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Abstract—This paper describes a novel approach to semantic 

system and security modelling developed in the SERSCIS 

project. The approach is designed to address dynamic multi-

stakeholder systems that are composed from services at run-time. 

This presents several challenges for security risk modelling and 

management that are not well addressed by previous work. The 

biggest challenge is the fact that at design-time one only knows 

the structure but not the composition of the system, forcing an 

abstract modelling approach to be used. The SERSCIS approach 

deals with this by defining a set of OWL classes describing 

generic system assets, threats and security controls and the 

relationships between them. This dependability model captures 

security expertise concerning the types of threats that can arise in 

general and the controls that can be used to address them. An 

abstract system model can then be created using OWL 

subclasses, to capture the types of assets and their relationships 

in a specific system, but still without specifying how many assets, 

where they are deployed or what security controls they have. The 

resulting models can be used as inputs to run-time semantic 

monitoring tools, where the knowledge encoded in the abstract 

system model is used to automatically determine system threat 

activity and system vulnerabilities. The approach was validated 

in an Airport Collaborative Decision-Making scenario. 
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I.  INTRODUCTION 

The SERSCIS project [13] aims to address the growing 

need to manage risks in Critical Infrastructure arising from or 

amplified by information system interconnections between 

different stakeholders. Increased connectivity is being driven 

by the need for efficiency. By sharing data, the organizations 

involved in running critical infrastructure can predict events 

and manage resources more effectively. Wider access to 

information also encourages competition, e.g. by requesting a 

service at some future time, so different suppliers can bid to 

provide it. 

But information sharing also increases vulnerabilities due 

to three effects: 

 attacks can be made against the information systems or 

communication channels, disrupting the flow or the 

integrity of exchanged data; 

 local disruption in one organization can lead to more 

problems elsewhere due to the dependency of others on 

data from the disrupted party; and 

 the use of exchanged data to increase efficiency 

usually leads to a reduction in excess capacity, and so 

reduces resilience against any type of disruption. 

For example, under the Single European Skies initiative, 

the use of airspace in Europe is managed by Eurocontrol, an 

international agency that seeks to optimize the flow of air 

traffic by assigning take-off and landing slots at airports in real 

time. To do this, Eurocontrol defines a collaborative decision-

making process (CDM) in which national air traffic control 

services share information via Eurocontrol. The CDM 

approach is now being extended to airport operations (A-

CDM), allowing aircraft ground handling operators to provide 

predictions of when aircraft will be ready to take off. The chain 

of interconnections means air traffic control in Europe could be 

disrupted by attacks on or problems of airport service providers 

that handle tasks like aircraft refuelling, baggage handling, etc.  

The SERSCIS project is addressing these issues by treating 

the information systems in a critical infrastructure as a 

dynamically composed, multi-stakeholder, service-oriented 

system. Dynamic service oriented architectures can be used to 

reconfigure information flows in the event of a problem, 

providing a dynamic response to mitigate its effects locally or 

on other parts of the network. The problem is that the risk 

management methods used in critical infrastructure are based 

on design-time analysis of information security threats [3,7,10], 

as typified by the procedures used in the Single European Skies 

research initiative SESAR [15]. These methods cannot cope 

with dynamic, multi-stakeholder systems. To overcome this 

limitation, SERSCIS has developed a novel approach to system 

modelling, designed to support threat modelling and analysis in 

dynamic, multi-stakeholder systems. The approach is based on 

the use of semantic modelling, so machine reasoning can be 

used to automate the analysis of threats when the system is 

composed at run-time. In contrast to other approaches, the 

design-time models are abstract, describing the structure but 

not the composition of the system (which is not known until 

run-time). The models are also stakeholder-centric, ensuring 
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that they can be used to interpret system behaviour and threats 

at run-time from the point of view of an individual stakeholder, 

using only system configuration and status information 

available to them. This paper focuses on the modelling 

approach developed in the SERSCIS project, leaving other 

aspects such as policy modelling and run-time monitoring and 

risk management to be detailed in other publications [11]. 

