
1

Fifteenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2023)

Debuffering Timestamped ADS-B Records for
Kinematic Applications

Zhuoxuan Cao, David J. Lovell
Department of Civil and Environmental Engineering and

Institute for Systems Research
University of Maryland
College Park, MD, USA

zcao1235@umd.edu, lovell@umd.edu

Aishwarya Bokil
Department of Computer Science and Engineering

The Ohio State University
Columbus, OH, USA

bokil.6@buckeyemail.osu.edu

Seth B. Young
Department of Civil, Environmental, and Geodetic Engineering and

Center for Aviation Studies
The Ohio State University

Columbus, OH, USA
young.1460@osu.edu

Abstract—Because the Automated Dependent Surveillance –
Broadcast (ADS-B) data format does not include explicit timing
information, messages are typically time-stamped upon receipt,
after they have passed through a number of buffering steps
associated with demodulating and decoding the signal. These
queues push apparent message arrival times later in time, and
more importantly, affect the inter-arrival times between messages,
which can then have downstream impacts when trying to use time-
based kinematic data such as velocities and accelerations. This
paper demonstrates how this buffering process manifests itself,
and introduces a queueing based debuffering algorithm to
ameliorate the situation. Two forms of validation are offered, one
based on the numerical integration of rate-of-climb data to
produce elevation, and one based on implicit timestamp
differences derived from the native ADS-B data stream.

Keywords-ADS-B, aviation data, aircraft tracking

I. INTRODUCTION
In January 2020, the Federal Aviation Administration required
[1] that aircraft operating in certain airspace within the United
States be equipped with Automated Dependent Surveillance -
Broadcast (ADS-B) technology [2, 3]. Since this mandate,
approximately 60% of the United States fleet of registered civil
use aircraft have been so equipped. This technology has
provided the nation’s air traffic control system with an additional
effective and accurate means of aircraft flight tracking.

ADS-B can use the same Mode S transponders that answer when
interrogation messages are sent from ground-based air traffic
control facilities. The kinematic information broadcast by the
transponder is more precise than what can be inferred from a
primary radar system. In addition, ADS-B provides the ability
for aircraft to broadcast in a “squitter”, or unsolicited mode (not
as the result of an interrogation). This mode is important because
these regular broadcasts can be observed not just on the ground,
but by other aircraft flying in the vicinity, to help them form
better situational awareness. As a side benefit, ADS-B data can
not only be received by other aircraft in flight, but also by the
general public, including researchers interested in leveraging
ADS-B data to optimize air traffic system performance.

Specifically, aircraft equipped with ADS-B “out”
technology broadcast the aircraft’s position in three dimensions
(latitude, longitude, and altitude), telemetry (ground speed,
track, and rate of climb), and the aircraft’s identifying
information (the aircraft’s unique ICAO identification number
and in some circumstances the tail number or call sign (such as
airline and flight number). These data are transmitted in the form
of ADS-B “messages” approximately 2 times per second. Any
aircraft equipped with ADS-B “in” technology, along with
ground-based receiver stations within line-of-sight and range of
the transmitting aircraft may receive and interpret these
messages. This provides increased safety benefits to other

mailto:zcao1235@umd.edu
mailto:lovell@umd.edu
mailto:bokil.6@buckeyemail.osu.edu
mailto:young.1460@osu.edu

2

aircraft in terms of enhanced traffic awareness and to air traffic
control in providing an added layer of surveillance.

Beyond the safety benefits that ADS-B provides in real time,
hobbyists and researchers may receive ADS-B data for their own
real time and archival use. The research community, for
example, is seeing increasing uses of archival ADS-B data for
other kinds of analyses. For example, Sun et al. [4] demonstrate
algorithms based on machine learning and fuzzy logic for
stitching together individual location records into contiguous
flights, and then segmenting those flights into different phases.
Cao and Lovell [5] did something similar, but focused on
distinguishing operations types, such as touch-and-go flights,
individual landings or takeoffs, etc. Mitkas et al. [6] focus on
operations that are particular to airports with significant flight
training activities. Sun et al. [7] use a year’s worth of data from
one ADS-B data crowdsourcing platform (the OpenSky
Network) to gain insights into trends in ADS-B equipage, fleet
management, and other statistics. Schultz et al. [8] analyzed the
ADS-B data from Zurich airport and extracted essential
parameters for airport performance, including taxi times,
runway occupancy times, and ground trajectories. This team
further extended their research to other small/medium airports
and proved the important role ADS-B plays in airport decision-
making [9]. Proud [10] used ADS-B data for the detection of go-
around operations.

