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Foreword - This paper describes a project that is part of

SESAR Workpackage E, which is addressing long-term and

innovative research. The project was started early 2011 so

this description is limited to an outline of the project objectives

augmented by some early findings.
Abstract—The paper presents the preliminary results delivered

by the WPE project ELSA. After some introductory notes about
the project aims and structure, the paper shows how tools
borrowed by the Complex Network Theory can be used to study
the issue of delays in the air traffic system.

I. INTRODUCTION

In the future of Air Traffic Management there is an increase

of traffic demand and new business challenges that will bring

the current ATM system to its capacity limits within the 2013-

2015. As a consequence an overall productivity improvement

is urgently needed and SESAR indicated business trajectories

as one of the key issues in this respect. Thus the structure

of ATM as it is known today will drastically change and

these changes will be hardly understood by relying on the

analysis of single elements, i.e. by applying the current state-

of-the-art validation approaches. More likely the future ATM

key features will be the results of a complex interaction of

the introduced changes and therefore should then be analysed

with the methods and tools of the science of complex systems.

The shift from a structured route network to a trajectory-based

scenario, where users will be able to fly their selected business-

efficient and economically profitable 4D trajectory, will lead

also to the introduction of new quasi real-time monitoring

methods to identify emerging properties, like high density

areas, or areas where disturbances get propagated or amplified.

Specific attention should be paid to boundary areas that will

be drawn by the interaction between aircraft trajectories and

the organizational changes brought by the introduction of the

Functional Airspace Blocks. The objectives of the project are

to analyze the present ATM system and to use the results

of this analysis to introduce an Agent Based Model of the

new business-trajetory SESAR scenario. The project is divided

in three parts. During the first period an extensive statistical

analysis of real data will be performed in order to single out

a bundle of significant regularities and to identify a set of

methods to characterize geographical areas in terms of level

of complexity, safety and resilience.

Some of these patterns will be clearly linked to operational

aspects (in the sense that the operational experts will be able

to explain their causes and show how they are engendered),

while others will require further analyses to understand their

dynamics and emergence. On the basis of the results obtained

during this first phase an Agent Based Model will be proposed

and developed hierarchically, i.e. introducing step-by-step in-

creasing complexity and degree of realism in terms of number

of sectors, decision rules of controllers and sectors, layers of

planning, etc. These models will be calibrated and validated

with respect to both the empirical data analysis and the expert

opinion of ATM stakeholders and operators. Once calibrated

to the current scenario, the Agent Based Model will be used to

simulate a SESAR scenario (trajectory-based). The third part

of the project will be devoted to the design and implementation

of a decision support prototyped tool. The consortium will use

the results of the project so far to draw the line for a prototype

for the monitoring, prediction and intervention on the airspace.

It should serve as proof for concept of an innovative control

system for complexity managers, the sub-regional and regional

network managers.

II. NETWORK THEORY IN THE ATM DOMAIN

The use of Network Theory in the context of Air Trans-

portation System dates back at least to the works of Ref. [1],

[2], [3], [4], [5], [6]. These are nowadays classical references

in the complex systems research community.

More recently, the use of Network Theory to model the

Air Transportation System starts to be of interest to several

scientists of different disciplines and covers topics such as

such as efficiency, safety, flexibility, etc. of the air traffic

system, see for example [7], [8], [9], [10], [11], [12] and
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references therein. In Ref. [7] the authors used a weighted

degree distribution for light jet operations to understand the

capability of airports to attract the use of Very Light Jets

(VLJs). In Ref. [8] network theory tools were used to explore

how they can assist in the understanding, monitoring and

management of the performance of ATM systems with respect

to safety issues (STCA signals). In Ref. [9], [10] the regional

network of Lufthansa flights has been considered in order to

investigate whether the strategies of that airline and its partners

can be revealed by a network theory analysis. The objective

of the work reported in Ref. [11] is to determine if network

theory parameters can be utilized to identify unconnected city

pairs that are most likely to connect in the future. In Ref. [12]

the connectivity of the airport networks in China, Europe and

US is investigated in the aim of understanding which network

is most beneficial to final passengers in terms of travel time

and which of the network features lead to such a result.

