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Abstract—With the broader adoption of digital air traffic control
towers, real-time video data is expected to complement the
current surveillance system (if available) and improve airport
performance in terms of safety and efficiency. However, to fully
utilize such data, a suite of computer vision algorithms needs
to be developed for extracting useful information from real-
time video feeds. Currently, most of the studies in the literature
have focused only on the detection and tracking of aircraft on
the airport surface, while approaching aircraft also play an
essential role in airport and runway operations. The distance-
to-touchdown of approaching aircraft is a critical parameter
in final approach spacing and departure sequencing. Therefore,
this research proposes a deep learning approach for estimating
the distance of approaching aircraft to touchdown using multi-
view video feeds. The proposed approach adopts a state-of-the-
art computer vision model with an auto-calibration technique
for detecting the approaching aircraft and extracting feature
vectors from multiple camera views under various lighting and
weather conditions. Then, an ensemble approach is introduced
for combining the input vectors for distance estimation. The
approach is evaluated with both Changi Airport simulated and
real video data. Firstly, the proposed approach is designed to
be easily updated and adapted for different camera system
configurations. Secondly, the proposed approach has successfully
combined the strength of both monoscopic and stereoscopic ap-
proaches to provide accurate distance-to-touchdown prediction
in various scenarios. The experimental results demonstrate the
advantages of the proposed approach with stable performance
and low predicted errors (Mean Absolute Percentage Error =
0.18%) in estimating the distance-to-touchdown up to 10 NM.
Such capability in a Digital Tower environment can augment
the runway controller’s sequencing and final approach spacing
capabilities.

Keywords—Digital Tower, distance estimation, multi-view
cameras, distance-to-touchdown estimation, runway operation.

I. INTRODUCTION

Digital towers rely on video data from an array of cam-
eras which are also expected to complement the available
surveillance system (if available) and improve the airport per-
formance in terms of safety and efficiency. Digital towers are
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considered a promising solution to replace physical towers for
small and medium airports. The efficient utilization of video
data holds the potential to provide surveillance capabilities
for small and medium airports without the need for complex
surveillance systems like Advanced-Surface Movement Guid-
ance and Control System (A-SMGCS). They are also part of
the new development of big airports as a digital twin besides
the physical ones. Several studies have demonstrated the
advantage of multi-sensor data in managing airport operations
by providing better situational awareness of the air traffic
movements on the ground and in the final approach phase
[1]. Moreover, an exciting investigation [2] has figured out
that augmenting airport situation/information directly on the
screens is expected to reduce the workload of controllers as
well as improve their performances. Therefore, by extracting
useful information from video streams, it becomes possible
to enhance the current surveillance system, particularly by
augmenting tracking information on screens of digital towers.
To efficiently perform that task, a suite of computer vision
algorithms should be investigated and developed using video
streams from digital towers. Over the last few years, several
studies can be found in the literature for applying computer
vision in the airport environment, such as aircraft tracking and
airport surface surveillance [3]–[6]; airport apron and aircraft
turnaround process monitoring [7], [8]; or airport safety,e.g.,
debris and drone detection [9]–[11].

This study proposes a novel computer vision approach on
video feeds of aircraft on the final approach for estimating
the distance-to-touchdown (DTD) in real-time. Distance-to-
touchdown is a critical parameter in final approach spacing
and departure sequencing. Such capability in a Digital Tower
environment can augment the runway controller’s sequencing
and final approach spacing capabilities.

The real-time distance estimation of the moving object is
an active research topic and gains more and more attention,
especially with the advance in deep learning technologies.
Studies in literature for computer vision-based distance es-
timation can be broadly classified into two main categories:
stereoscopic and monoscopic view. With careful calibration,



the stereoscopic approaches use two cameras to capture the
video data. The distance is estimated by calculating the dis-
parity of the objects (or pixels) between two camera screens.
However, the biggest challenge of stereoscopy is to calibrate
and match the cameras appropriately [12]. Any errors in the
calibration and pixel matching can lead to significant errors
in the result. Additionally, the estimation error will become
much more significant if the object is far away. Several studies
can be found using this research direction in the literature,
especially on the street view dataset. For instance, the study
in [13] proposed a fast and accurate algorithm using stereo
data to recover dense depth from stereo video under the
assumption that the scene is static. With the introduction of a
high-performance object detection algorithm, e.g., You Only
Look Once (YOLO [14]), several following studies started to
utilize object detection as an intermediate step for distance or
depth estimation. An example can be found in [12], in which
the authors presented a distance estimation solution based on
the YOLO deep neural network and principles of stereoscopy.
These approaches demonstrate good results but only for static
and near objects.