The rest of the paper is organized as follows: In section II 

we compare our modelling approach to the state of the art in 

risk and security modelling approaches. In section III we 

present the layered SERSCIS models (Core, Dependability, 

Abstract and Concrete). In section IV, we present a detailed 

validation scenario used to evaluate our approach and finally in 

section V, we conclude with a description of future work. 

II. RELATIONSHIP TO THE STATE OF THE ART 

A. Risk Management 

As noted above, state of the art risk management 

methodologies such as COBIT [2], and ISO 27005 [9] are 

based on analysis of information security risks for a given 

system design and configuration. The analysis allows system 

vulnerabilities to be detected, and associated risks quantified. If 

the risk is too great to be accepted, strategies are defined to 

reduce the risk (using security controls), avoid the risk (by not 

using the vulnerable system feature) or transfer the risk to 

someone else (by outsourcing system functions, or insuring 

against potential losses). In most methodologies, the 

effectiveness of control strategies must be monitored, and if 

necessary the analysis is revisited, e.g. if new vulnerabilities 

are discovered, or threats prove more likely than expected. 

However, the approach is essentially a design-time approach, 

in which changes are effected by amending the system design 

(e.g. adding new controls), having security experts analyse the 

new design to check the changes will have the desired effect, 

and then adding controls to the system. In a dynamically 

composed service-oriented architecture this approach is not 

sufficient for two reasons. There is no conventional system 

design including controls: the system composition changes 

during run time as services are added removed or replaced, 

each service having its own controls that may differ from 

others of its type. And there is no time for a conventional 

security expert analysis of system changes that occur 

dynamically.  

Matulevicius et al [3] present work on a graphical approach 

to identify, explain and document security threats and risk 

scenarios. A graphical notation was developed to perform the 

five phases needed for security analysis 1. Context 

establishment, 2. Risk identification, 3. Risk estimation, 4. Risk 

evaluation and 5. Treatment identification. Diagrams are 

created during each of these steps (similar to UML models) 

under the guidance of a domain expert. We have followed a 

similar approach for the identification of threats and their 

mitigation strategies. However, the work done by [3] does not 

go beyond the modelling phase (diagrammatic modelling). The 

novelty of our SERSCIS system modelling approach is that we 

use an abstract modelling approach (OWL ontology based) to 

address the challenge faced in adaptive systems (where the 

composition of the system is not known in advance). Further, 

we go beyond the modelling stage and integrate our ontologies 

into the runtime dynamic stakeholder system. The concrete 

model (instance information) is automatically generated at 

runtime depending upon the current composition of the system. 

Work by [8] uses an extension of the Secure Tropos 

language to support the modelling of security risks. The 

domain model is mainly structured around three groups of 

concepts: asset-related concepts, risk-related concepts and risk-

treatment related concepts. Further security criteria for each of 

these assets are identified in terms of confidentiality, integrity 

and availability. This work is an extension of the work on 

Secure Tropos, and includes the development of syntactic, 

semantic and methodological extensions that would support 

security risks and their counter measures. This representation is 

in a diagrammatic in nature and is used to present abstract 

syntax elements for risk modelling and the rules on how these 

can be combined together. The domain model in [8] is similar 

to the core ontology model we use in SERSCIS (consisting of 

Threat, Asset and Control). The risk modelling approach we 

used during the brain storming session uses features from both 

[3] and [8], however, in SERSCIS we use OWL ontologies to 

model Core, Dependability and Abstract system models in 

addition to the diagrammatic representations. This allows our 

models to be much more expressive (due to expressive nature 

of OWL syntax) and encoded in a way such that existing rule 

based languages (e.g. SWRL) and DL reasoners (e.g. Hermit) 

can be used with these OWL ontologies for the automatic 

identification and mitigation of threats.  

B. Security Modelling and Machine Reasoning 

One approach that could address the second of these 

problems (unknown composition of dynamic multi-stakeholder 

systems) is to use machine reasoning to analyse risks, so this 

can be done rapidly whenever the system composition changes. 