The papers mentioned above give just examples of how

disparate are the topics where Network Theory tools can be

successfully applied. In the present paper we start to investi-

gate the issue of air transportation system with an emphasis

on flights delay. Specifically we will present a preliminary

analysis aiming at understanding how the airport network

topology is related to the statistical properties of flights delay

and how network topology affects the propagation of flight

delays from an airport to another.

III. DATABASE DESCRIPTION

The data used in the present investigation are provided by

Eurocontrol Central Flow Management Unit (CFMU) under

special confidentiality bounds. The provided data are the

SegOut6 (so6) and the EXPand/Traffic demand file (exp2) files

[13]. The period of investigation is the week June 1-7, 2011.

The so6 files give a 4D description of trajectories. This

is the basic file format used for queries, airspace load and

other key SAAM (System for traffic Assignment & Analysis at

Macroscopic level) functions. It stores SAAM 4D trajectories

and limited flight information. These data contain points

information about latitude, longitude, flight level, date and

time of all segments of each flight recorded by the ATM units

of the EUROCONTROL (ECTL) countries.

We processed two types of so6 files: files containing data

relative to the last filled flight plan (m1) and files containing

data relative to updating of the the last filled flight plan with

radar data (m3). The estimates derived from received flight

plans are thus updated during the flight execution with radar

tracks forwarded to the CFMU by the different ATC centres.

Many factors can contribute to deviations between planned

and executed trajectories.

The exp2 files store flights information, but no trajectories.

They are used for SAAM as a traffic demand for the assign-

ment. Examples of flight information stored are the callsign

and the type of flight, e.g. whether it was a General Aviation

flight (G), a Military flight (M), a Non scheduled flight (N) or

a Scheduled flight (S). From the callsign it is possible to get

information about the airline that operated the flight.

In the preliminary investigation presented in this paper we

use only part of the provided information. Specifically, we

decide to not use the information about segments and to

investigate the issue of delays between the last filled flight

plan and the effective flight at the level of a single flight [14].

For each flight we consider as a proxy of the flight delay

the difference between the arrival time reported in the m3

file and the arrival time reported in the m1 file. It is worth

mentioning that the exp2 file contains a column called “ATFM

DELAY” standing for Numeric Air Traffic Flow Management

Delay. This is the difference between the take off time (CTOT)

calculated by Civil Aviation Safety Authority (CASA) and

the estimated take off time (ETOT). In a future extension of

this work, we plan to compare the result obtained by using

the above defined proxy of delay, with the one obtained by

considering the “ATFM DELAY”.

IV. AIR TRAFFIC NETWORKS: DEFINITION

We apply methods of complex network theory to ATM. It is

possible to define many different types of networks of the air

traffic, depending on the research question one is interested

in. Since one of our objectives is to study the dynamics of

delay in the European airspace, we will consider the airport

network. As we will see below, it is possible to define at least

two types of airport networks.

The first type of networks considers the airports as nodes.

Two airports are connected by a link when at least one flight

is present between the two airports. The number of flights in

a given time interval between two airports gives the weight of

the link (see also section V) between the corresponding nodes.

More precisely, if in the considered time period there are nAB

flights which go from airport A to airport B and nBA flights

which go from airport B to airport A, we consider that nodes

A and B in the network are connected by two links, one from

A to B with weight nAB and one from B to A with weight

nBA. This airport network, termed flight network, is therefore

weighted and directed.

The empirical analysis of the real airport network shows

that one can, in first approximation, consider a simpler version

of the network. In fact, when one considers a time interval

of a day (or longer), one observes that for most links it is

nAB ≃ nBA, i.e. two airports are typically connected by the

same number of flights in both directions. In order to test this

approximation, we consider a specific day, namely June 1,

2011 (but similar results hold also for other days). For each

pair of airports A and B, which are connected by at least one

flight, we count nAB and nBA. In the left panel of Fig. 1

we show nAB versus nBA. Apart from some scattering due

to small values of the number of flights observed close to

the origin of the figure panel, we generically observe that the

points lie quite close to the line nAB = nBA, as assumed

above. Note that the same type of symmetry is observed if

one plots the total number of flights departing from one airport

versus the total number of flights landing in the same airport

(see right panel of Fig. 1). Due to this approximate symmetry,

in the following of this paper we will consider an undirected

2
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network where nodes are airports and links are weighted with

the total number wAB ≡ nAB +nBA of flights connecting the

two airports. We call this undirected and weighted network

route network.