In contrast, the monoscopic approaches use a single camera
for performing the task. Since the depth information cannot be
recovered directly, studies in this direction are usually based
on object detection techniques for identifying the object with
the corresponding bounding box. The detected bounding box
with the object’s size and referenced markers are used for
estimating the object’s distance from the camera. For instance,
an straightforward approach using YOLO is presented in
[15]. The approach is evaluated in different environments
and provides good results using different monocular cameras.
The vision range can go up to 1000m. Another work in this
direction, called DepthNet [16], presented a more complicated
deep learning framework that consists of two deep networks
for depth estimation and object detection using a single image.
However, the training for DepthNet is quite challenging to
achieve a considerable good accuracy, especially facing long-
distance estimation. The main challenge is to accurately detect
the bounding box of small objects and identify referenced
markers on the scene, which is challenging in the problem
of approaching aircraft. Recently, an interesting study for
inter-camera (multi-views) has been presented in [17], fo-
cusing on vehicle tracking and speed estimations. This work
demonstrates the potential of combining multiple cameras to
improve the distance estimation performance.

In summary, even though advanced deep learning algo-
rithms have demonstrated several successes with street view
and in-door datasets, there isn’t a universal approach that
can solve all the problems, especially when it comes to a
featuring-less blue sky. Moreover, as this problem requires
high accuracy for estimating the distance (up to 10NM) of
small moving objects, novel approaches are needed to be in-
vestigated and proposed to achieve the required performance.
Inspired by the state-of-the-art studies, in this work, we
propose a multi-view vision-based deep learning approach for
estimating the Distance-to-touchdown of approaching aircraft
using multi-camera video feeds to combine the strength of
those approaches. The main contributions of this paper are as

follows.
• The model’s architecture, e.g., calibration layers and

sequential layers, is designed to provide stable operation
and performance with the stochastic numbers of input
video feeds due to noisy input or errors in object
detection algorithms.

• The model is evaluated using both Changi Airport sim-
ulated and real video data. It can achieve high perfor-
mance in challenging scenarios such as low visibility,
stormy or low light.

• Using the pre-trained model for object detection with an
auto-segmentation helps to reduce the amount of data
and time during model training, as well as to achieve
high accuracy in estimating the DTD up to 10 NM.

• The calibration network, trained with an auxiliary regres-
sion head, is proposed for tackling the potential changes
in the camera system and its configuration.

In this paper, the motivation for a multi-view vision-based
approach is discussed in Section I. In Section II, we will
describe our proposed approach with an illustrated concept
diagram. The experimental setting and data collection are
mentioned in Section IV, and Section V is for results and
discussion. Moreover, before the Conclusion session VII, a
preliminary result for Changi Airport data is also discussed
in Section VI.

II. OVERVIEW OF THE PROPOSED APPROACH

The concept diagram of the proposed approach is presented
in Figure 1. The model has two main parts: the final feature
vector extraction from each camera view and the ensemble
method for estimating the DTD. Noting that it is designed
this way to tackle two of the technological and operational
challenges:

• Digital towers at different airports have their own suit-
able camera configurations and a different number of
cameras for runway operation.

• Many factors can cause changes in a camera’s con-
figuration in terms of rotated angle, tilted angle, and
zoom level. In those cases, most of the end-to-end
computer vision models are needed to be retrained or
fine-tuned with the newly collected data to maintain their
performance.