Some of the applications are aimed directly at assessing, or
improving, airport capacity. Powell et al. [11] posit that ADS-B
data can be used in support of shrinking distances between
consecutive landing aircraft to improve capacity. Mitkas et al.
[12,13] use ADS-B data to measure runway occupancy times,
arrival and departure velocities, taxiway usage, and other
parameters important for capacity estimation at small general
aviation airports. Capacity estimation can be informed by
identifying specific flight operations, and several studies have
demonstrated processes to do this with ADS-B data [4,14].

In our own studies, and apparently in those of others, it is
possible to produce meaningful results even when relying on
inexpensive hobbyist level radio receiver equipment. However,
there are some important ramifications. A typical setup would
include some kind of antenna (indoor or outdoor), connected
through a bandpass filter to a demodulator dongle. A software
defined radio (SDR) is then used on a computer (Raspberry Pis
are popular for this purpose) to digitally decode the demodulated
signal and convert it into what would be considered raw ADS-B
messages. It is important to recognize that the original ADS-B
data, as broadcast by the aircraft, do not contain any absolute or
relative chronological timing information. Timing information
can be critical for downstream analyses, however. For example,
one cannot make proper use of derivative kinematics like
velocities or accelerations, without knowing the intervals of time
over which those values should be extended.

A typical solution to this problem is to timestamp the
received ADS-B messages with the local machine’s time (e.g. in
POSIX time). However, there are two important ways that this
can produce timestamps with erroneous intervals between them.
First, the act of demodulating and decoding the data is itself a
bandwidth-limited queue; hence results do not come out of the
back end with the same intervals they entered the front end.

Similarly, the local processing unit (e.g., the Raspberry Pi) is
also capacity constrained. The messages that come out of this
process are therefore buffered by at least two capacity-
constrained mechanisms.

Another factor affecting the message stream is message
collisions. We know that the original signals, with different type
codes, are broadcast (usually) at approximately 2 Hz frequency,
with some random dithering added to transmission times to help
minimize the risk of message collisions from different aircraft
[15]. Table I shows some details of the subset of type codes that
pertain to kinematic information. In heavy traffic, there is still a
distinct possibility of message garbling, which means that some
of the intended messages will simply be lost. Again, there is no
timing information contained in the message stream, nor is there
anything like a sequence number, so it is impossible to be
certain, at the receiving end, which messages, if any, were lost.

If neither the buffering nor the message collisions described
above were to occur, then the applied timestamps would be
accurate, and one would expect to see messages coming out the
back end of the decoding process with inter-arrival time intervals
averaging ½ second, with only very small deviations from this
mean value. In practice, however, we almost always see
something quite different. Figure 1 shows an example from a
typical message stream of the inter-arrival times between
consecutive decoded messages. The larger inter-arrival times all
cluster closely around some multiple of 0.5 seconds, with the
noise most likely representative of dithering. Clearly, however,
there are also some very small intervals (less than 0.5 seconds)
that cannot correspond to the original transmission intervals.
The larger intervals are indicative of situations where
intervening data must have been lost. The purpose of this paper
is to introduce a new debuffering process that can be applied to
mitigate against these buffering issues. The method itself can be
applied in two different ways – both as part of the message
decoding / amalgamation process, which is explained below, or
after decoding. The process will be validated in two different
ways, where some semblances of ground truth timing data can
be constructed from the ADS-B message stream, and we show
that analytical processes employing the debuffering algorithm
are more accurate than those without it.

It should be noted that there are expensive hardware
solutions to this problem. Advanced demodulation hardware
sometimes comes with the ability to tag outgoing data with GPS
timestamps. Relative time intervals inferred from this expensive
hardware would be much closer to the intervals at which the
radio frequency messages were actually received, which should
be quite consistent with how they were broadcast. The methods
of this paper, then, are intended to be applied in situations where
the more readily available and affordable hobbyist equipment is
used. It is important to remember that this hobbyist level
equipment forms the backbone of most of the crowd-sourced
ADS-B data repositories, so this is indeed an important
application. Additionally, there is an increasing number of small
businesses that are marketing ADS-B data products and
analytical solutions to small airports, and whose hardware
platform and software functionality may not be any more robust
than the hobbyist level technology described here.