Given this distinction between the two networks, it is also

important to consider a partition of the nodes and of the links

of both networks due to the specific structure of our database.

The database is provided by ECTL and includes flights that

take off or land in an ECTL country or flights between two

non-ECTL countries but that use the airspace of one or more

ECTL countries. Therefore we consider two types of nodes,

namely those associated to an airport in an ECTL country and

those outside. In the investigated week the fraction of airports

in an ECTL country ranges between 67% and 72%.

Similarly, we classify three types of flights. The majority

of flights (between 74% to 80%) are between ECTL airports.

A small fraction of flights, ranging between 2.2% and 2.7%
is between two non ECTL airports. The remaining fraction

of flights is between an ECTL airport and a non ECTL one,

approximately equally split between incoming and outgoing

flights.

These numbers are a bit different if we consider the route

network. In this case the fraction of routes between two ECTL

airports ranges between 69% and 73%, while the fraction of

routes in the database between two non ECTL airports ranges

between 2.4% and 2.8%.

V. NETWORK METRICS: A REVIEW

As mentioned above we will consider airport networks, i.e.

graphs where the nodes (vertices) are the airports and there

exists a link between two airports if there is at least a flight

that connects them. The links may (flight network) or may not

(route network) be directed. They will always be weighted,

according to the number of flights between the two airports.

Several metrics can be considered in order to characterize

a network. We will hereafter introduce some of them:

• Degree - The degree of each node in a network is given by

the number k of links of the node. In the case of directed

networks one can estimate the degree kin (estimating the

number of links incoming to the node) and the degree

kout (estimating the number of links out-coming from

the node). For the route network, the degree of an airport

is the number of other airports that can be reached

from it in a day, i.e. the number of destinations. The

vertex degree distribution P (k) is one of the key tools

we may use to characterize the network configuration

[10], since this function determines the way nodes are

connected. Specifically, a crucial role is played by the

way the distribution decays for large degree values. For

example, when the distribution decays like a power-law

P (k) ∝ k−α, it means that the probability of finding

airports with a very large number of flight connections is

much higher than what expected in the case of a binomial

distribution of degrees, usually associated to a random

graph [15]. Such networks are sometimes termed scale

free networks.
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Fig. 1. Upper Panel. Number of flights from A to B vs. number of flights
from B to A for each pair (A, B) of connected airports. Lower Panel. Number
of outgoing vs number of incoming flights for each airport.

• Weight - As mentioned above, each link can be assigned

a number quantifying the level of connection between the

two connected nodes. This is the weight of the link. In

our case, as mentioned above the weight is given by the

number of flights existing between the two airports in the

given period of time. Similarly to the previous case, the

link weight distribution W (k) is one of the key tools we

may use to point out the network topology.

• Strength - The node strength is simply the sum of

the weights associated to the links that originate from

(terminate in) it. In our case, the strenght of a node gives

the total number of flights departing from (arriving to) an

3
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airport. In the case of the route network, the strenght is

given by nAB + nBA.

• Average Path Length - Let us call ℓij the shortest distance

between vertex i and vertex j. This is defined as the

minimum number of links that connects any two nodes

i and j in the considered network. The Average Path

Length 〈ℓ〉 is then defined as:

〈ℓ〉 =
1

N (N − 1)

∑

i,j

ℓij (1)

where N is the number of nodes in the network. In

our case 〈ℓij〉 measures how many flights are needed in

average to reach airport j starting from airport i. The

Average Path Length 〈ℓ〉 is therefore a measure of how

well connected the airports are.

• Diameter - The Diameter of a network is defined as the

maximal value of ℓij :

D = maxi,j ℓij (2)

In our case the diameter of the network gives the maximal

number of flights needed to reach any two aiports in the

network.

• Betweenness - The node betweeness Bk gives a measure

of the relative importance of a node in a network. It is

defined as:

Bk =
∑

ij 6=k

lij(k)

ℓij

(3)

where the sum is extended over nodes i and j that are

both different from node k. Here lij(k) is the minimum

number of links that connects any two nodes i and j

and passing through vertex k. In our case lij(k) is the

minimum number of flights through airport k needed to

reach airport j starting from airport i. This a measure of

how central is airport k in the network. High values of Bk

indicate that such airport is reached by many travellers

moving from one airport to another and thus probably it

behaves like an hub.

