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Abstract—Because the Automated Dependent Surveillance – 
Broadcast (ADS-B) data format does not include explicit timing 
information, messages are typically time-stamped upon receipt, 
after they have passed through a number of buffering steps 
associated with demodulating and decoding the signal. These 
queues push apparent message arrival times later in time, and 
more importantly, affect the inter-arrival times between messages, 
which can then have downstream impacts when trying to use time-
based kinematic data such as velocities and accelerations. This 
paper demonstrates how this buffering process manifests itself, 
and introduces a queueing based debuffering algorithm to 
ameliorate the situation. Two forms of validation are offered, one 
based on the numerical integration of rate-of-climb data to 
produce elevation, and one based on implicit timestamp 
differences derived from the native ADS-B data stream. 

Keywords-ADS-B, aviation data, aircraft tracking 

I. INTRODUCTION 
In January 2020, the Federal Aviation Administration required 
[1] that aircraft operating in certain airspace within the United 
States be equipped with Automated Dependent Surveillance - 
Broadcast (ADS-B) technology [2, 3]. Since this mandate, 
approximately 60% of the United States fleet of registered civil 
use aircraft have been so equipped. This technology has 
provided the nation’s air traffic control system with an additional 
effective and accurate means of aircraft flight tracking. 

ADS-B can use the same Mode S transponders that answer when 
interrogation messages are sent from ground-based air traffic 
control facilities. The kinematic information broadcast by the 
transponder is more precise than what can be inferred from a 
primary radar system. In addition, ADS-B provides the ability 
for aircraft to broadcast in a “squitter”, or unsolicited mode (not 
as the result of an interrogation). This mode is important because 
these regular broadcasts can be observed not just on the ground, 
but by other aircraft flying in the vicinity, to help them form 
better situational awareness. As a side benefit, ADS-B data can 
not only be received by other aircraft in flight, but also by the 
general public, including researchers interested in leveraging 
ADS-B data to optimize air traffic system performance.  

Specifically, aircraft equipped with ADS-B “out” 
technology broadcast the aircraft’s position in three dimensions 
(latitude, longitude, and altitude), telemetry (ground speed, 
track, and rate of climb), and the aircraft’s identifying 
information (the aircraft’s unique ICAO identification number 
and in some circumstances the tail number or call sign (such as 
airline and flight number). These data are transmitted in the form 
of ADS-B “messages” approximately 2 times per second. Any 
aircraft equipped with ADS-B “in” technology, along with 
ground-based receiver stations within line-of-sight and range of 
the transmitting aircraft may receive and interpret these 
messages. This provides increased safety benefits to other 
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aircraft in terms of enhanced traffic awareness and to air traffic 
control in providing an added layer of surveillance.  

Beyond the safety benefits that ADS-B provides in real time, 
hobbyists and researchers may receive ADS-B data for their own 
real time and archival use. The research community, for 
example, is seeing increasing uses of archival ADS-B data for 
other kinds of analyses. For example, Sun et al. [4] demonstrate 
algorithms based on machine learning and fuzzy logic for 
stitching together individual location records into contiguous 
flights, and then segmenting those flights into different phases. 
Cao and Lovell [5] did something similar, but focused on 
distinguishing operations types, such as touch-and-go flights, 
individual landings or takeoffs, etc. Mitkas et al. [6] focus on 
operations that are particular to airports with significant flight 
training activities. Sun et al. [7] use a year’s worth of data from 
one ADS-B data crowdsourcing platform (the OpenSky 
Network) to gain insights into trends in ADS-B equipage, fleet 
management, and other statistics. Schultz et al. [8] analyzed the 
ADS-B data from Zurich airport and extracted essential 
parameters for airport performance, including taxi times, 
runway occupancy times, and ground trajectories. This team 
further extended their research to other small/medium airports 
and proved the important role ADS-B plays in airport decision-
making [9]. Proud [10] used ADS-B data for the detection of go-
around operations. 

Some of the applications are aimed directly at assessing, or 
improving, airport capacity. Powell et al. [11] posit that ADS-B 
data can be used in support of shrinking distances between 
consecutive landing aircraft to improve capacity. Mitkas et al. 
[12,13] use ADS-B data to measure runway occupancy times, 
arrival and departure velocities, taxiway usage, and other 
parameters important for capacity estimation at small general 
aviation airports. Capacity estimation can be informed by 
identifying specific flight operations, and several studies have 
demonstrated processes to do this with ADS-B data [4,14]. 