3

TABLE I. TRANSMISSION FREQUENCY BY TYPE CODE [12]

Messages
Type
Codes

Ground
(still)

Ground
(moving) Airborne

Surface position 5-8 0.2 Hz 2 Hz -

Airborne position 9-18,
20-22 - - 2 Hz

Airborne velocity 19 - - 2 Hz

Figure 1 – Typical inter-arrival times of buffered messages

II. DEBUFFERING ALGORITHM
This section describes the general concept of the debuffering
algorithm. We then introduce some detail as to at what stage in
the decoding process this process should occur. The basic tenets
of the debuffering algorithm are quite simple:

• Any timestamp assigned to an ADS-B message must, in
fact, be later than the actual time at which that message
reached the radio system. The extraneous time is due to the
processing required for demodulation/decoding, plus any
queueing delays in those systems while they were busy
processing other messages.

• Any consecutive messages with timestamp differences less
than ½ second were not transmitted at this interval, and their
recorded time interval must instead be (improperly)
reflective the throughput of the decoding process.

With this in mind, we propose pushing assigned timestamps
backwards in time, through a first-in, first-out (FIFO) queue that
runs in reverse time, with a capacity of 2 messages/second (this
is the transmission rate common to most of the type codes in
ADS-B messages). Doing this is not guaranteed to push the
messages back to their correct arrival times, but it is our
hypothesis that, en masse, they will be closer to the truth than
they were with the buffering included. In broad strokes, this
process is illustrated in Figure 2.

Figure 2 – Illustration of debuffering algorithm

In this figure, the top timeline represents the times at which
received ADS-B messages were timestamped, and it is
understood that several of the intervals between messages are
less than 0.5 seconds. Working from right to left, those events
are pushed through a FIFO queue with capacity 2
messages/second, yielding the timestamps shown in the bottom
timeline. If 𝑡𝑡𝑖𝑖 and 𝑠𝑠𝑖𝑖 are the buffered and debuffered timestamps,
respectively, of message 𝑖𝑖, then the FIFO queue is invoked by
considering the messages in decreasing chronological order, and
applying the following recursion:

 𝑠𝑠𝑖𝑖 = min{𝑡𝑡𝑖𝑖 , 𝑠𝑠𝑖𝑖+1 − 0.5}. (1)

There is an additional detail that can influence the choice of how
to deploy the debuffering algorithm. ADS-B messages come in
many different type codes, each containing only part of the
overall set of data that is of interest at each time step. For
example, airborne position messages are encoded using a
Compact Position Reporting (CPR) format. This format allows
high resolution position information to be transmitted with fewer
bits.

If the receiver has no information about a starting absolute
position (this is always the case with anonymous ground
receiver equipment), then two messages must be combined in
order to properly decode the aircraft’s latitude and longitude
[15]. Additionally, it is common usage to construct a data stream
where each line of data contains a single sample of each of the
statistics of interest, and hence messages must be amalgamated.
The most popular open source software for decoding 1090 ES
ADS-B messages is pyModeS [16]. Its mechanism for
amalgamating messages relies, in some sense, on the buffering
described above to have happened. Essentially, message
timestamps are rounded to the nearest second, and then
combined. If any duplicate information is included, only the
most recent is kept. This amalgamation process is a very
practical solution for buffered data, but it retains the inaccuracy
of the buffered timestamps. A conundrum, then, is that if the
messages are debuffered as described above, then the resulting
data stream will not have enough messages in close temporal
proximity to allow the rounding process to group them together
into complete messages. As such, using the debuffering
algorithm to improve timestamp accuracy also predicates a need
to use an alternate approach to message amalgamation. Also,
knowing that messages of different type codes are broadcast
independently of each other, each with its own frequency, this is
also an opportunity to consider stratifying the messages by type
code, and applying the debuffering process to each separately.
Thus, we have constructed two separate variants of the
debuffering algorithm, each considering the amalgamation and
stratification processes differently:

1. Amalgamate the data using the rounding process in
[16], and debuffer complete messages. This variant is
particularly useful when working with archival data
where the complete messages have been saved, but the
original raw ADS-B messages have been discarded.