First of all, video feeds from N (≥1) camera views are
utilized as the inputs of the model. To obtain the final
feature vector for each video feed, the sequence of images
is input into the auto-segmentation module for localizing the
potential aircraft position using an aircraft detection model
and cropping the redundant video frames’ areas. This step
helps remove unnecessary information in the image and keep
the sufficient size of the approaching aircraft, which, by
design, is far away and very small. Then the bounding boxes
of the detected aircraft are input into the fully-connected
layers, called calibration network, for extracting the final
feature vectors. All the calibration networks are connected
to an auxiliary regression head for training their parameters.
This step is necessary for adjusting inputs from different
camera views without requiring careful system calibration.



Figure 1: The concept diagram of the proposed approach for multi-view vision-based DTD Prediction.

The feature vectors are combined using a Long Short-Term
Memory (LSTM) [18] model and fully-connected layers for
distance prediction. The sequential model is utilized for com-
bining the multi-view camera inputs to provide the system’s
stability in case of aircraft detection errors in each video feed.
The model’s architecture, implementation, and training will
be further discussed in the following sections.

III. DATA COLLECTION

The simulated dataset is generated from X-Plane 11 flight
simulator [19] due to four main reasons. First of all, it has
very accurate aircraft models. Secondly, it supports setting
the camera position and angle for data collection. Thirdly, it
can adjust lighting and weather conditions to diversify the
data. Finally, it also allows exchanging data with an external
system.

TABLE I presents the values of the controlled parameters
in our data collection process. The dataset contains videos for
80 scenarios with the corresponding 4D aircraft trajectories,
using aircraft model B737 and Changi Airport 3D model
(refer to Figure 2). The lighting (time of the day) and weather
conditions are adjusted to cover scenarios with different
visibility, while the initial randomized location is utilized to
create the variation in aircraft position during landing. Noting
that, for each scenario, videos from two different camera
views are collected for training and testing the proposed
model. Finally, the visibility in the collected dataset is mostly

Simulation Parameter Selected Values
Airport Singapore Changi Airport

Runway 02L
Aircraft Model B737

Time of the day (5) 6:00, 8:00, 12:00, 17:00, 18:00
Weather condition (4) Clear, Cloudy, Stormy, Foggy

Initial positions Randomized with DTD = 10NM
Number of Camera Views 2

Camera Resolution 1920 x 1280
Frame rate 30 FPS

TABLE I. The selected values of simulation parameters for
data generation using the X-Plane 11 flight simulator.

more than 10NM for training and testing, except in the case
of “foggy”, where it is designed to reduce the visibility down
to 5NM for model evaluation.

IV. EXPERIMENTAL SETTING

In this work, the proposed model is trained and tested with
two camera views. Using the simulated video data, 70% of the
data (56 scenarios) is used for training, and the remaining data
(24 scenarios) is used for testing. To facilitate the training,
data samples that can successfully detect at least one aircraft
will be used. For testing or real-time running, a filter function
is added before the DTD Predictive Network to check and
drop all cases with no aircraft detection. In total, the training
data includes 36k data points.

In terms of the model’s architecture, the YOLOv7 [20] is
adopted as the aircraft detector over each camera view. And



Figure 2: The figure presents examples of four scenarios from simulated videos with different lighting and weather conditions.
Each scenario is demonstrated by two images from different camera views: (1) clear weather at 6:00, (2) clear weather at 18:00,
(3) cloudy weather at 6:00, and (4) cloudy weather at 18:00.

to combine the extracted information from all the cameras,
a stacked LSTM model is developed. More importantly, to
reduce the inference time of the proposed end-to-end model,
we adopt the TensortRT engine [21] for video processing
and aircraft detection steps. As experimented, the processing
speed increased up to 300% compared to the model without
the TensortRT engine.

The two metrics are utilized for analyzing the model perfor-
mance, Percentage Error (PE) and Mean Absolute Percentage
Error (MAPE). The PE reports the difference between the
actual distance (Ai) and the predicted distance (Pi) for each
predicted distance instance (i). It is useful for observing the
changes in accuracy over variations of the aircraft distance.
On the other hand, the average model performance is assessed
using MAPE which is generally suitable for model compari-
son given the dataset with size n.