• Clusters - Clusters in a network are sets of nodes that are

only connected within themselves and are not connected

with any other node outside the cluster. In our case,

if airports A, B, and C belong to the same cluster, it

means that there exists no flight that connects one of

them starting from any other airport D in the network.

The existence of clusters of airports would indicate that

there are regions that can not be reached from outside. A

network where all vertices belong to the same cluster is

referred to as a connected network.

VI. STATISTICAL CHARACTERIZATION OF AIR TRAFFIC

NETWORKS

In this section we present some statistical characterization

of the flight network and of the route network. As we have

discussed above we can consider different networks depending

on whether we want to include only ECTL airports or all the

airports in the database.

Table I shows some summary statistics of the networks

when one includes all the nodes (airports). We consider one

network per day in order to estimate the statistical fluctuations

in time. The table shows for each day the number of nodes

(airports), the number of flights, and the number of links in

the route network. This last number is clearly the number

of routes, where route from A to B and route from B to

A are counted only once. The next metric is the average

strength, < s >, in the route network. This corresponds to

the average number of flights (incoming and outgoing) for

an airport in the network. The table shows that on average

there are 45 flights taking off or landing in an airport per day.

The system is however very heterogeneous. In fact Table I

shows that the maximal value of the strenght, max(s), is more

than one thousand. In order to have a full characterization of

the distribution of strength (flights) per airport, we show the

cumulative probability of the strength s for one day in the left

panel of figure 2. The distribution is quite fat tailed and not

compatible with an exponential tail.

A different way of characterizing the topological properties

of the network is by considering the degree kA of a node

(airport) A, i.e. the number of airports connected with a direct

flight with A (in the considered day). Table I shows the average

degree < k >. Table shows that on average an airport of

the database is connected with approximately 12 destinations.

Again the system is very heterogeneous. In fact the maximum

degree, max(k), is more than 200. In the right panel of figure

2 we show the cumulative probability of the degree k for one

day. Also in this case we observe a large heterogeneity, but in

this case the tail of the distribution is well fit by an exponential

function.

We consider the relation between the degree (number of

destinations) and the strength (number of flights) of an airport.

In figure 3 we show the relation between the two variables in

a log-log scale. In the region of degree k > 20 we fit a power

law relation s = C kβ . The best fit gives the value β = 1.39
indicating a superlinear relation between number of flights and

number of destinations. This means that if an airport doubles

the number of destinations, it typically increases the number

of flights by a factor 21.39 ≃ 2.45.

The considered networks are not completely connected. In

fact, direct inspection reveals that the system is partitioned

in several clusters of airports. However, as Table I shows,

the largest cluster covers more than 97% of the airports. The

remaining clusters are made of very few airports. Therefore

the network has a giant component essentially covering the

entire system.

Finally, we consider the average path length connecting two

airports. The path length ℓAB is the minimum number of

flights needed to reach airport B from airport A. The average

path length < ℓ > is the mean value of ℓ across all airport

pairs. By taking into account the directionality of flights (i.e.

by considering the flight network) we find that the average path

length < ℓ >s is a little bit larger than 3 (see Table I). This

is intuitive since typically one reaches an hub from a local

airport, then uses a flight connecting two hubs, and finally

4
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Fig. 2. Upper Panel: Cumulative density function of strength s (left,
in log-log scale) for the whole set and for only ECTL airports. Lower

Panel:Cumulative density function of degree k (right, in semi log scale) for
the whole set and for only ECTL airports.

reaches the final destination. By neglecting the directionality

of links, i.e. by using the route network, one obtains the

average path length < ℓ >k shown in Table I. This is by

definition smaller than < ℓ >s. However the table shows that

these numbers are not dramatically different. The reason is

that, as discussed above, the vast majority of airport pairs are

connected in both directions in a typical day, therefore the

directionality of links does not change significantly the path

length.