2. Stratify the raw messages by type code in the decoder,
debuffer them separately, and then amalgamate using a
different process, described in the next section. The
advantage of this method is that it is conceptually more

4

consistent with the reconstruction of the original
timeline of message transmission, and so it should
provide more accurate results, when the original raw
ADS-B messages are available.

III. MESSAGE AMALGAMATION
The first 5 bits of the message section of an ADS-B message
indicate the message type. In particular, in order to properly
decode position, from its CPR format, a pair of odd/even
position messages is required. Here we should note that there are
two types of position, i.e., surface position and airborne position.
For the surface position messages, the altitude and rate of climb
are defaulted to be 0. Surface position messages can also
describe the movements and ground track, which are also known
as surface velocity. Then, the surface and airborne velocities are
decoded by the software. Unlike surface velocity, airborne
velocity messages are separate from airborne position messages.
The rounding method of amalgamation relies on the premise
that, once message timestamps are rounded to integer seconds,
there will be the necessary odd/even position records, velocity
records, etc., in the same group, to allow them to be merged to
form a complete record. There can be excess messages of
various types encountered during this process, and in this case
older versions are dropped. Hence, this message has the added
disadvantage that data are being lost; data that would have had a
higher chance of being retained if the timestamps had been
pushed back closer to the truth. When we use this rounding
process and debuffer the resulting complete records, we call this
“post-decoder debuffering”.

The alternative is what we call “in-decoder debuffering”.
Each message type is debuffered separately, before being
decoded and merged into a complete record. We begin by
debuffering and decoding surface and airborne position
messages. Those decoded position messages then become the
“anchors” on the debuffered timeline, onto which we attempt to
attach any other missing information, such as velocities, to form
complete records.

Because the surface position messages also contain velocity
information, the timestamps will still be the same even if we
debuffer them separately. Thus, for the surface velocity and
surface position, we can directly merge them without any data
loss. In terms of the airborne velocity and position, instead of
rounding and dropping, for every position, we look for the
nearest airborne velocity message that is within the range of 0.5
seconds. Figure 3 shows an example of this process and the
various ways it can play out.

In this figure, the blue circles denote the positions on the
timeline where the debuffered and merged position records fall.
These need to be merged with velocity records, which are the
red circles.

Figure 3 – Matching process for merging complete records

Each position record is mated with its nearest velocity record, so
long as that velocity record is within 0.5 seconds. If there are no
such nearby velocity records, then only the position is retained,
as this is deemed the most important part of the message stream
(and, in fact, velocities could be inferred from numerical
differentiation of position wherever those data were missing).
Any velocity records not near enough a position record to be
merged are ignored. Presumably, this happens when the position
record that should have been nearby was garbled. Another
reason for prioritizing the position records over the velocity
records, and in particular prioritizing their retention of their
timestamps, is that position changes regularly as the airplane is
flying, and velocity is less subject to change. Thus, adjusting a
velocity record slightly in time should have very little impact on
accuracy. This same presumption is also followed in the
rounding process in the post-decoder debuffering variant.

An important advantage of the in-decoder variant is that all
position records are retained (the rounding process in the post-
decoder variant might erase some), and then matched with as
many velocity records as possible. As a result, the total number
of complete records generated using the in-decoder variant is
larger. Figure 4 shows the extent to which additional data are
retained using in-decoder debuffering. In that figure, the
differences in height between the blue and orange bars
represents the data loss for complete flights if timestamp
rounding is used (e.g., in the post-decoder debuffer). The green
and yellow bars show similar information when attention is
limited to post-takeoff messages; clearly the impact of data loss
is felt most for surface messages.

IV. VALIDATION CASE STUDY: ALTITUDE INTEGRATION
Complete ADS-B messages contain both barometric altitude
data, in units of feet, and rate-of-climb information, in units of
feet per minute. At first glance, it might appear that there is
redundancy here, as the altitude data should be the integral of the
rate of climb data. However, as noted above, there are instances
where the rate of climb data in an aircraft’s message stream seem
to be reasonable, while the altitude data do not. In such cases, it
would make sense to construct an alternate version of the
altitude data by integrating the rate of climb data [5]. The
complication is that one needs to know what time intervals over
which to perform the integration. One way to validate the
debuffering algorithm is to perform this rate of climb integration
on flights whose altitude data is also reliable. The time intervals
can be inferred from the consecutive differences in timestamps.
If debuffering is doing a good job, then the debuffered
timestamps should better replicate the altitude data (taken to be
the “truth”) than the originally buffered timestamps would.

