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Abstract—New en-route Traffic Flow Management (TFM)
tools are needed to handle the predicted air traffic growth
by mitigating congestion, reducing delays and maintaining high
safety levels. A large-scale graph abstraction of traffic through
an airspace center is extracted from historical navigation data.
The network graph model represents aggregated air traffic flows
through the airspace. Although exemplified for a typical center,
the methodology is generalizable to any airspace. The network is
used to support two perspectives on TFM: a centralized approach
based on network flow optimization with workload-derived sector
constraints, and a decentralized approach based on mean field
games.

I. INTRODUCTION

With the forecast increase in air traffic demand over the

next decades, achieving an optimal functioning of the network

system is essential. The network system is comprised of

the aircraft operators, airports and Air Traffic Management

(ATM). In the coming years, the current airspace capacity

limits, i.e. the maximum number of aircraft allowed in a

given airspace, are expected to be exceeded. Delays caused

by congestion or weather perturbations are becoming more

acute at many airports and in many airspaces.

It has been observed that traffic demands are spatially and

temporally heterogeneous, at times leaving substantial regions

of the National Airspace System (NAS) with underutilized

resources while capacities become saturated in other regions

[1]. Robust tools are needed to better manage congestion

and delays [2] by air traffic flow managers. These tools will

come into effect under the ’paradigm shift’, supported by

innovative technologies [3].

The focus of this paper is on strategic medium- and

long-term planning. This paper presents a methodology for

constructing a graph abstraction of the airspace which may

be used as a Traffic Flow Management (TFM) framework.

Two perspectives, one using centralized control and the other

using decentralized control are presented in this paper. Both

approaches use the TFM framework to optimize aircraft

routing in order to reduce congestion and delays, while

allowing more aircraft in an airspace and ensuring high safety

levels.

The TFM framework is based on data mining and modeling

of the airspace. Many tools in TFM require knowledge of

the initial aircraft positions and trajectories (with or without

uncertainty). Such precise knowledge is useful for ATM

activities such as planning a safe trajectory for an intruder

aircraft through the airspace [4]. Conversely, strategic

planning for mid-term or long-term ATM with time horizons

greater than 30 minutes requires knowledge of air traffic

patterns and flows characteristics. Among the relevant flow

characteristics are the geometrical configuration, flight plans

and average distances between two consecutive aircraft. The

current position and intent information of individual aircraft

are irrelevant at that aggregated scale.

Representing air traffic as flows enables the computation

of more predictable macroscopic estimates than following

individual aircraft. This approach provides a higher-level

view of air traffic to traffic flow managers [5]. Furthermore,

the representation according to dominant traffic flow patterns

and traffic flow interactions is consistent with the mental

models used by air traffic controllers in their abstraction of

sectors [6], [7]. The mental models that controllers develop to

aggregate traffic flows rely on features such as the number of

flows, the major flow and its size and the number of crossing

flows [5]. These criteria can further be used to estimate and

predict sector capacity as a function of the traffic flow pattern

and to study the impact of severe weather [8].

The graph abstraction of traffic flows is the basis for two

perspectives on flow management. A data-mining approach is

adopted to build flows based on data [9], and then to create

a network from the previous flows. This methodology can be

adapted to any airspace to obtain the graph abstraction. The

network supports a centralized perspective that intends to

simulate realistic traffic traveling through the given airspace.

The Air Traffic Flow Management Problem was examined in

1994 by Odoni [10] and aims at solving complex situations

in Air Traffic. A new linear formulation of the TFM problem

is developed, using estimates of controller workload based on

flow geometry [11].

Conversely, the decentralized perspective is aimed at

identifying and forecasting the emergence of systemic
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congestion and delays as a result of local interactions and

strategies of aircraft. Previous research on decentralized

ATM has elaborated control laws for Eulerian flows [12].

The perspective introduced in our research is based on the

recent theory of mean field games [13], [14]. The novelty

of this approach resides in the coupling of two equations,

where microscopic agents with limited local influence

optimize their strategy based on a rational anticipation of

macroscopic population dynamics. The coupling provides a

robust methodology for identifying and forecasting various

emerging phenomena. In the case of air traffic, the aircraft

population evolves in a state space constrained by the flow

graph abstraction [15].