In our own studies, and apparently in those of others, it is 
possible to produce meaningful results even when relying on 
inexpensive hobbyist level radio receiver equipment. However, 
there are some important ramifications. A typical setup would 
include some kind of antenna (indoor or outdoor), connected 
through a bandpass filter to a demodulator dongle. A software 
defined radio (SDR) is then used on a computer (Raspberry Pis 
are popular for this purpose) to digitally decode the demodulated 
signal and convert it into what would be considered raw ADS-B 
messages. It is important to recognize that the original ADS-B 
data, as broadcast by the aircraft, do not contain any absolute or 
relative chronological timing information. Timing information 
can be critical for downstream analyses, however. For example, 
one cannot make proper use of derivative kinematics like 
velocities or accelerations, without knowing the intervals of time 
over which those values should be extended. 

A typical solution to this problem is to timestamp the 
received ADS-B messages with the local machine’s time (e.g. in 
POSIX time). However, there are two important ways that this 
can produce timestamps with erroneous intervals between them. 
First, the act of demodulating and decoding the data is itself a 
bandwidth-limited queue; hence results do not come out of the 
back end with the same intervals they entered the front end. 

Similarly, the local processing unit (e.g., the Raspberry Pi) is 
also capacity constrained. The messages that come out of this 
process are therefore buffered by at least two capacity-
constrained mechanisms. 

Another factor affecting the message stream is message 
collisions. We know that the original signals, with different type 
codes, are broadcast (usually) at approximately 2 Hz frequency, 
with some random dithering added to transmission times to help 
minimize the risk of message collisions from different aircraft 
[15]. Table I shows some details of the subset of type codes that 
pertain to kinematic information. In heavy traffic, there is still a 
distinct possibility of message garbling, which means that some 
of the intended messages will simply be lost. Again, there is no 
timing information contained in the message stream, nor is there 
anything like a sequence number, so it is impossible to be 
certain, at the receiving end, which messages, if any, were lost. 

If neither the buffering nor the message collisions described 
above were to occur, then the applied timestamps would be 
accurate, and one would expect to see messages coming out the 
back end of the decoding process with inter-arrival time intervals 
averaging ½ second, with only very small deviations from this 
mean value. In practice, however, we almost always see 
something quite different. Figure 1 shows an example from a 
typical message stream of the inter-arrival times between 
consecutive decoded messages. The larger inter-arrival times all 
cluster closely around some multiple of 0.5 seconds, with the 
noise most likely representative of dithering. Clearly, however, 
there are also some very small intervals (less than 0.5 seconds) 
that cannot correspond to the original transmission intervals. 
The larger intervals are indicative of situations where 
intervening data must have been lost. The purpose of this paper 
is to introduce a new debuffering process that can be applied to 
mitigate against these buffering issues. The method itself can be 
applied in two different ways – both as part of the message 
decoding / amalgamation process, which is explained below, or 
after decoding. The process will be validated in two different 
ways, where some semblances of ground truth timing data can 
be constructed from the ADS-B message stream, and we show 
that analytical processes employing the debuffering algorithm 
are more accurate than those without it. 

It should be noted that there are expensive hardware 
solutions to this problem. Advanced demodulation hardware 
sometimes comes with the ability to tag outgoing data with GPS 
timestamps. Relative time intervals inferred from this expensive 
hardware would be much closer to the intervals at which the 
radio frequency messages were actually received, which should 
be quite consistent with how they were broadcast. The methods 
of this paper, then, are intended to be applied in situations where 
the more readily available and affordable hobbyist equipment is 
used. It is important to remember that this hobbyist level 
equipment forms the backbone of most of the crowd-sourced 
ADS-B data repositories, so this is indeed an important 
application. Additionally, there is an increasing number of small 
businesses that are marketing ADS-B data products and 
analytical solutions to small airports, and whose hardware 
platform and software functionality may not be any more robust 
than the hobbyist level technology described here. 
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TABLE I.  TRANSMISSION FREQUENCY BY TYPE CODE [12] 

Messages 
Type 
Codes 

Ground 
(still) 

Ground 
(moving) Airborne 

Surface position 5-8 0.2 Hz 2 Hz - 

Airborne position 9-18, 
20-22 - - 2 Hz 

Airborne velocity 19 - - 2 Hz 

 

 
 

Figure 1 – Typical inter-arrival times of buffered messages 

II. DEBUFFERING ALGORITHM 
This section describes the general concept of the debuffering 
algorithm. We then introduce some detail as to at what stage in 
the decoding process this process should occur. The basic tenets 
of the debuffering algorithm are quite simple: 

• Any timestamp assigned to an ADS-B message must, in 
fact, be later than the actual time at which that message 
reached the radio system. The extraneous time is due to the 
processing required for demodulation/decoding, plus any 
queueing delays in those systems while they were busy 
processing other messages. 