We also consider the properties of links. We have seen that

in the route network a link is characterized by its weight, i.e.

the number of flights in the route (in one day). The mean

value of the weight is < w >= 3.70, i.e. a route has typically

3.7 flights per day. Note however that the standard deviation

is 5.1. and the maximum is max(w) = 95, indicating again

a large heterogeneity. In figure 4 we plot in semi log scale

the cumulative distribution of link weight. The tail of the

distribution is well approximated by an exponential function.
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Fig. 3. All airports. The dashed line is a best fit with a power law in
the region of degree larger than 20. The estimated exponent is 1.39. Similar
results are observed for ECTL airports only.
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Fig. 4. Cumulative density function of link weight w, i.e. number of flights
per route. The plot is in semi log scale.

VII. PRELIMINARY ANALYSIS OF DELAYS

We define delays as the difference of landing time in m3

file and landing time in m1 file. We recall that m1 files have

information about the last filled flight plan whereas m3 files

have information about updates of the last filled flight plan

obtained from radar data.

The fraction of flights with more than 15 minutes of delay

ranges between 15% and 28%. These numbers are consistent

with the fraction reported in the PRR report 2010 (25%). The

fraction of flights with more than one hour of delay ranges

between 0.34% and 2.6%.

Figure 5 shows the probability density function of delays

in semi log scale for each day of the first week of June 2011.

The central part is roughly described by a Laplace distribution

(asymmetric). Note also that there is a relatively large fraction

of flights with a negative delay.

Finally, we consider whether some simple topological prop-

5
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day nodes flights links < s > < k > max(s) max(k) largest cluster < ℓ >s < ℓ >k

W June 1 1375 31224 8498 45.4 12.4 1452 221 1356 3.34 3.29
Th June 2 1296 27660 7757 42.6 12.0 1426 226 1264 3.33 3.27
F June 3 1291 28280 8039 43.8 12.5 1384 219 1256 3.31 3.23
Sa June 4 1153 25289 7642 43.8 13.3 1343 245 1126 3.17 3.15
Su June 5 1188 28175 8104 47.4 13.6 1451 232 1167 3.14 3.12
M June 6 1342 30435 8243 45.3 12.3 1494 221 1327 3.35 3.29
T June 7 1348 30397 8131 45.1 12.1 1494 220 1313 3.34 3.28

TABLE I
FULL NETWORK. ℓ IS THE PATH LENGTH. FOR A DETAILED EXPLANATION, SEE TEXT.
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Fig. 5. Probability density function of delays in the first week of June 2011.
The y-axis is in log scale.

erties of the airport network is related to flight delay. As a

preliminary result, in Figure 6 we show the relation between

the fraction of delayed flights (with a threshold of 15 minutes)

and the strength of the node, i.e. the number of flights arriving

or departing in an airport in a given day. To have an higher

statistic we pool together all days in the week June 1-7, 2011.

We observe that airports corresponding to nodes with large

strength tend to have an higher fraction of delayed flights.

A linear regression between the two variables restricting to

airports with more than 300 flights in a day gives a noisy

but statistically significant relation (R2 ≃ 0.1). This result

indicates that airports with a higher traffic tend to have a larger

fraction of delayed flights.

VIII. PERSPECTIVE WORK

The results presented in this paper are relative to a pre-

liminary analysis of the flight and route networks. Further

analyses performed in the future activity of the ELSA project

will include a complete study of the flight delays as a function

of the above mentioned network metrics. For example it is

expected to be of particular interest the way the fraction of

delayed flights depends on the network average path lengths.

Furthermore, we plan to study how characteristics of flight and

route networks subsets affect the whole system. More precisely

we will consider regional and airline sub-networks, as well as

temporal layers of the networks (e.g. peak and off-peak) and
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Fig. 6. Fraction of delayed flights (more than 15 minutes) as a function of
the node strength (number of flights in a day) for the whole week June 1-7,
2011. Data are binned on the x axis. Error bars are standard errors.

will study how the delays in these subsets differ from the

original network. A particular attention will be paid to the

network properties of hub airports and the relative fraction of

delayed flights. We plan to analyse whether secondary airports

directly linked with an hub are able to absorb the delays

generated by an hub during the rush hours or if the delays are

propagated to the secondary airports. This point is especially

relevant for the transition to the target SESAR scenario, as

capacity gains are expected to come from a greater use of

uncongested secondary airports [16].

Finally, we are planning to study traffic delays at the level of

flight segments in order to characterize delays in terms of the

segment typology. For example, we might investigate what are

the stylized facts of delays in segments close to airport areas

or in segments that are far away from airports and nevertheless

experience high traffic volumes
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