This paper is organized as follows. Section II develops the

methodology from building the en-route TFM framework.

Section III focuses on implementing a centralized approach

based on the previous framework. Section IV explains the

decentralized mean field games approach. Finally, Section V

provides concluding remarks and the efforts to be pursued.

II. GRAPH ABSTRACTION OF THE AIRSPACE

A. Clustering of Trajectories into Flows

This subsection introduces a methodology to develop a

mode of en-route aircraft operations through the extraction

of air traffic flows within an air space from archived flight data.

The data used to construct the airspace model is taken from

Enhanced Traffic Management System (ETMS). Cleveland

center is selected because of its significance to the NAS.

The data includes aircraft trajectories, spatially sampled

(longitude, latitude, altitude) every minute. During the 123

days (May to August 2005) covered by the data, all 526,840

aircraft trajectories with at least one point over FL250 are

considered, which gives us a subset of data covering the

majority of en-route aircraft. After filtering inconsistencies in

altitudes, a ’clean’ data-set of 338,060 trajectories remains.

Figure 1 represents the air routes and jet routes in the

Cleveland center overlayed with a density plot depicting the

spatial distribution for a day of traffic. It demonstrates traffic

is far more diverse than what the routes alone suggest.

The trajectory Clustering Algorithm is defined by the

following steps, according to [9]:

1. Clean and format the trajectories.

2. Augment dimensionality of the data by adding features

such as heading, polar coordinates, etc.

3. Apply hierarchical clustering. Organize and divide the

trajectories by altitude and attitude to create separate data

sets.

4. Normalize each feature and concatenate the data into a

single row vector for each flight. Each column corresponds

to a feature.

5. Apply a Principal Component Analysis (PCA) on the

matrices, and reduce the dimensionality of the data by

Fig. 1. Density Plot of one day of traffic against the air routes of the NAS

keeping only some principal components.

6. Cluster the values of the projections using a density-based

clustering algorithm (DBSCAN).

7. Obtain clusters of trajectories and outliers for each altitude

and attitude category. Figure 2 shows an ascending flow

obtained by the above clustering algorithm.

Fig. 2. A 3D representation of an ascending flow with the geometric
distributions of trajectories.

Following categorization and clustering, about 80% of the

trajectories are grouped into 690 clusters, or flows, and the

remaining 20% are outliers (modeled separately). Figure 3

presents a 2D and a 3D view of the centroids of all clusters.

Blue lines represent westbound traffic, yellow eastbound,

green descending, red ascending. The major airports of

Cleveland Center - Cleveland Hopkins airport (CLE), Detroit

Metropolitan Wayne County Airport (DTW) and Pittsburgh

International Airport (PIT) - are clearly identifiable by the

clusters corresponding to ascending and descending traffic.

The fraction of outliers is relatively constant throughout the

day. The results obtained demonstrate that the clustering

remains consistent over a broad range of parametrizations

(time of day, altitude/attitude). Therefore, clustering yields a

model that can be utilized for subsequent complexity analysis.

2
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Fig. 3. Centroids for all traffic flow clusters and outliers distribution.

B. Network Flow Model of the Airspace

A network is a system of nodes, with directed edges linking

them. The edges represent portions of flow corridors in which

aircraft fly, whereas the nodes correspond to spatial areas

where aircraft may enter, change, or leave a flow corridor. To

generate the network, the following steps were carried out.

The first step is to locate the regions where aircraft can

leave a flow and join another. The areas where flows spatially

interact correspond to areas that engender a high probability

of conflict. Such areas include intersections of flows and

flow merging. Some of these areas are such that an aircraft

may leave the flow it was traveling on and join another.

If these conflict areas have specific geometric features,

they become a part of the network allowing for rerouting

options of aircraft. There are 1198 nodes for rerouting for

the network representing the Cleveland center (ZOB). If a

conflict area does not satisfy the geometric properties above,

it is called a crossing, and is not used to build the network,

but is considered in workload calculations. There are 14,953

crossings and they intervene in the complexity of the airspace

as spatial areas with higher probabilities of conflicts.