There is an existing body of research into how one might create 

semantic models of a system to support such an automated 

analysis, though with the motive of capturing security 

standards and expertise so tools can be developed to support 

non-experts. A useful overview is provided by [1]. For 

example, the NRL Security Ontology [10] provides a way to 

describe the security properties of Web Services, which was 

later used as a starting point for a Web Service vulnerabilities 

ontology [16]. The Ontology of Information Security [7] by 

Herzog et al describes a system in terms of assets, 

vulnerabilities and threats, so making the link to system risks 

(via threat models). However, this ontology uses N-ary 

relationships making it hard to deduce security properties via 

machine reasoning. 

The Security Ontology [5] from Secure Business Austria 

(SBA) uses only conventional RDF relationships, and captures 

security threats and controls from the German IT Grundschutz 

Manual [6], so providing a way to model systems with 

common threats and control strategies. The SBA approach goes 

a long way towards the goal of capturing security expertise in a 

form that can be reused (with supporting tools) by non-experts. 
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Figure 1.  Core SERSCIS ontology 
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Figure 2.  Dependability model logical asset types 
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However, this ontology describes only deployed systems and 

security controls, and cannot be used to create an abstract 

system model for a dynamically composed system whose 

concrete composition is not known at design time. The SBA 

approach also makes extensive use of Web Ontology Language 

(OWL) instances, which makes it hard to cater for multi-

stakeholder systems where it is often necessary to attach 

different properties to the same threat depending on which 

stakeholder or sub-domain is targeted. 

III. SERSCIS SYSTEM MODELS 

A. SERSCIS Approach and Core Ontology 

The SERSCIS approach follows the SBA approach, in that 

it uses only conventional semantic relationships (no N-ary 

relationships), so conventional semantic reasoning can be used 

to make deductions about security from the model. To use this 

approach for dynamic multi-stakeholder systems, the SERSCIS 

ontology
1
 was constructed such that: 

 only OWL classes are used for design-time modelling, 

allowing an abstract system structure to be captured in 

terms of the relationships between types of services, 

and associated threats and controls; 

 OWL instances are used to model the run-time system 

composition, in terms of concrete services with 

specific controls and subject to targeted threats. 

The other design criteria for the SERSCIS approach are: 

 security expertise must be added at design time (i.e. in 

the OWL classes), so run-time models can be created 

without expert intervention, yet still access their 

expertise (through machine reasoning); 

 the ratio of asserted facts to inferable facts in the run-

time model must be as low as possible, since every 

assertion has to be constructed automatically based on 

monitoring of the running system. 

These requirements led SERSCIS to simplify the high-level 

class structure used by SBA. The SBA vulnerability class was 

dropped as it was noticed that it is most often used only to 

represent a lack of security controls. The resulting SERSCIS 

core ontology structure is shown in Fig. 1. 

                                                           
1 SERSCIS ontologies downloadable at: 

http://www.serscis.eu/?page_id=317 

B. SERSCIS Dependability Model 

The core structure from Fig. 1 provides the basis for the 

development of more specific models and analysis tools. The 

next step is to capture security expertise related to the type of 

system one is dealing with. In SERSCIS, this is known as a 

dependability model, as it includes the types of assets found in 

the system, and also the attributes that make these assets 

dependable or not (e.g. whether they have threat-induced 

behaviours). 

In SERSCIS we are concerned with multi-stakeholder 

applications in which the relationships between stakeholders 

are determined at run-time via dynamic composition. Thus the 

SERSCIS dependability model describes systems in terms of 

services (and clients), taking a stakeholder-centric view (i.e. the 

model represents the system as seen by one of its stakeholders). 

Thus different asset classes are used depending on whether the 

asset is a service provided by the model stakeholder, a service 

used by that stakeholder (i.e. a resource), or a client using a 

service from that stakeholder. It is also important that the 

dependability model takes account of the fact that in dynamic 

systems, delegation is often used. Two types of delegation are 

commonly found: 

 a user of a service shares access to the service with 

another user; or 

 a user of two services has one service interact directly 

with the other. 