PEi(%) =
Ai − Pi

Ai
∗ 100 (1)

MAPE(%) =
1

n
∗

n∑
i=1

∣∣∣∣Ai − Pi

Ai

∣∣∣∣ ∗ 100 (2)

Finally, this project is implemented using PyTorch 1.13
with Python 3.10, and all the training is done on a single
RTX 3080. The total training time for the model convergence
is 1.5 hours.

A. Learning Algorithms

1) Aircraft Detection: The aircraft detection aims to local-
ize the approaching aircraft in the video frame and determine
its corresponding bounding box using a segmentation algo-
rithm, complementing the pre-trained YOLOv7 model (refer
to Figure 3). As the pre-trained model is trained on MS COCO
Dataset [22], containing images of complex everyday scenes
of common objects in their natural context, with 640x640x3
image size, the high-resolution video frame (1920x1280x3) is
split into six non-overlapping images (640x640x3) for aircraft
detection. Once an aircraft is detected in any image, a final
image (640x640x3) with that aircraft at the center is extracted
and used for estimating the bounding box of the detected

Figure 3: The illustration of the segmentation step for aircraft
detection and extracting the corresponding bounding box.

aircraft. The bounding box information, e.g., location (X and
Y) and size (W and H), is calculated corresponding to the
coordinates in the original frame. The main purpose of the
splitting or segmentation is to keep the sufficient size of the
far-away aircraft (up to 10 NM) in the image. With more than
one aircraft in the frame, the same number of final images
can be generated and follow the same process independently.

Because of the fast pace of technological progress in object
detection, this approach is designed to make use of state-of-



the-art pre-trained models rather than emphasizing the need
for training or tuning a specific model for aircraft detection.
As the state-of-the-art model can be easily replaced by a better
model in the future, the proposed approach is expected to
maintain high and stable performance.

2) An Adaptive Algorithm for Training Calibration Net-
works: One of the computer vision model’s typical lim-
itations is the camera configuration sensitivity, especially
when working with multiple cameras. Since the central idea
of our approach is the ensemble of multi-view videos for
stabilizing the model performance, it must be able to handle
the change in the number or the configuration of cameras
without the need to retrain the whole model. Therefore, a
calibration network is proposed for each camera. It is fully-
connected layers designed to construct the feature vectors
from detected bounding boxes considering the differences in
camera configuration.

For that purpose, the auxiliary regression with reversed
network structure is connected to calibration networks for
training using DTD values as the target and MAPE as
performance metrics. As the values and qualities of inputs
from each camera can have a different impact during training,
the converged models can have a significant gap between
each camera in terms of errors for estimating the DTD. Thus,
to further increase the quality of the calibration networks,
we propose an adaptive algorithm (Algorithm 1) during the
training. The convergence curve of the training process can be
observed in Figure 4. As the network of Camera 2 converges
much faster, and the gap is significant, it is frozen to focus
the training on the other network until the performance gap
is less than a defined threshold. This process is repeated until
both networks are converged with the desired performance
gap. The outputs of the calibration networks are the feature
vectors used as the input for the distance estimation model.

With this approach, when a new or adjusted camera input
is added to the system, only its calibration network is needed
to be trained with the frozen auxiliary regression head while
the whole system is kept unchanged.

3) DTD Predictive Network: The DTD Predictive Net-
work includes a stacked LSTM network for combining input
vectors from individual calibration networks and a fully-
connected network for inference. As discussed, a sequential
model (e.g., LSTM) is necessary to handle the variation in the
number of input cameras in the system. Moreover, even with
the same number of cameras, it is also helpful to maintain the
model performance by skipping miss-detection in any camera
input.

B. Model Selection

Different network architectures have been explored and
experimented with to obtain the final model for further ex-
periments and analysis. The configurations of the nine tested
models are reported in TABLE II. There are three sizes for the
Calibration Network, and corresponding to each option, three
networks with different sizes are selected for DTD Predictive
Network. Two types of networks have been considered, which
are fully-connected layers or linear networks and stacked
LSTM layers. The linear network is represented by a list with

Algorithm 1: The Proposed Adaptive Algorithm.