The second step is to define the nodes corresponding

to spatial areas where aircraft enter or leave the airspace,

whether on the boundaries of the center, or at airports located

in the center. All flows have an entry and an exit. For en-route

flows, the entrances and exits are located at the boundary

of the center. For arriving or departing flows, the entrances

and exits are at the ground level within the center. Observing

the distribution of the entrances and exits of the flows in 3D

enables grouping them into shared entries and exits. This is

done by applying a calibrated k-means clustering algorithm.

The resulting centroids for each entry cluster or exit cluster

are defined as the entry nodes and exit nodes of the network.

We obtain 40 entry clusters and 50 exit clusters. Along with

the nodes for rerouting, there are thus 1288 nodes in the

network.

The third step is to create the edges that link the nodes of

the network, to re-create the possible flow routes an aircraft

can travel on. On each flow, an edge is defined between

all consecutive nodes (whether entry, intersection enabling

rerouting, exit) along the flow. Any redundant edges, i.e.

those edges corresponding to two flows, but linking the same

nodes, are removed. A 2D view of the resulting network is

shown in Figure 4.

Fig. 4. Density Plot of Trajectories against Graph Representation.

Our interest lies in simulating traffic as realistically as

possible, that is simulating traffic flying from its origin in

the center to its destination, as shown by historical data.

In order to do this, the origin-destination pair for each

flow is stored, using the entry and exit data gathered by

the k-means clustering in the previous step. Hence the 218

origin-destination node pairs of the present network are

obtained. A commodity is defined as all aircraft travelling

on the same origin-destination nodes pair. The number

of trajectories clustered in each flow provides the relative

importance of each flow with regard to the total traffic.

This process is extended to the origin-destination pairs, or

commodities, to determine the relative importance of each

commodity in regard to the total traffic. The fraction of the

total traffic historically associated with each commodity is

denoted as fk, for k between 1 and 218. Thus the main routes

traveled in the center are identified, as illustrated in Figure

5. For instance, 50% of the traffic is historically associated

with 8% only of the commodities, while 90% of traffic is

travelling on 40% of the commodities.

3
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Fig. 5. Relative fraction of Traffic on each origin-destination pairs.

III. TRAFFIC FLOW MANAGEMENT ON THE NETWORK

MODEL

A. Formulation of the en-route Traffic Flow Management

problem based on flow geometry

The network model is intended to provide support for

further analysis of the airspace. In this section, different means

of addressing en-route traffic flow management optimization

problems are discussed, using the previous network and linear

formulations. A set of common constraints for various en-

route Traffic Flow Management problems are defined, thereby

providing a framework to modify the objective function and

provide additional constraints as necessary. Next, a non-

standard set of constraints is added, to account for sector

capacity as a result of controller taskload. The flow and sector

constraints are described in the next paragraphs. The general

problem is of the following form :

max objective

st :

{

flow constraints

sector constraints

(1)

The following flow constraints are enforced, resulting from

the network formulation. The flow rate is the upper bound on

each edge, to ensure safe separation distance between aircraft

according to their average speed. At each node corresponding

to an intersection, flow conservation is required. Throughput

conservation is required, meaning that the number of aircraft

entering the center is to be equal to the number of aircraft

leaving the center. To keep track of which edges aircraft of

a given commodity travel on, the total flow rate on an edge

is defined as the sum of the sum of the flow rates of all

commodities on the edge. The demand of a commodity is the

flow rate of this commodity on all edges entering through the

associated entry node. Thus the throughput of the center is

the sum of all the demands. This formulation results in an

unsimplified linear program of approximately 273,000 lines.

However, the flow constraints do little to impede the

traffic in the airspace. In reality, traffic throughput is

bounded, typically as a result of weather or controller

taskload constraints engendered by the existence of a

human-in-the-loop control system. To account for this bound,

sector constraints based on a taskload and communication

interpretation of aircraft management are introduced,

supported by prior research on dynamic density and analysis

of controller and pilot communication times. Historically, a

sector capacity is the number of aircraft present in a sector,

established by the Monitor Alert Parameter (MAP) and is

appropriate for considering nominal traffic patterns. Yet,

when dynamics are present (e.g. weather and changing traffic

patterns), MAP values no longer accurately represent sector

capacity - and often times lead to congestion, or conversely,

under-utilization of the airspace. To allow for the ability to

consider off-nominal conditions, a new measure is proposed.