The first case leads us to define a special type of Client, the 

Customer, who has a relationship with the stakeholder under 

which they can use a service. Clients who are not Customers 

have access to the service only if access is shared with them by 

the Customer. Each Customer normally has a contextualized 

endpoint through which they access a service, so each service 

is really a collection of services (one per Customer). The 

corresponding asset class is therefore called a Service Group, 

rather than simply a Service. The second case leads us to 

distinguish two types of resources. A Client Specified 

Resource is one specified by a client so a service can interact 

directly with it. A Provider Specified Resource is not specified 

by a client, but chosen by the primary stakeholder. In a 

dynamic system this is often done automatically at run time, by 

having the service select the resource from a pool of available 

resources of the required type. This pool is also an asset, 

represented as a Resource Group. 
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Figure 3.  Threat and control modelling 
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The SERSCIS dependability model defines a set of threat 

induced behaviour states that are symptomatic of different 

types of asset compromise. A loss of confidentiality arises if 

the asset behaviour is ‘indiscreet’ while a loss of integrity is 

linked to ‘unreliable’ or ‘inaccurate’ behaviour (one signifies a 

process integrity failure, the other data integrity failure). Other 

behaviours include ‘overloaded’ and ‘underperforming’ 

associated with availability failures, and ‘unauthentic’ or 

‘unaccountable’ indicating a loss of trustworthiness, etc. 

Threats that can give rise to such behaviour are modelled by 

their relationships to asset types, and cover the usual range of 

accidental or malicious disruption including unauthorized 

access, impersonation (e.g. of a Customer but also potentially 

delegate impersonation), traffic snooping or corruption, data 

tampering (by unauthorized or erroneous access), resource 

shortages (e.g. in a Resource Group), deliberate or accidental 

service overload, and software bugs. The SERSCIS 

dependability model covers different ways these threats can 

arise in the interactions between the asset types from Fig. 2, 

using different threat classes depending on which asset is 

threatened and which are affected. Thus impersonation of a 

service to fool a Customer is considered as a different threat 

from impersonation of a service to fool a Client Specified 

Resource, etc. 

The SERSCIS dependability model also includes several 

control subclasses representing the types of controls typically 

found in a multi-stakeholder service-oriented system. These 

include access control, identification (meaning an entity has a 

way to prove its identity), authentication (a means to verify 

another entity’s identity or other attributes), message 

encryption and integrity verification, and a range of resource 

and load management mechanisms such as resource 

redundancy and failover (to prevent resource shortages), and 

SLA enforcement (to prevent overloading of services by their 

clients). Finally, the SERSCIS dependability model includes a 

set of Semantic Web Rule Language SWRL rules [14] that 

specify what combination of controls is sufficient to block or 

mitigate each type of threat depending upon the nature of the 

control (i.e. proactive or reactive). For example, suppose a 

client tells a service to interact with another service, i.e. with a 

client specified resource (CSR). If someone else could access 

the CSR without authorization, they could interfere with the 

data exchanged between the CSR and the service. To prevent 

this threat, the CSR must deploy access control, and have a 

way to verify a user’s identity or other attributes the access 

policy requires the user to have. This in turn means the client 

must have a way to delegate access rights to other parties, and 

the service (group) needs a way to identify itself so the client 

can avoid delegating these rights to the wrong person. 

Fig. 3 shows how this threat is modelled in terms of its 

relationships with asset types and controls. The diagram 

corresponds to a threat class and the associated control rule in 

the SERSCIS dependability model (actually several threat 

classes depending on whether the unauthorized access is used 

to steal or corrupt data at the CSR). If one finds concrete 

instances of service group, client and client-specified resource 

assets related to each other as shown, one can use the control 

rule to deduce whether the system is vulnerable to this threat 

against those assets. The SERSCIS dependability model 

contains about 50 such threat classes, so a wide range of types 

of vulnerabilities can be detected in the running system, using 

expertise encoded in the dependability model classes. 

C. Abstract System Model 

 

The SERSCIS dependability model provides the starting 

point for development of an abstract system model. This 

describes a particular system in terms of the types of assets it 

contains and the relationships between them. The abstract 

system model is a design-time model of a system that will be 

composed dynamically at run-time. It does not include the 

concrete system deployment and configuration such as who 

owns the assets, where they are deployed or with what security 

controls in place. The idea is that the abstract system model is 

created at design time by a system expert (not a security 

expert), using security expertise encoded in the dependability 

model. The resulting abstract system model is then used (along 

with the underlying dependability model) as input to a set of 

fully automated, run-time model generation and analysis tools 

connected to the system monitoring infrastructure. 