1 current loss list = empty array of N camera length
2 loss list tracker = empty array
3 all training tracker = 0
4 while epoch < total epochs do
5 if training mode == ’all’ then
6 for n = 0 to N camera do
7 Predict DTD from Camera (n);
8 current loss list[n] = Compute Loss(n);
9 Optimize(n, aux reg);

10 end
11 all training tracker = all training tracker + 1;
12 else
13 n = training mode;
14 Predict DTD from Camera (n);
15 current loss list[n] = Compute Loss(n);
16 Optimize(n);
17 end
18 if (epoch % 500) == 0 then

/* Only switch to targeted
training when the training
loss is stable . */

19 if (training mode == ’all’) &
(std(loss list tracker[-3:]) < 0.01) then

20 training mode =
Argmax(current loss list);

21 else
/* Control the frequency of

mode switching by
all_training_tracker */

22 if (Max Gap(current lost list) < 0.01) &
(all training tracker > 1500) then

23 training mode = ’all’;
24 all training tracker = 0;
25 end
26 end
27 loss list tracker.append(current loss list)
28 end
29 end

an input size, a list of hidden layers’ sizes, and an output size.
On the other hand, an LSTM network (e.g., [LSTM, [256,
256], 2]) has information about the input size, hidden layer
size, and the number of layers.

Noting that the more parameters the model has, the more
computational time it requires. The results of those models
in terms of MAPE(%) and Inference Time(ms) are presented
in Figure 5. The medium and large Calibration Networks
provide lower MAPE values than the small network while
only increasing by 0.1 to 0.2 ms of inference time. Based on
the experiment results, the medium network size is chosen
in the final model for both Calibration Network and DTD
Predictive Network.



Figure 4: The convergence curve of the proposed adaptive
algorithm for training the calibration layers of two camera
views.

Calibration Network Predictive Network Total Parameters
(2 Cameras)

Small
Linear, [4,128,128]

Small
[LSTM, [128, 64], 1]
[Linear, [64, 32, 1]]

94,402

Medium,
[LSTM, [128, 128], 2]
[Linear, [128, 64, 1]]

315,138

Large
[LSTM, [128, 256], 3]
[Linear, [256, 128, 1]]

1,523,586

Medium
Linear, [4,128,128,256]

Small,
[LSTM, [256, 128], 1]
[Linear, [128, 64, 1]]

339,330

Medium,
[LSTM, [256, 256], 2]
[Linear, [256, 128, 1]]

1,219,074

Large,
[LSTM, [256, 512], 3]
[Linear, [512, 256, 1]]

6,044,418

Large
Linear, [4,256,256,512]

Small,
[LSTM, [512, 256], 1]
[Linear, [256, 128, 1]]

1,350,402

Medium,
[LSTM, [512, 512], 2]
[Linear, [512, 256, 1]]

4,862,978

Large,
[LSTM, [512, 1024], 3]
[Linear, [1024, 512, 1]]

24,147,458

TABLE II. The experimented nine model architectures for
model selection and hyper-parameter tuning.

C. Monoscopic Model for Comparison

In this work, a monoscopic model, similar to [15], for
DTD prediction is also developed for benchmarking. Since the
videos are collected from two different camera views, merging
those two sets of videos directly for training the monoscopic
model has a negative impact on the model performance. Two
options have been considered, which are (1) developing two
independent models to achieve their average performance or
(2) including a calibration network for developing one unique
model on the combined dataset. The experimental results
demonstrate insignificantly different performance between
those two approaches. Therefore, for the monoscopic model,

Figure 5: The results for hyper-Parameter tuning step with a
variation in model sizes.

a combined video dataset is used. The model’s architecture in-
cludes the feature extraction component (e.g., Segmentation,
YOLOv7, and Calibration Network) and a fully-connected
Inference Network.