Examples of applying this idea to some individual flights are
shown in Figures 5-7. The numerical integration is performed
using the trapezoidal rule (because rates of climb can change
quickly), but similar results can be found using Simpson’s rules.

5

Figure 4 – Data retention comparison

Figure 5 shows a case of a single takeoff. The red line is the
ground truth altitude data reported in the ADS-B data stream.
The yellow line shows the results of integrating rate of climb to
estimate altitude, based on the original buffered timestamps.
Finally, the green line represents doing the same thing but with
debuffered timestamps, and it is clearly more representative of
the truth.

In Figure 6, we highlight a single flight that takes off and
climbs (the taxiing portion of the trajectory is omitted from the
figure), leveling off at just over 1000 feet, where it dwells for a
short period, and then climbs again to just over 2000 feet. The
integration step is inaccurate at the beginning of this exercise,
because the timestamps were buffered, and this error remains for
the rest of the trajectory. It is notable that in Figure 6, an
incoherent section, which is caused by buffered timestamps,
exists at the beginning of the takeoff operation. The same
phenomenon can be found in many other takeoffs in KOSU,
while the buffered timestamps in landings tend to be uniformly
distributed along the time axis. A possible reason is that the
layout of KOSU runways could lead to a higher signal density
at the takeoff end, especially the area below 1500ft near KOSU.
Both the original trajectory and the integrated trajectory are
improved by applying debuffering, and thus a much better match
is produced, as shown in Figure 7.

Figure 5 – Altitude accuracy improvement with debuffering

Figure 6 – Altitude integration with buffered data

Figure 7 – Altitude integration with debuffered data

For a more comprehensive test, we selected 100 flights to test
this integrated altitude comparison. Of these flights, 75 are
single takeoffs, and the rest are touch-and-go flights. We deem
the recorded altitude in the received messages as the ground
truth. We construct two cases for each flight: first, we integrate
the rates of climb using the buffered timestamps, and compare
to the altitude data (assessed at those same buffered timestamps);
second, we perform the same operation with the debuffered
timestamps. The error metric in each case is the final vertical
distance (in units of feet) of altitude deviation between the true
and the integrated altitude. We call this measurement the “drift”
because it represents the final extent by which the two profiles
have deviated.

For the single takeoff flights, we start the experiment at the
point of takeoff, which is identified using an algorithm
developed in [17]. The touch-and-go flights all start and end at
zero feet altitude above ground level (AGL). Altitude integration
is more challenging for such flights, because it is our experience
that the rate of climb data are biased towards positive rates of
climb. Thus, even though the actual flight profile would suggest
that the troughs of the altitude profile should be very close to 0
feet AGL, the integrated data show their altitudes increasing
over time, contributing to the final value of drift. This is
ameliorated somewhat, but not entirely, by the debuffering

6

process. Other possible explanations include differences in
“visibility” of the transmitting antenna on the aircraft in
climbing and descending attitudes, which could also depend on
the receiver antenna placement. At this point, this phenomenon
is not completely understood, and more inquiry is required.

In Table II, we show a sample of 38 out of these 100 flights.
Any row with a positive sign for the value of the improvement
indicates that the drift derived from debuffered timestamps is
better (i.e., less) than what would have been obtained with the
original buffered timestamps. For these results, all of the
debuffered drifts are calculated using in-decoder debuffered
data.