A simple taskload model is chosen to approximate con-

straints on the expected subjective taskload a controller should

be exposed to while taking into account some factors intro-

duced by dynamic density and controller-pilot communication

times [5]–[8]. The model includes the following common

tasks, and estimates the amount of time-effort the controller

must spend on each:

• aircraft acknowledgments,

• altitude clearances,

• hand-offs,

• monitoring turning aircraft,

• resolving potential conflicts.

A running cost based on a weighted sum of the number of

events associated with each task and associated with airspace

management tasks is calculated. The proposed taskload

measure can be computed with the flow rates throughout the

center. We believe that a model that considers event rates

across each sector, and limits an expected taskload estimate,

is potentially more relevant than constraining aircraft counts.

The re-routing of traffic produces spatial aircraft distributions

that can either simplify or complicate traffic management. By

accounting for potential conflicts a more meaningful measure

is introduced.

For an arbitrary sector S, the taskload constraint is given

by summing the weighted effort required for the five tasks

listed above (acknowledgments, clearances, turning aircraft,

etc.). The associated equation is

5
∑

i=1

CS
i R

S
i ≤ W̄S , (2)

where W̄S is a measure of the maximum allowed taskload.

In Equation 2, the value RS
i represents the expected rate

associated with the ith task inside of sector S. The weighting

CS
i is the average amount of time spent on the corresponding

task. Accordingly, the total sum is the total amount of time

effort expected by the air traffic controller for a given period

of time. To maintain reasonable taskload, the bound on the

constraint, i.e. W̄S , should be selected carefully. Normalizing

all the weightings and rates, the value W̄S represents the

4
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upper-bound on the percent of time spent performing the

required tasks. In simulations, the value W̄S = .5 is selected.

The process by which each event rate, RS
i , is calculated is

detailed in [11]. In order, each rate, RS
i , corresponds to:

acknowledgments; hand-offs; altitude clearances; monitoring

turning aircraft; identifying and monitoring potential conflict

situations; and resolving potential conflicts.

B. Traffic Simulation

First, to verify that the sector constraints are indeed the

limiting constraints, two linear problems were solved and

compared. Both aim at maximizing the throughput of the

center, i.e. the number of aircraft entering the center, which

can be expressed as the sum of all demands. The first problem,

expressed in Equation 3, only takes into account the flow con-

straints, whereas the second problem, expressed in Equation 4,

is also subject to the sector constraints.

max Throughput (3)

st : flow constraints

max Throughput (4)

st :

{

flow constraints

sector constraints

The results show that the center throughput obtained

by Equation 4 is only 14% of the throughput obtained by

Equation 3. Besides, in case Equation 3, 3020 edges out of

3085 are occupied, while 570 edges are in Equation 4. The

network being almost fully occupied at any interval of time

is unrealistic. This demonstrates the importance of adding

sector constraints in the TFM formulation. Nevertheless, to

simulate traffic through an airspace, a demand pattern needs

to be fixed, otherwise the routes capable of accomodating

the more traffic prevail, and some origin-destination pairs are

never serviced. For instance, only 40 commodities out of 218

are travelling in Equation 4, which is very unlikely.

Another interesting question is to define the demand pattern

for the center. On average, this can simply be obtained as

explained in Section II.B. Yet, in order to realistically simulate

traffic, the state of the network has to be defined. Indeed,

the airspace can be working under nominal conditions, and

therefore the entire network can be opened, or the airspace

can be experiencing weather perturbations, and aircraft may

travel on a sub-network, comprised only of the edges that it

is safe to travel. The strength of the above TFM formulation

lies in the fact that the sector constraints can be adapted to

the state of the airspace, because edges can be removed from

the network and the bounds accordingly modified. Moreover,

demand patterns vary throughout the day, and the airspace

experiences peak-demand hours and lower-demand times.

In order to estimate the demand patterns for suitable time

intervals, that is of about 15 minutes, through the day, the

ETMS data used to construct the flows proves to be useful

again. We are currently data mining, in order to identify days

under nominal conditions, days under perturbations, what

type of perturbations, and define suitable demand patterns.