• Any consecutive messages with timestamp differences less 
than ½ second were not transmitted at this interval, and their 
recorded time interval must instead be (improperly) 
reflective the throughput of the decoding process. 

With this in mind, we propose pushing assigned timestamps 
backwards in time, through a first-in, first-out (FIFO) queue that 
runs in reverse time, with a capacity of 2 messages/second (this 
is the transmission rate common to most of the type codes in 
ADS-B messages). Doing this is not guaranteed to push the 
messages back to their correct arrival times, but it is our 
hypothesis that, en masse, they will be closer to the truth than 
they were with the buffering included. In broad strokes, this 
process is illustrated in Figure 2. 

 
Figure 2 – Illustration of debuffering algorithm 

In this figure, the top timeline represents the times at which 
received ADS-B messages were timestamped, and it is 
understood that several of the intervals between messages are 
less than 0.5 seconds. Working from right to left, those events 
are pushed through a FIFO queue with capacity 2 
messages/second, yielding the timestamps shown in the bottom 
timeline. If 𝑡𝑡𝑖𝑖 and 𝑠𝑠𝑖𝑖 are the buffered and debuffered timestamps, 
respectively, of message 𝑖𝑖, then the FIFO queue is invoked by 
considering the messages in decreasing chronological order, and 
applying the following recursion: 

 𝑠𝑠𝑖𝑖 = min{𝑡𝑡𝑖𝑖 , 𝑠𝑠𝑖𝑖+1 − 0.5}. (1) 

There is an additional detail that can influence the choice of how 
to deploy the debuffering algorithm. ADS-B messages come in 
many different type codes, each containing only part of the 
overall set of data that is of interest at each time step. For 
example, airborne position messages are encoded using a 
Compact Position Reporting (CPR) format. This format allows 
high resolution position information to be transmitted with fewer 
bits. 

If the receiver has no information about a starting absolute 
position (this is always the case with anonymous ground 
receiver equipment), then two messages must be combined in 
order to properly decode the aircraft’s latitude and longitude 
[15]. Additionally, it is common usage to construct a data stream 
where each line of data contains a single sample of each of the 
statistics of interest, and hence messages must be amalgamated. 
The most popular open source software for decoding 1090 ES 
ADS-B messages is pyModeS [16]. Its mechanism for 
amalgamating messages relies, in some sense, on the buffering 
described above to have happened. Essentially, message 
timestamps are rounded to the nearest second, and then 
combined. If any duplicate information is included, only the 
most recent is kept. This amalgamation process is a very 
practical solution for buffered data, but it retains the inaccuracy 
of the buffered timestamps. A conundrum, then, is that if the 
messages are debuffered as described above, then the resulting 
data stream will not have enough messages in close temporal 
proximity to allow the rounding process to group them together 
into complete messages. As such, using the debuffering 
algorithm to improve timestamp accuracy also predicates a need 
to use an alternate approach to message amalgamation. Also, 
knowing that messages of different type codes are broadcast 
independently of each other, each with its own frequency, this is 
also an opportunity to consider stratifying the messages by type 
code, and applying the debuffering process to each separately. 
Thus, we have constructed two separate variants of the 
debuffering algorithm, each considering the amalgamation and 
stratification processes differently: 

1. Amalgamate the data using the rounding process in 
[16], and debuffer complete messages. This variant is 
particularly useful when working with archival data 
where the complete messages have been saved, but the 
original raw ADS-B messages have been discarded. 

2. Stratify the raw messages by type code in the decoder, 
debuffer them separately, and then amalgamate using a 
different process, described in the next section. The 
advantage of this method is that it is conceptually more 
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consistent with the reconstruction of the original 
timeline of message transmission, and so it should 
provide more accurate results, when the original raw 
ADS-B messages are available. 