TABLE II. IMPROVEMENT IN DRIFT METRIC

Flight ID
Debuffered Drift

(ft)
Buffered Drift

(ft) Improvement (ft)
356015 -29.11 -72.56 43.45

356185 42.87 48.80 5.93

356930 182.90 349.12 166.21

380627 -2.23 -30.43 28.20

283714 -7.43 -197.40 189.97

282936 -3.79 -20.38 16.58

284363 26.14 -377.91 351.77

271063 -5.21 -0.65 -4.55

282983 -30.04 -39.14 9.10

149569 -0.24 -0.87 0.63

284168 20.24 25.31 5.07

284451 -38.95 -57.16 18.22

283423 243.98 247.98 4.00

282676 139.93 142.03 2.10

283123 106.60 106.58 -0.02

283900 -70.10 -63.77 -6.33

270408 -12.18 -56.22 44.04

284314 -48.43 -23.00 -25.43

275489 7.19 -33.34 26.14

282259 36.81 24.76 -12.05

283207 5.02 8.47 3.45

378372 -11.75 1.03 -10.72

376508 -64.25 -70.18 5.93

376662 -29.39 -30.75 1.37

378598 -237.54 -246.57 9.03

376660 -10.64 -16.63 5.99

376792 49.36 72.40 23.04

377324 -300.37 -275.52 -24.84

377198 62.66 71.84 9.18

377754 -21.67 -27.36 5.69

377547 -107.07 -102.62 -4.45

378488 -16.98 -14.25 -2.72

377035 -37.27 48.30 11.03

377752 25.87 48.51 22.63

376918 -33.63 -72.12 38.49

377176 48.56 91.04 42.48

381389 -50.25 -13.72 -36.52

378880 -69.37 -84.71 15.34

From the takeoff flights, we found that 52 of the 75 tested
takeoffs have smaller debuffered drifts. The average
improvement is 40.77 feet. Only 2 cases have similar drifts in
the buffered and debuffered trajectories. For the rest of the cases,
the buffered drifts and debuffered drifts have an average
difference of 12.63 feet, which is even smaller than the altitude
resolution of 1090 MHz devices (25 feet). Moreover, 12 of the
15 cases with buffered drifts over 100 feet have smaller
debuffered drifts. This result indicates that debuffering has the
potential to ease drifts for flights with large initial integration
deviation. As for the touch-and-go flights, 80% of the flights’
drifts are improved by debuffering. Compared to takeoffs, the
touch and goes’ drifts are much larger; some of them are over
1000 feet, while the others are over 100 feet. The reason is that
longer flight durations will cause more drifts to accumulate.

V. VALIDATION CASE STUDY: CORRELATION OF IMPLICIT AND
EXPLICIT TIMESTAMP DIFFERENCES

Despite the ADS-B message stream not containing explicit time
information, it is possible to approximate the elapsed time
between consecutive messages using the other telemetry data in
those messages. For message 𝑖𝑖, we denote the latitude 𝑙𝑙𝑙𝑙𝑡𝑡𝑖𝑖,
longitude 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖, and speed 𝑣𝑣𝑖𝑖. If we are willing to assume that the
acceleration is constant between two consecutive messages (this
is not an onerous assumption, as aircraft tend not to exhibit large
values of jerk), then the mean velocity between the two instances
is

 𝑣𝑣𝑚𝑚 ≅ 𝑣𝑣𝑖𝑖+1−𝑣𝑣𝑖𝑖
2

. (2)

The elapsed time between the two messages can then be
estimated by

 Δ𝑡𝑡 ≅ 𝑑𝑑(𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖,𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖,𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖+1,𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖+1)
𝑣𝑣𝑚𝑚

, (3)

where 𝑑𝑑(𝑙𝑙𝑙𝑙𝑡𝑡𝑖𝑖 , 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖 , 𝑙𝑙𝑙𝑙𝑡𝑡𝑖𝑖+1, 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖+1) is a distance measurement
based on the two pairs of latitude and longitude. We call this
estimate of the time interval the “implicit” time interval for this
pair of messages. For the short time intervals expected in this
application, the Haversine distance formula should be
sufficiently accurate, and that is what was used to produce the
following results. It should be noted that, of course, these
position data are collected by the aircraft with some error
distribution. If those errors are strongly correlated between
consecutive measurements, then this distance estimate will be
quite accurate; otherwise, it is less so.

This method of validation, then is to compare the values of
Δ𝑡𝑡 estimated from each pair of consecutive messages, with the
differences in the recorded timestamps (either buffered or
debuffered). The validation hypothesis here is that debuffering

7

is improving the accuracy of the timestamps if the sample
correlation between the implicit timestamps and the debuffered
timestamps is higher than that between the implicit timestamps
and the buffered timestamps.