Starting from the SERSCIS dependability model, the 

system modeller proceeds as follows: 

 Define sub-classes of the dependability asset classes 

from Fig. 2, corresponding to the different types of 

services, clients and resources in their system. 

 Define usage relationships between the client, service 

and resource asset sub-classes. 

 Automatically generate threat sub-classes against each 

relevant combination of asset sub-classes. 

The last step can be automated because threats are defined 

in terms of their relationships to dependability model asset 

classes. The threat in Fig. 3 attacks a client specified resource 

by exploiting its relationship to client and service group assets. 

It is easy to find all combinations of client, service group and 

client specified resource sub-classes that have the same set of 

relationships. For each combination, a corresponding threat 

class is generated. Thus the system designer (not a security 

expert), does not need to know all the arcane ways in which an 

attacker might seek to compromise a multi-stakeholder system 

through these interactions. If they understand the system assets 
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Figure 5.  A-CDM Data Exchanges from a Ground Handler Perspective 
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Figure 4.  Abstract System Model of A-CDM 
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and relationships, SERSCIS tools can be used to fill in a 

complete set of potential threats. 

Once the threat classes have been generated, the system 

designer can optionally insert a human-readable explanation of 

the threat, information about the impact of the threat if carried 

out (high, medium or low), and an estimate of how likely it is 

that the threat will be active (a probability between 0 and 1). 

All these can be taken from the underlying dependability 

model threat classes, but it is advisable to modify the 

explanation (at least) as otherwise it will not refer to any of the 

system-specific asset types. 

D. Concrete Model Generation 

Once the system is deployed and running, a SERSCIS 

concrete model generator is connected to the monitoring 

subsystem, and used to create a model of the running system. 

This reflects the current system composition, i.e. what assets of 

each type are involved, what security controls are in place to 

protect each asset, and which threat induced behaviours are 

exhibited by each asset. Once the assets are known, instances 

of the corresponding threat classes are added. The threat 

instances represent potential threats to the system which may 

or may not be active, and to which it may or may not be 

vulnerable. 

The concrete model is then used as input for two further 

SERSCIS tools: 

 a threat classification tool that decides to which threats 

the system is vulnerable, based on the control rules 

from the underlying SERSCIS dependability model; 

 a threat activity estimation tool that decides how likely 

it is that each threat is active, based on the types of 

induced behaviour detected in the assets. 

The output from these tools provides the following 

information at run-time: 

 a list of potential threats to the system, classified 

according to whether the system is vulnerable to them; 

 estimates of how likely it is that each threat is active; 

 a description of each threat, including how severe its 

impact on the system would be; 

 a list of controls that could be introduced to block or 

mitigate a threat, and whether these are available in the 

system. 

SERSCIS has developed a simple prototype decision 

support tool to display this information to a run-time system 

operator. Such a tool could be integrated into an existing user 

interface, and linked to the means to deploy a control (e.g. to 

block access for a misbehaving client, or blacklist a resource 

that is implicated in an attack). Details of the concrete model 

generation and processing and the decision support tool are 

beyond the scope of this paper and will be addressed in a future 

publication.  

IV. VALIDATION 

The SERSCIS semantic modelling approach was validated 

using an Airport Collaborative Decision Making scenario as 

outlined in Section I. The approach is stakeholder-centric, so 

the validation case study viewed the system from a Ground 

Handler perspective. A Ground Handler has the job of 

orchestrating services needed to get an aircraft ready for its 

next flight (e.g. refuelling, baggage handling, etc.). The data 

flows seen by a Ground Handler are summarized in Fig. 4. The 

ACISP is the airport information service supporting data 

exchange between the Ground Handler, Airlines and Air 

Traffic Control. The Ground Handler uses the ACISP to find 

out when incoming flights will arrive, and to pass on its 

predictions of when outbound flights will be ready to leave (i.e. 

the Target Off Block Time, TOBT). These are based on the 

inbound flight data, and planning information from ramp 

service providers at the airport. Eurocontrol’s Network 

Manager (NM) uses the predictions to allocate slots in 

European airspace. The Ground Handler does not interact 

directly with NM or Air Traffic Control – this is typical in a 

multi-stakeholder system where each actor may interact with 

(or even be aware of) only a subset of the others. An attacker 

who wished to discredit air travel by disrupting it without 

causing any injuries might try to tamper with the data flowing 

to and from the ACISP.  