The goal is to use the information gathered on which routes

were historically traveled by aircraft through any day, under

which conditions, in order to refine the TFM formulation.

The model presented enables us to determine whether a

given demand pattern can be accomodated or not, depending

on the controller’s capacity to handle traffic. If the model

shows that the demand pattern can be accomodated, it also

provides the best routes for aircraft to follow. The best routes

balance the preferences of aircraft to travel the shortest routes

and the need to maintain acceptable taskload levels for the

controller. Besides, it gives a clear view of which routes

could accomodate more traffic if the demand were to change,

i.e. the remaining capacity. If the model shows that the

demand pattern cannot be accomodated, it points out where

the congestion would occur and what share of the demand

could travel while ensuring safety.

IV. MEAN FIELD GAMES APPROACH

The decentralized approach uses the abstracted flow graph

presented in Section II according to the theory of mean field

games.

A. A Brief Introduction to Mean Field Games

Mean Field Games (MFG) theory considers a class

of games with large numbers of players, and establishes

equations for calculating the Nash equilibria of long-term

stochastic problems. Deterministic limits can be identified for

stationary systems, but the theoretical framework is also well

suited to an interpretation in terms of optimal control with

finite horizon.

The mean field approach brings together two seemingly

opposed methodologies. One is the atomistic approach where

the microscopic dynamics of the agents and their interactions

are precisely described. In the case of air traffic the continuous

approach has conventionally been used with agent-based

simulations that describe conflicts and controller taskload

[16]. Second is the continuum approach traditionally used

in stochastic control and statistical physics approximations,

where the macroscopic system properties and evolution are

considered in terms of partial differential equations. In the

case of air traffic this was used with Eulerian flow models [17].

In order to match the atomistic and continuum scales, the

theory of MFG considers a feedback coupling (see Figure 6).

Microscopic rational agents whose dynamics are controlled by

a stochastic differential equation seek to minimize their costs

by relying on their rational anticipation of the macroscopic

system dynamics and their value function. Each agent’s

5
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optimal strategy to reach a future state is associated to a

value function which solves a Hamilton-Jacobi-Bellman

(HJB) partial differential equation. The rational anticipation

by the agents yields, under certain conditions, convergence to

a Nash equilibrium. The macroscopic system dynamics are

piloted by a transport equation of the Kolmogorov-forward

type (also known as a Fokker-Planck equation). The overall

dynamics along with the micro-macro equilibria thus emerge

from the feedback coupling of the HJB and the Kolmogorov

equations.

Fig. 6. Mean field coupling

B. Application of MFG to Air Traffic

MFG are well suited to describe interactions between

numerous agents with marginal local influence, which is

applicable to air traffic. Instead of considering individual

aircraft, MFG are based on continuous density measures

to approximate such large numbers of similar agents. As

illustrated by Figure 7, mean field games convert large

numbers of aircraft navigating in the airspace to a scalar

measure of traffic density along respective air routes. By

characterizing the density of traffic along flows rather than

individual aircraft, the mean field games approach fits well

into the flow network paradigm introduced in Section II.

Aircraft must traverse the airspace by passing as close

as possible to certain waypoints and following the shortest

available routes between the waypoints. The waypoints and

routes are defined by graphs (or networks) such as the ones

presented in Section II. Figure 8 represents a reduced version

of the network for ZOB (Cleveland) Air Route Traffic Control

Centers (ARTCC).

The network is introduced into the MFG formulation as a

constraint on the available state space. The subjacent cost used

in the optimization penalizes both the expected congestion on

the possible branches of the network and also the total length

of the chosen path. The mean field dynamics are defined by the

coupling of the Fokker-Planck and Hamilton-Jacobi-Bellman

equations. Fokker-Planck propagates the population density

forward in time, while the HJB equation propagates the value

function (the optimal cost) backward in time, based on agents’

expectation of future evolution (see Figure 6). The optimal

solution to the coupled equations is a decentralized control

(a) Discrete agents

(b) Continuous density

Fig. 7. MFG approximation of a population
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Fig. 8. Graph abstraction of aircraft flows in ZOB ARTCC

that regulates congestion and minimizes deviations and delays.