III. MESSAGE AMALGAMATION 
The first 5 bits of the message section of an ADS-B message 
indicate the message type. In particular, in order to properly 
decode position, from its CPR format, a pair of odd/even 
position messages is required. Here we should note that there are 
two types of position, i.e., surface position and airborne position. 
For the surface position messages, the altitude and rate of climb 
are defaulted to be 0. Surface position messages can also 
describe the movements and ground track, which are also known 
as surface velocity. Then, the surface and airborne velocities are 
decoded by the software. Unlike surface velocity, airborne 
velocity messages are separate from airborne position messages. 
The rounding method of amalgamation relies on the premise 
that, once message timestamps are rounded to integer seconds, 
there will be the necessary odd/even position records, velocity 
records, etc., in the same group, to allow them to be merged to 
form a complete record. There can be excess messages of 
various types encountered during this process, and in this case 
older versions are dropped. Hence, this message has the added 
disadvantage that data are being lost; data that would have had a 
higher chance of being retained if the timestamps had been 
pushed back closer to the truth. When we use this rounding 
process and debuffer the resulting complete records, we call this 
“post-decoder debuffering”.  

The alternative is what we call “in-decoder debuffering”. 
Each message type is debuffered separately, before being 
decoded and merged into a complete record. We begin by 
debuffering and decoding surface and airborne position 
messages. Those decoded position messages then become the 
“anchors” on the debuffered timeline, onto which we attempt to 
attach any other missing information, such as velocities, to form 
complete records. 

Because the surface position messages also contain velocity 
information, the timestamps will still be the same even if we 
debuffer them separately. Thus, for the surface velocity and 
surface position, we can directly merge them without any data 
loss. In terms of the airborne velocity and position, instead of 
rounding and dropping, for every position, we look for the 
nearest airborne velocity message that is within the range of 0.5 
seconds. Figure 3 shows an example of this process and the 
various ways it can play out. 

In this figure, the blue circles denote the positions on the 
timeline where the debuffered and merged position records fall. 
These need to be merged with velocity records, which are the 
red circles. 

 
Figure 3 – Matching process for merging complete records 

Each position record is mated with its nearest velocity record, so 
long as that velocity record is within 0.5 seconds. If there are no 
such nearby velocity records, then only the position is retained, 
as this is deemed the most important part of the message stream 
(and, in fact, velocities could be inferred from numerical 
differentiation of position wherever those data were missing). 
Any velocity records not near enough a position record to be 
merged are ignored. Presumably, this happens when the position 
record that should have been nearby was garbled. Another 
reason for prioritizing the position records over the velocity 
records, and in particular prioritizing their retention of their 
timestamps, is that position changes regularly as the airplane is 
flying, and velocity is less subject to change. Thus, adjusting a 
velocity record slightly in time should have very little impact on 
accuracy. This same presumption is also followed in the 
rounding process in the post-decoder debuffering variant. 

An important advantage of the in-decoder variant is that all 
position records are retained (the rounding process in the post-
decoder variant might erase some), and then matched with as 
many velocity records as possible. As a result, the total number 
of complete records generated using the in-decoder variant is 
larger. Figure 4 shows the extent to which additional data are 
retained using in-decoder debuffering. In that figure, the 
differences in height between the blue and orange bars 
represents the data loss for complete flights if timestamp 
rounding is used (e.g., in the post-decoder debuffer). The green 
and yellow bars show similar information when attention is 
limited to post-takeoff messages; clearly the impact of data loss 
is felt most for surface messages. 

IV. VALIDATION CASE STUDY: ALTITUDE INTEGRATION 
Complete ADS-B messages contain both barometric altitude 
data, in units of feet, and rate-of-climb information, in units of 
feet per minute. At first glance, it might appear that there is 
redundancy here, as the altitude data should be the integral of the 
rate of climb data. However, as noted above, there are instances 
where the rate of climb data in an aircraft’s message stream seem 
to be reasonable, while the altitude data do not. In such cases, it 
would make sense to construct an alternate version of the 
altitude data by integrating the rate of climb data [5]. The 
complication is that one needs to know what time intervals over 
which to perform the integration. One way to validate the 
debuffering algorithm is to perform this rate of climb integration 
on flights whose altitude data is also reliable. The time intervals 
can be inferred from the consecutive differences in timestamps. 
If debuffering is doing a good job, then the debuffered 
timestamps should better replicate the altitude data (taken to be 
the “truth”) than the originally buffered timestamps would. 