Figure 8 shows the results of this validation step for 50
representative flights. The blue bars represent the sample
correlations between intervals formed from the original buffered
timestamps, and the implicit intervals constructed from (3).The
figure is organized so that the flights are sorted in increasing
order of this statistic, to improve readability. The red bars show
the correlation coefficients between time intervals formed from
post-decoder debuffered data and the implicit time intervals.
Clearly, there is a marked increase in accuracy from even this
coarse method of debuffering. Not surprisingly, the magnitude
of the improvement is reduced as the original correlations get
higher, as correlation is clamped at 1.0. Finally, the green bars
show the correlations between time intervals formed from in-
decoder debuffered data and the implicit time intervals. In most
cases, there is an incremental improvement from this approach.
As before, the largest improvements occur when the buffered
coefficients were lowest.

Compared to the drift measurement, we believe that this
error metric measurement is more stable because it does not
involve accumulative errors. Every pair of implicit and explicit
time interval contains the information of only one pair of closely
spaced data points. Therefore, implicit times and explicit times
are independent from each other, so bias will not accumulate.

As part of a larger numerical experiment, we looked at all
the flights without big data gaps in our database from two small
airports, KOSU in Ohio and KFRG in New York. The reason for
excluding these flights is that large time gaps create situations
where the implicit timestamps are not reliable. The debuffering
would be unaffected over a large time gap. For the 77 flights
from KOSU, only one flight has a lower debuffered correlation
coefficient than the buffered one. For all 384 flights from KFRG,
96.61% of the flights’ correlation coefficient are improved by
post-decoder debuffering. Among these flights, 100 were single
takeoff operations, and 99 of them have better post-decoder
coefficients than buffered coefficients. Additionally, 63 of them
have better in-decoder debuffered coefficients than post-
decoder. The average improvement from buffered to post-
decoder debuffered coefficients was 25.8%, whereas the average
improvement from buffered to in-decoder debuffering was
30.24%.

Figure 8 – Correlation coefficients between implicit and buffered/debuffered

time intervals for flights from KFRG and KOSU

VI. CONCLUSIONS
This paper has articulated how a seemingly straightforward
assignment of timestamps to received ADS-B messages in an
inexpensive hardware/software configuration might yield
timestamps whose intervals have been compressed due to
buffering in the queues associated with demodulating and
decoding the data. We present a simple FIFO queue debuffering
algorithm to ameliorate this situation. This algorithm can be
applied either after the messages have been decoded and
amalgamated to form complete data records, or, preferably, as
part of the internal decoding process, where messages of
different type codes can be stratified and debuffered
independently, which more faithfully represents the means by
which they were transmitted.

The post-decoder method shows significant improvements
over two validation techniques that rely on information in the
ADS-B data stream as ground truth. In one case, we show that
estimating altitude by numerical integration of rate-of-climb
data is improved when debuffered timestamps are used, and in
the second case we show that comparing relative differences of
recorded timestamps to implicit timing information buried in the
position and speed data also improves. In both cases, the in-
decoder debuffering tends to do even better than the post-
decoder method.

The in-decoder method is best, but can only be applied when
original ADS-B messages are available, and they have not yet
been amalgamated. In the case of archived data which have
already been decoded, however, the post-decoder method still
produces much better results than using buffered timestamps.

In our experience, there are cases where the data streams
have large temporal gaps. This is likely due to occlusion of the
antenna due to its placement in a building, or in some sense
relative to the runway geometry. Any use of ADS-B data will
benefit from using an antenna that is exterior mounted and has
good lines of sight to the entire airfield. Of course, estimates of
kinematic data over these longer time gaps are unreliable
because one cannot presume that an aircraft’s speed, velocity,
heading, etc. change insignificantly over longer time periods.

It might be advisable to consider, when developing future
replacements for the ADS-B communications protocol,
incorporating some standardized timing information, if only on
a subset of the transmissions, to allow some direct computation
of lags to be measured between original transmission times and
final decoding times. Additionally, it would be instructive to
conduct direct experiments where the data from the transponder
on a known aircraft were timestamped and logged inside the
cockpit, and then that same aircraft’s data were investigated after
reception and decoding by the ADS-B receiver apparatus.

ACKNOWLEDGMENT
We thank Kent Duffy of the Federal Aviation Administration
and Dr. Junzi Sun of the Delft University of Technology for their
advice and technical guidance, and particularly Dr. Sun for the
use of his open-source ADS-B decoding software. Some support
for this work was provided by the Federal Aviation
Administration under award number 693KA920F00175, titled

8

NEXTOR III: DO 06: Small Aircraft Capacity Modeling Factors
- Phase II.