The SERSCIS project could not inject such attacks into a 

real airport, so validation was carried out using a simple 

simulator based loosely on Vienna Airport. This simulated only 

airside operations (i.e. it did not include passenger check in and 

landside handling), but it did include all the actors shown in 

Fig. 4, so the effect of simulated disruptions on them could be 

detected. 

The first step was to create an abstract system model from 

the Ground Handler perspective. The asset classes for this are 

shown in Fig. 5. Note that the NM and Air Traffic Control 
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services are not included – this is because the model captures 

the system from the Ground Handler perspective. Since they 

have no direct contact with these services, they cannot detect 

instances of them in the monitoring data, so there is no point 

including them in the model. Note also that in this case, the 

Airlines not the Ground Handler are assumed to be Customers 

of the ACISP, so that the Ground Handler accesses ACISP data 

only when invited to do so by an Airline when they ask the 

Ground Handler to turn around an aircraft. The Ground 

Handler knows they will be given endpoints where they can 

read inbound flight data, or write outbound flight ready-time 

predictions, and these client specified resources are modelled 

as ACISP_Inbound and ACISP_Outbound sub-classes. From 

Fig. 5, it was possible to complete the abstract system model 

by automatically generating threat sub-classes to represent 

generic attack patterns applied to all the relevant combinations 

of asset types in the A-CDM network. This ran to over 100 

system-specific threat classes. The generated threat classes 

were then refined by adding human readable description 

elements, severity levels and activity likelihood estimates. In 

addition, estimates of the probability that each threat would 

induce specific behaviours in the threatened and affected assets 

were compiled so detected behaviours could be used to infer 

threat activity in the run-time system. 

The SERSCIS run-time
2
 tools were then connected to the 

monitoring interfaces of the airport simulator and several 

scenarios executed: 

 a sunny day scenario in which no attacks are carried 

out, and the airport functions normally; 

 a scenario in which a bug is accidentally introduced in 

the Ground Handler’s turnaround prediction software; 

 a scenario in which a ramp service underestimates the 

number of crews it will need, causing it to turn up late 

when aircraft need servicing; 

 a scenario in which a malicious intruder misdirects a 

ramp service, causing them to no show when the 

inbound flight reaches the stand and needs servicing; 

 a scenario in which a malicious intruder tampers with 

the Ground Handler’s estimates of aircraft readiness by 

overwriting them at the ACISP. 

Details of the various scenarios and the changes for the 

different failure cases are given in the following section. 

A. Scenario details 

All scenarios use a schedule of 124 flights to be turned 

around during a day. All of those are regulated flights, i.e. all 

require a slot. Apart from the non-failure case, three degraded 

mode cases are listed and assessed below. The first case, the 

‘sunny day’, provides sufficient resources for all ramp service 

providers. Hence none of the flights experiences a delay in 

turn-around. Case 2 is characterized by a reduction in the 

number of workers of the baggage handler to 23. In this case 

                                                           
2 SERSCIS run-time tools downloadable at: 

http://www.serscis.eu/?page_id=317  

the baggage handler fails to honour several perform attempts 

and the flights experience substantial delays. In case 3 the 

number of workers is further reduced to 18. Hence even fewer 

perform attempts get honoured. In case 4, a second baggage 

handling resource is introduced (i.e. the Ground Handler starts 

with two SLAs for the provision of baggage handling services 

with different suppliers). If the primary baggage handler fails, 

an alternative service provider can replace it. If this arises as a 

one-off problem it can be handled by service orchestration (i.e. 

failing over to the replacement service), though some delay 

will still be experienced. If the primary supplier persistently 

fails, it is better to manage the situation by excluding it from 

further use. This was done by specifying a policy on the 

individual baggage handler resources (as seen by the Ground 

Handler). This policy sets the condition of the service to 

‘failed’ if there is more than one failure, and deregisters the 

service so preventing it being available for selection. This 

addresses the immediate problem of a failing supplier, but it 

reduces the number of available options for baggage handling 

to one. A further policy is therefore needed that causes the 

resource manager to procure a new SLA with a replacement 

baggage service provider. Finally, case 5 implements a 

simulation of communication delays to demonstrate the effects 

of a denial of service attack on the ACISP. Due to the slow rate 

of communications, a number of flights take off outside their 

slot windows. No mitigation for this was considered in the run-

time tests, as the only one that could be handled by the 

emulated components was to have redundant ACISP endpoints, 

which duplicates the mechanisms tested in Cases 1-4.  