V. RESULTS AND DISCUSSION

First of all, we observed a significant number of miss-
detection for either camera views (up to 40%), even with
the clear weather condition, which comes from the limitation
of the aircraft detector for detecting small objects under
various lighting and weather conditions. Secondly, the aircraft
positions (bounding boxes’ locations) along their approaching
trajectories (refer to Figure 6) are essential in estimating the
DTD since their changes are significant compared to the
changes in bounding box sizes. Moreover, to better assess
the proposed approach’s advantages, the experimental results
are reported and discussed in the rest of this session.

Figure 6: An example of an aircraft trajectory from two
camera views in the dataset. The red dot illustrates the current
position of the aircraft along the trajectory. The red rectangle
highlights the trajectory segment corresponding to the DTD
range around 5NM to 7NM.

The proposed approach’s and monoscopic model perfor-
mance is presented in Figure 7. Up to 5NM, the proposed
approach achieves high performance with median errors close



to zero and a small standard deviation. On average, the
performance of both models is comparable from 8NM to
10NM, which is expected due to the limitation of the pre-
train detection model for small flying aircraft. Suddenly,
within 5NM and 8NM, the errors become significantly higher
for both models. As defined in Changi Airport’s Instrument
Approach Chart (AIC), there are two Distance Measuring
Equipment (DME) points at 4.4NM (also the Final Approach
Fix (FAF)) and 7.6NM, the aircraft would start to descend
and adjust their altitude between those points and due to the
camera angle, the observed trajectories are as illustrated one
in Figure 6. It can be observed from the video feeds that,
during that period, the positions and sizes of bounding boxes
were indifferent. Thus, estimating distance based on those
detected bounding boxes leads to significant big errors (up
to 2% or 250m) compared to the other periods. However,
our model still obtains more stable performance compared to
the high errors and variations of the monoscopic model. In
general, the proposed approach achieves smaller errors and
more stable results. The MAPE (0.18%) reduces by 35%
compared to the MAPE = 0.28% of the monoscopic model.

Figure 7: An experiment results for comparison between the
proposed model (Multi-Camera) and the monoscopic model
(Single-Camera).

TABLE III shows the impact of solely lighting conditions
on prediction accuracy. As mentioned, the scenarios at 6:00
and 18:00 are considered in low light conditions, while from
8:00 to 17:00, the light is much more intense. It is interesting
to observe a better performance of the model in low light
conditions. Our further inspections and analyses of those
cases suggest that the reflected glare and shadow have affected
the accuracy of the bounding box estimation.

Time of the day 6:00 8:00 12:00 17:00 18:00
MAPE(%) 0.162 0.213 0.205 0.242 0.174

std(%) 0.250 0.287 0.263 0.273 0.207
Visibility(NM) 10 10 10 10 10

TABLE III. The model performance in different lighting and
clear weather conditions.

The weather also has a strong impact on the model’s
performance. An example of a foggy scenario when the
aircraft’s DTD is 3.09NM is presented in Figure 8. It is very
challenging for any model to detect an aircraft significantly

Figure 8: A snapshot in a foggy scenario (low visibility) and
aircraft is 3.09NM away from the runway threshold (in blue
color). The predicted DTD (in red color) can be augmented
in the image in real-time for demonstration.

small and extremely blurred due to the fog. Therefore, the fol-
lowing analysis focuses on the performance of the proposed
model under four weather conditions (refer to Figure 9). The
figure shows that the model achieves high performance within
5NM (the median PE near 0 and small standard deviation).
However, with DTD between 6NM and 8NM, the cloudy con-
dition significantly impacts the model performance, especially
at 6NM and 7NM. TABLE IV summarizes the experimental
results, in which the MAPE for the cloudy condition (0.346%)
is much higher than the others. And the smallest MAPE
for foggy scenarios reflects the high performance of the
proposed model for DTD within 5NM. The main reason for
that is the inconsistency of the sky due to clouds, which
reduce the accuracy of aircraft detection and the bounding
box estimation. Noting that the heavy rain is simulated for
stormy conditions, the sky is dark but much more consistent
than in cloudy conditions.

Figure 9: The model errors correspond to the aircraft dis-
tance in four weather conditions (Clear, Cloudy, Foggy, and
Stormy). Noting that the maximum visibility of foggy is
5NM, thus, the results for foggy scenarios are only reported
up to 5NM.