REFERENCES
[1] Final Rule, Automatic Dependent Surveillance-Broadcast (ADS-B) Out

Performance Requirements to Support Air Traffic Control (ATC), 75 FR
30160 (May 28, 2010).

[2] RTCA DO-260B, Minimum Operational Performance Standards for 1090
MHz Extended Squitter Automatic Dependent Surveillance– Broadcast
(ADS-B) and Traffic Information Services–Broadcast (TIS-B), December
2009.

[3] RTCA DO-282B, Minimum Operational Performance Standards for
Universal Access Transceiver (UAT) Automatic Dependent Surveillance
– Broadcast, December 2009.

[4] J. Sun, J. Ellerbroek, and J. Hoekstra, "Flight extraction and phase
identification for large automatic dependent surveillance–broadcast
datasets," Journal of Aerospace Information Systems, vol. 14(10), pp.
566-572, 2017.

[5] Z. Cao and D. Lovell, “Identifying aviation operation types using flight
trajectories.” In 10th International Conference for Research in Air
Transportation (ICRAT), Tampa, FL, USA, 2022.

[6] D. Mitkas, D.J. Lovell, and S.B. Young, “Learning to recognize and
stratify flight training activities at GA airports using ADS-B data.” In: 8th
OpenSky Symposium, virtual, 2020.

[7] J. Sun, X. Olive, M. Strohmeier, M. Schäfer, I. Martinovic, and V.
Lenders, “OpenSky Report 2021: Insights on ADS-B Mandate and Fleet
Deployment in Times of Crisis”. In 2021 IEEE/AIAA 40th Digital
Avionics Systems Conference (DASC), pp. 1-10, 2021.

[8] M. Schultz, X. Olive, J. Rosenow, H. Fricke, and S. Alam, “Analysis of
airport ground operations based on ADS-B data.” In 2020 International
Conference on Artificial Intelligence and Data Analytics for Air
Transportation (AIDA-AT), pp. 1-9, 2020.

[9] M. Schultz, J. Rosenow, and X. Olive, “Data-driven airport management
enabled by operational milestones derived from ADS-B messages.”
Journal of Air Transport Management, 99, 102164, 2022.

[10] S.R. Proud, “Go-around detection using crowd-sourced ADS-B position
data.” Aerospace, 7(2), 16, pp. 1-14, 2020.

[11] J.D. Powell, C. Jennings, and W. Holforty, “Use of ADS-B and
perspective displays to enhance airport capacity.” In 24th Digital
Avionics Systems Conference, Vol. 1, pp. 4-D, 2005.

[12] D.Z. Mitkas, D.J. Lovell, S. Venkatesh, and S.B. Young, “Leveraging
local ADS-B transmissions to assess the performance of air traffic at
general aviation airports.” In 14th USA/Europe Air Traffic Management
Seminar (ATM), virtual, 2021.

[13] D.Z. Mitkas, D.J. Lovell, S.B. Young, and S. Venkatesh, “Developing
capacity estimation metrics for airports accommodating smaller aircraft
using locally collected Automated Dependent Surveillance-Broadcast
data.” Transportation Research Record 2676, pp. 285-295, 2022.

[14] X. Olive and L. Basora, "Detection and identification of significant events
in historical aircraft trajectory data." Transportation Research Part C:
Emerging Technologies 119, 102737, 2020.

[15] J. Sun, "The 1090 megahertz riddle: a guide to decoding mode s and ads-
b signals." TU Delft OPEN Publishing, 2021.

[16] J. Sun, “The Python ADS-B/Mode-S Decoder.” Github repository,
https://github.com/junzis/pyModeS, visited 02/03/2023.

[17] A. Bokil and S.B. Young, “Development of QGIS tools to aid in airport
operations modeling using ADS-B data.” In 10th International
Conference for Research in Air Transportation (ICRAT), Tampa, FL,
2022.

	I. Introduction
	II. Debuffering Algorithm
	III. Message Amalgamation
	IV. Validation Case Study: Altitude Integration
	V. Validation Case Study: Correlation of implicit and explicit timestamp differences
	VI. Conclusions
	Acknowledgment
	References