The main interest of the MFG approach lies in its ability to

incorporate several distinct populations of aircraft cohabiting

in a shared airspace with varying equipage or autonomy levels

and possibly diverging objectives. Congestion and delays

6
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are treated as intrinsic emerging factors. The optimality of

aircraft trajectories thus contributes to self-regulation of the

system. At the macroscopic scale, the existence of congestion

can be used as an indication of when and where additional

directed control is required. The MFG perspective is therefore

suited to assessing the impact of ATC paradigms where the

locus and amount of control varies on a scale ranging from

centralized to decentralized/autonomous.

A precise analytical formulation and numerical discretiza-

tion scheme for using MFG in the context of ATM congestion

forecasting and control has been achieved [15]. The flow graph

plays a role in the cost function by penalizing deviations away

from its edges. It is important to note that this graph repre-

sentation implicitly uses agent preferences (origin, destination,

ideal routing). The full cost is modeled in Equation (5) and

incorporates congestion, distance and discount terms.

In order to represent aversion to congestion, high density

regions are penalized by increasing the cost of traveling

through them. The
α2

s

2
mβ

s term implies control α through

high density (higher m) regions will be more expensive than

low density regions. β > 0 is a parameter that represents

the magnitude of aversion (how fast the cost will increase as

0 < m < 1 increases).

To the quadratic congestion term we then add the distance

term λd2(x, xgc) to penalize deviations away from great circle

routes (flow graph edges) connecting waypoints (flow graph

nodes) - see Figure 8. The parameter λ represents the tolerance

to deviating against traveling through congested regions.

Finally, a discount factor e−rs represents the urgency (the

relative balance of short-term against long-term costs). The

parameter r models the flexibility in trading-off the present

against the future.

J =

∫ T

t

[
∫

Ω

(

α2
s

2
mβ

s + λd2(x, xgc)

)

dms

]

e−rsds (5)

The coupled forward (Fokker-Planck) and backward (HJB)

optimality equations in the time-varying case are shown in

(6). A more detailed derivation and discussion may be found

in [15].

∂tm−
σ2

2
∆m+∇ ·

[

m
∇v

mβ

]

= 0

m|t=0 = M0

∂tv +
σ2

2
∆v +

|∇v|2

2mβ
− rv = −λd2(x, xgc)

v|t=T = VT (6)

We are currently developing numerical resolutions methods

apt at solving the forward-backward coupling.

V. FUTURE WORK AND CONCLUSION

A data-based methodology for modeling an airspace as a

large-scale 3D graph has been presented. This abstraction

of a complex system provides aggregated information about

the airspace, its complexity, and the location of areas with

stronger probability of conflict.

Two perspectives on this framework for en-route Traffic

Flow Management have been developed. The centralized

approach offers a formulation of the en-route TFM problem in

order to simulate traffic through the airspace. The formulation

is adapted to the network flow model by incorporating

results from complexity metrics which account for controller

workload and ensure safety requirements. The decentralized

approach applies mean field games theory to identify, forecast,

and control the occurrence of systemic congestion and delays.

The aircraft population lives in a state space constrained

by the graph and evolves according to optimization criteria

which account for expected congestion and rerouting costs.

The work presented here is undergoing and will offer

several applications for Traffic Flow Management. The

ultimate goals are to be able to predict congestion and

mitigate its effects, both under nominal and perturbed

conditions, while accommodating larger shares of traffic.

The next step toward accomplishing these goals is to add

stochastic weather models to the TFM framework. Weather

perturbations will be incorporated in the network formulation

through morphisms acting on the graph according to relevant

spatial and temporal correlations. The modified network

structure will then be used by both the centralized and

decentralized approaches, which will result in stochastic

optimization problems.

Morevover, comparing the results of both approaches may

lead to the implementation of a mixed strategy. Indeed, the

centralized approach is likely to violate individual aircraft pref-

erences, whereas the decentralized strategy does not take into

account bounds on controller workload. Therefore, a mixed

strategy that incorporates elements from both perspectives

is likely to produce results that better balance aircraft and

controller objectives.
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