Weather Clear Cloudy Foggy Stormy
MAPE(%) 0.213 0.346 0.162 0.228

std(%) 0.287 0.624 0.235 0.306
Visibility(NM) 10 10 05 10

TABLE IV. The model performance in different weather
conditions.

VI. CASE STUDY OF CHANGI AIRPORT

A. Video Data from Changi Airport

A dataset with 100 landing trajectories for Runway 02L
of Changi Airport is used in this work. The sky is cloudy
during the data collection; thus, all of the collected videos are
under cloudy conditions. Two camera views for each landing
trajectory are recorded. View 1, including two cameras, is
the view from the control tower, and View 2, including three
cameras, is from the instrument landing system localizer
(LLZ) hut. Besides, the visibility in this dataset is less than
7NM due to the weather condition. The raw videos from
different cameras for each view are processed and merged to
create the final dataset. The example of videos from those
views in the final dataset can be observed in Figure 10.
Moreover, the aircraft in the video data are also needed to
be matched with their respective recorded trajectories from
the surveillance system for obtaining the DTD information.

Figure 10: An example of video data from Changi Airport.
View 1 is from the camera mounted on the top of the control
tower, while View 2 is from the camera at the LLZ hut. The
red rectangles highlight the position of the aircraft in their
respective frames. The image segment with a blue border in
View 1 is the zoom-in for better observing the small aircraft.

B. Results

The proposed model is trained and evaluated with the above
dataset (70/30). The results are consistent with the finding and
model performance of the model trained by simulated data.

First of all, View 2 from LLZ hut can clearly capture the
landing trajectory (refer to Figure 11), which is necessary for
estimating DTD. However, the aircraft is too small in View
1, and all the videos are also under cloudy conditions; thus,
the miss-detection rate for videos from View 1 is very high
(>90%). Thus, in most of the data points for training and
testing, only data from View 2 is available.

Figure 11: An example of an aircraft trajectory from camera
view 2 (from LLZ hut) in the Changi Airport data. The red
dot illustrates the current position of the aircraft along the
trajectory.

Secondly, our model achieves good performance under
cloudy conditions with MAPE: 0.33% (or < 45m) and
std: 0.42%. Besides, model accuracy over the DTD can be
observed in Figure 12. The predicted errors from 4NM to
6NM are observably higher than errors at the other distances,
which is similar to our observation in Session V.

Figure 12: The performance of the proposed approach on real
Changi Airport data.

VII. CONCLUSION AND FUTURE WORK

In this work, we propose a multi-view vision-based deep
learning approach for Distance-to-touchdown (DTD) estima-



tion up to 10NM under various lighting and weather condi-
tions. The approach is designed to provide stable operation
and performance with the stochastic numbers of input video
feeds due to noisy inputs or miss-detection. In which the
calibration network and the auto-segmentation are proposed
for tackling the potential differences and changes in the
camera system’s configuration. The proposed approach can
achieve high and stable performance with Changi Airport
simulated data (MAPE = 0.18%) and real data (MAPE =
0.33% under the cloudy condition) for DTD up to 10NM.
It also demonstrates a more stable performance than the
monoscopic model, which solely relies on the input from one
camera view. In this kind of approach, the aircraft’ positions
along their trajectories are the key features in the DTD
estimation. Therefore, the pattern of the landing trajectories
captured in the videos is a factor to be considered to ensure
the model’s performance. Besides, the lighting and weather
conditions add a lot of challenges and uncertainties to the
video dataset and have strong impacts on the predictive
accuracy.

Besides, a new set of Changi Airport data is being collected
with adjusted View 1 for better visibility. The new dataset will
also cover more lighting and weather conditions. In terms of
model development, a multi-object tracking algorithm will be
developed for a complete end-to-end DTD prediction model.
Finally, the auto-calibration step will be updated, and more
experiments will be conducted with Changi Airport data,
where the model can be trained with both the simulated and
real data for quickly adopting and operating in a real airport
environment.
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