Examples of applying this idea to some individual flights are 
shown in Figures 5-7. The numerical integration is performed 
using the trapezoidal rule (because rates of climb can change 
quickly), but similar results can be found using Simpson’s rules. 
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Figure 4 – Data retention comparison 

Figure 5 shows a case of a single takeoff. The red line is the 
ground truth altitude data reported in the ADS-B data stream. 
The yellow line shows the results of integrating rate of climb to 
estimate altitude, based on the original buffered timestamps. 
Finally, the green line represents doing the same thing but with 
debuffered timestamps, and it is clearly more representative of 
the truth. 

In Figure 6, we highlight a single flight that takes off and 
climbs (the taxiing portion of the trajectory is omitted from the 
figure), leveling off at just over 1000 feet, where it dwells for a 
short period, and then climbs again to just over 2000 feet. The 
integration step is inaccurate at the beginning of this exercise, 
because the timestamps were buffered, and this error remains for 
the rest of the trajectory. It is notable that in Figure 6, an 
incoherent section, which is caused by buffered timestamps, 
exists at the beginning of the takeoff operation. The same 
phenomenon can be found in many other takeoffs in KOSU, 
while the buffered timestamps in landings tend to be uniformly 
distributed along the time axis. A possible reason is that the 
layout of KOSU runways could lead to a higher signal density 
at the takeoff end, especially the area below 1500ft near KOSU. 
Both the original trajectory and the integrated trajectory are 
improved by applying debuffering, and thus a much better match 
is produced, as shown in Figure 7. 

 

 
Figure 5 – Altitude accuracy improvement with debuffering 

 
Figure 6 – Altitude integration with buffered data 

 
Figure 7 – Altitude integration with debuffered data 

For a more comprehensive test, we selected 100 flights to test 
this integrated altitude comparison. Of these flights, 75 are 
single takeoffs, and the rest are touch-and-go flights. We deem 
the recorded altitude in the received messages as the ground 
truth. We construct two cases for each flight: first, we integrate 
the rates of climb using the buffered timestamps, and compare 
to the altitude data (assessed at those same buffered timestamps); 
second, we perform the same operation with the debuffered 
timestamps. The error metric in each case is the final vertical 
distance (in units of feet) of altitude deviation between the true 
and the integrated altitude. We call this measurement the “drift” 
because it represents the final extent by which the two profiles 
have deviated. 

For the single takeoff flights, we start the experiment at the 
point of takeoff, which is identified using an algorithm 
developed in [17]. The touch-and-go flights all start and end at 
zero feet altitude above ground level (AGL). Altitude integration 
is more challenging for such flights, because it is our experience 
that the rate of climb data are biased towards positive rates of 
climb. Thus, even though the actual flight profile would suggest 
that the troughs of the altitude profile should be very close to 0 
feet AGL, the integrated data show their altitudes increasing 
over time, contributing to the final value of drift. This is 
ameliorated somewhat, but not entirely, by the debuffering 
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process. Other possible explanations include differences in 
“visibility” of the transmitting antenna on the aircraft in 
climbing and descending attitudes, which could also depend on 
the receiver antenna placement. At this point, this phenomenon 
is not completely understood, and more inquiry is required. 

In Table II, we show a sample of 38 out of these 100 flights. 
Any row with a positive sign for the value of the improvement 
indicates that the drift derived from debuffered timestamps is 
better (i.e., less) than what would have been obtained with the 
original buffered timestamps. For these results, all of the 
debuffered drifts are calculated using in-decoder debuffered 
data. 

