Tracking results of the framework for different
scenarios.

Scenario Length Accuracy Precision Recall
Clean 0.9958 0.9174 0.9821 0.9329

Low Fidelity 1s 0.8806 0.7935 0.9488 0.8288
Low Fidelity 2s 0.9499 0.7974 0.9247 0.8527
Low Fidelity 4s 0.9687 0.8534 0.95 0.8936
Low Visibility 1 0.8920 0.8249 0.9609 0.8535
Low Visibility 2 0.8731 0.7407 0.9337 0.7818
Low Visibility 3 0.6695 0.5223 0.8660 0.5682

Figure 7 illustrates samples of the tracking framework in
different scenarios. Each aircraft is displayed by a bounding
box in the current frame and circles in previous frames.
For visualization purposes, only 96 previous frames are
displayed. In addition, the filled circles represent the center of
detected bounding boxes while the unfilled circles represent
the Kalman filter prediction, which means that the detector
mis-detects aircraft. In the clean scenario, the trajectories are
stable as the detector can detect aircraft most of the time. Even
though the detector fails to detect the aircraft due to occlusion,
the Kalman filter can predict the aircraft’s position accurately.
In a low-fidelity environment, the trajectories are not stable
due to the detector’s performance. However, with a maximum
of four seconds of corruption, the framework still manages
to track the aircraft given the clean frame after a series of
corrupted frames. The most challenging performance occurs
in the low-visibility environment. As low-visibility conditions

Figure 7: Samples of tracking framework in different scenar-
ios. Top: clean scenario. Middle: low fidelity environment.
Bottom: low visibility environment.

are present throughout the entirety of the video, the tracker
error is accumulated due to the lack of detection performance.
When an aircraft is not detected and the Kalman filter predicts
the location of the aircraft incorrectly for a long time, the
tracker fails to track the aircraft. As a result, a current tracker
is terminated and a new tracker is initialized to track the same
aircraft, as shown at the bottom of Figure 7. The detailed
process leading to the failed tracking is described as follows.
The 52-th aircraft moving on the runway was not detected
because of the occlusion with the 45-th aircraft. Hence, the
Kalman filter tracks the 52-th aircraft which indicates as
unfilled circles. Since the runway is captured as a curve,
the tracker predicts that the aircraft is moving down. When
the 45-th aircraft moves partially to a different camera, the
aircraft is captured with different brightness. Accumulating
with low visibility, the detector detects 45-th aircraft as two
separate aircraft. The right part of the detected aircraft is
associated with 45-th aircraft while the left part is associated
with the 52-th aircraft as it still is mis-detected due to
occlusion. Consequently, the tracker predicts that the 52-th
aircraft keeps moving further down. When the 52-th aircraft
is out of occlusion, the distance between the real position and
the prediction position is too large. Therefore, it is considered
a new aircraft.

VII. CONCLUSION

The full capabilities of the digital tower environment can
be harnessed by innovative computer vision techniques which
can aid in the detection, tracking, and surveillance of air-
port airside objects. This paper proposes a computer vision
framework to detect and track aircraft in low-visibility and
low-fidelity environments for a digital tower. By integrating
a Convolutional Neural Network (spatial information) and



a Kalman filter (temporal information), the framework suc-
cessfully tracks aircraft in different environments. The results
are further improved by additional modules including object
filtering, corruption detection, and image enhancement.

The proposed framework demonstrates high performance
in clean videos with an AP of 0.98 for detection performance
and an accuracy of 0.91 for tracking performance. Although
the detection results decrease in low-visibility and low-fidelity
environments, the framework performance remains resilient
to these challenges. Specifically, the framework manages to
track aircraft through a series of low-fidelity frames. Addi-
tionally, the framework reduces the effect of adverse weather
conditions by incorporating image enhancement.

In the future, new modules will be included in the frame-
work to improve the performance. For example, aircraft
position can be predicted in real-world coordinates which
are not affected by distortion instead of pixel coordinates.
However, the approach requires frequent conversion between
two coordinate systems, which can increase processing time
and accumulate conversion errors. Alternatively, since ADS-
B data is now widely available, the camera system can be
synchronized with ADS-B data. Then, aircraft can be detected
from videos and predicted from ADS-B. Additionally, image
enhancement could be applied across images instead of indi-
vidual ones.
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