TABLE II.  IMPROVEMENT IN DRIFT METRIC 

Flight ID 
Debuffered  Drift 

(ft) 
Buffered Drift 

(ft) Improvement (ft) 
356015 -29.11 -72.56 43.45 

356185 42.87 48.80 5.93 

356930 182.90 349.12 166.21 

380627 -2.23 -30.43 28.20 

283714 -7.43 -197.40 189.97 

282936 -3.79 -20.38 16.58 

284363 26.14 -377.91 351.77 

271063 -5.21 -0.65 -4.55 

282983 -30.04 -39.14 9.10 

149569 -0.24 -0.87 0.63 

284168 20.24 25.31 5.07 

284451 -38.95 -57.16 18.22 

283423 243.98 247.98 4.00 

282676 139.93 142.03 2.10 

283123 106.60 106.58 -0.02 

283900 -70.10 -63.77 -6.33 

270408 -12.18 -56.22 44.04 

284314 -48.43 -23.00 -25.43 

275489 7.19 -33.34 26.14 

282259 36.81 24.76 -12.05 

283207 5.02 8.47 3.45 

378372 -11.75 1.03 -10.72 

376508 -64.25 -70.18 5.93 

376662 -29.39 -30.75 1.37 

378598 -237.54 -246.57 9.03 

376660 -10.64 -16.63 5.99 

376792 49.36 72.40 23.04 

377324 -300.37 -275.52 -24.84 

377198 62.66 71.84 9.18 

377754 -21.67 -27.36 5.69 

377547 -107.07 -102.62 -4.45 

378488 -16.98 -14.25 -2.72 

377035 -37.27 48.30 11.03 

377752 25.87 48.51 22.63 

376918 -33.63 -72.12 38.49 

377176 48.56 91.04 42.48 

381389 -50.25 -13.72 -36.52 

378880 -69.37 -84.71 15.34 

 

From the takeoff flights, we found that 52 of the 75 tested 
takeoffs have smaller debuffered drifts. The average 
improvement is 40.77 feet. Only 2 cases have similar drifts in 
the buffered and debuffered trajectories. For the rest of the cases, 
the buffered drifts and debuffered drifts have an average 
difference of 12.63 feet, which is even smaller than the altitude 
resolution of 1090 MHz devices (25 feet). Moreover, 12 of the 
15 cases with buffered drifts over 100 feet have smaller 
debuffered drifts. This result indicates that debuffering has the 
potential to ease drifts for flights with large initial integration 
deviation. As for the touch-and-go flights, 80% of the flights’ 
drifts are improved by debuffering. Compared to takeoffs, the 
touch and goes’ drifts are much larger; some of them are over 
1000 feet, while the others are over 100 feet. The reason is that 
longer flight durations will cause more drifts to accumulate. 

V. VALIDATION CASE STUDY: CORRELATION OF IMPLICIT AND 
EXPLICIT TIMESTAMP DIFFERENCES 

Despite the ADS-B message stream not containing explicit time 
information, it is possible to approximate the elapsed time 
between consecutive messages using the other telemetry data in 
those messages. For message 𝑖𝑖, we denote the latitude 𝑙𝑙𝑙𝑙𝑡𝑡𝑖𝑖, 
longitude 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖, and speed 𝑣𝑣𝑖𝑖. If we are willing to assume that the 
acceleration is constant between two consecutive messages (this 
is not an onerous assumption, as aircraft tend not to exhibit large 
values of jerk), then the mean velocity between the two instances 
is 

 𝑣𝑣𝑚𝑚 ≅ 𝑣𝑣𝑖𝑖+1−𝑣𝑣𝑖𝑖
2

. (2) 

The elapsed time between the two messages can then be 
estimated by  

 Δ𝑡𝑡 ≅ 𝑑𝑑(𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖,𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖,𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖+1,𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖+1)
𝑣𝑣𝑚𝑚

, (3) 

where 𝑑𝑑(𝑙𝑙𝑙𝑙𝑡𝑡𝑖𝑖 , 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖 , 𝑙𝑙𝑙𝑙𝑡𝑡𝑖𝑖+1, 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖+1) is a distance measurement 
based on the two pairs of latitude and longitude. We call this 
estimate of the time interval the “implicit” time interval for this 
pair of messages. For the short time intervals expected in this 
application, the Haversine distance formula should be 
sufficiently accurate, and that is what was used to produce the 
following results. It should be noted that, of course, these 
position data are collected by the aircraft with some error 
distribution. If those errors are strongly correlated between 
consecutive measurements, then this distance estimate will be 
quite accurate; otherwise, it is less so. 

This method of validation, then is to compare the values of 
Δ𝑡𝑡 estimated from each pair of consecutive messages, with the 
differences in the recorded timestamps (either buffered or 
debuffered). The validation hypothesis here is that debuffering 
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is improving the accuracy of the timestamps if the sample 
correlation between the implicit timestamps and the debuffered 
timestamps is higher than that between the implicit timestamps 
and the buffered timestamps. 

Figure 8 shows the results of this validation step for 50 
representative flights. The blue bars represent the sample 
correlations between intervals formed from the original buffered 
timestamps, and the implicit intervals constructed from (3).The 
figure is organized so that the flights are sorted in increasing 
order of this statistic, to improve readability. The red bars show 
the correlation coefficients between time intervals formed from 
post-decoder debuffered data and the implicit time intervals. 
Clearly, there is a marked increase in accuracy from even this 
coarse method of debuffering. Not surprisingly, the magnitude 
of the improvement is reduced as the original correlations get 
higher, as correlation is clamped at 1.0. Finally, the green bars 
show the correlations between time intervals formed from in-
decoder debuffered data and the implicit time intervals. In most 
cases, there is an incremental improvement from this approach. 
As before, the largest improvements occur when the buffered 
coefficients were lowest. 

Compared to the drift measurement, we believe that this 
error metric measurement is more stable because it does not 
involve accumulative errors. Every pair of implicit and explicit 
time interval contains the information of only one pair of closely 
spaced data points. Therefore, implicit times and explicit times 
are independent from each other, so bias will not accumulate. 

As part of a larger numerical experiment, we looked at all 
the flights without big data gaps in our database from two small 
airports, KOSU in Ohio and KFRG in New York. The reason for 
excluding these flights is that large time gaps create situations 
where the implicit timestamps are not reliable. The debuffering 
would be unaffected over a large time gap. For the 77 flights 
from KOSU, only one flight has a lower debuffered correlation 
coefficient than the buffered one. For all 384 flights from KFRG, 
96.61% of the flights’ correlation coefficient are improved by 
post-decoder debuffering. Among these flights, 100 were single 
takeoff operations, and 99 of them have better post-decoder 
coefficients than buffered coefficients. Additionally, 63 of them 
have better in-decoder debuffered coefficients than post-
decoder. The average improvement from buffered to post-
decoder debuffered coefficients was 25.8%, whereas the average 
improvement from buffered to in-decoder debuffering was 
30.24%. 

 
Figure 8 – Correlation coefficients between implicit and buffered/debuffered 

time intervals for flights from KFRG and KOSU 

 

VI. CONCLUSIONS 
This paper has articulated how a seemingly straightforward 
assignment of timestamps to received ADS-B messages in an 
inexpensive hardware/software configuration might yield 
timestamps whose intervals have been compressed due to 
buffering in the queues associated with demodulating and 
decoding the data. We present a simple FIFO queue debuffering 
algorithm to ameliorate this situation. This algorithm can be 
applied either after the messages have been decoded and 
amalgamated to form complete data records, or, preferably, as 
part of the internal decoding process, where messages of 
different type codes can be stratified and debuffered 
independently, which more faithfully represents the means by 
which they were transmitted. 

The post-decoder method shows significant improvements 
over two validation techniques that rely on information in the 
ADS-B data stream as ground truth. In one case, we show that 
estimating altitude by numerical integration of rate-of-climb 
data is improved when debuffered timestamps are used, and in 
the second case we show that comparing relative differences of 
recorded timestamps to implicit timing information buried in the 
position and speed data also improves. In both cases, the in-
decoder debuffering tends to do even better than the post-
decoder method. 

The in-decoder method is best, but can only be applied when 
original ADS-B messages are available, and they have not yet 
been amalgamated. In the case of archived data which have 
already been decoded, however, the post-decoder method still 
produces much better results than using buffered timestamps. 

In our experience, there are cases where the data streams 
have large temporal gaps. This is likely due to occlusion of the 
antenna due to its placement in a building, or in some sense 
relative to the runway geometry. Any use of ADS-B data will 
benefit from using an antenna that is exterior mounted and has 
good lines of sight to the entire airfield. Of course, estimates of 
kinematic data over these longer time gaps are unreliable 
because one cannot presume that an aircraft’s speed, velocity, 
heading, etc. change insignificantly over longer time periods. 

It might be advisable to consider, when developing future 
replacements for the ADS-B communications protocol, 
incorporating some standardized timing information, if only on 
a subset of the transmissions, to allow some direct computation 
of lags to be measured between original transmission times and 
final decoding times. Additionally, it would be instructive to 
conduct direct experiments where the data from the transponder 
on a known aircraft were timestamped and logged inside the 
cockpit, and then that same aircraft’s data were investigated after 
reception and decoding by the ADS-B receiver apparatus.  
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