B. Key Performance Indicators (KPI) used in the evaluation 

To evaluate the performance of a ramp service provider 

level, two KPI are considered: arrival reliability and service 

delivery duration. In the proof-of-concept evaluation the 

second KPI is a constant and disregarded. The first KPI on the 

other hand is taken into account to show the effect of a reduced 

number of workers. It is assumed that the reliability decreases 

if the number of workers available at a service provider is 

reduced. In the testbed this is measured by the number of 

“perform attempts” issued to the service provider. If a service 

provider has sufficient resources, every flight requires exactly 

one perform attempt that is honoured by the service provider; 

i.e., the number of perform attempts must be equal to the 

number of flights. If the provider cannot immediately honour a 

perform attempt due to a lack of workers, the perform attempts 

will be repeated. Thus the number increases beyond the 

number of flights. 

The ramp service performance also has an effect on the 

ground handler’s KPI. The ground handler’s performance is 

characterized by two KPI: TOBT (Target Off Block Time) 

accuracy and TOBT stability. TOBT accuracy is derived from 

comparing the TOBT with a reference value (Actual Ready 

Time, ARDT). The mean square deviation between TOBT and 

ARDT is calculated for all flights departing in a day, where the 

value for TOBT is taken at TOBT freeze time, i.e. 30 minutes 

before TOBT. TOBT stability parameter measures how stable 

the prediction mechanism of the ground handler is. For this 
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purpose the average number of TOBT updates per flight is 

calculated. Since the actual delivery time of the ramp services 

is a distribution with a certain variation, e.g. dictated by the 

actual service requirements or by the service provider’s 

resource trade-offs, TOBT accuracy will decrease with a 

reduction in the number of workers at the ramp service 

provider. TOBT stability expresses the number of updates to 

the TOBT required for each flight. In a sunny day scenario this 

number should be 1 or close to it, i.e. once a TOBT is issued it 

will not be changed. In degraded scenarios, however, a ramp 

service will deliver late due to a lack of workers. In the testbed 

the ground handler re-issues a TOBT whenever the estimate 

deviates from the previous value by more than 10 minutes. 

Hence the longer the ramp service delays its service delivery 

the more TOBT values need to be issued for a flight. 

Both above-mentioned KPIs affect the number of take-offs 

outside the slot-tolerance windows (STW), which is an overall 

KPI for the A-CDM network. The value will increase in a 

ripple on effect of the ramp service provider’s inaccuracy. If 

the ramp service provider fails to show up on the initial 

perform request, there is a risk that they will delay the turn-

around of a flight and cause it to miss its slot. This effect, 

however, might be countered in part by the available slack in 

the turn-around process. A policy change that allows the 

ground handler to replace the service provider with an alternate 

in case it fails to respond to a perform request must reverse the 

above effect. Choosing an alternative service provider when 

the primary provider failed, will replace the overall service 

delivery reliability and thus result in fewer take-offs outside the 

STW. 

Another KPI is applied to evaluate the overall CDM 

system’s performance: the average number of slots issued per 

flight. Obviously, in the ideal case one slot is issued for a flight 

and this one is used subsequently. In less ideal situations delays 

in the turn-around prevent a flight from meeting its slot. Thus a 

new slot has to be issued, potentially wasting the previous one 

if it cannot be claimed by another flight. The longer the delay 

of a turn-around, e.g. induced by a lack of workers at a ramp 

service providers, the more slots must be issued for a flight
3
. 

C. Experiment results 

The KPI obtained from the above scenarios are listed in 

Table 1. The results shown here clearly indicate that the chosen 

KPIs are meaningful for the testbed and the scenario and that 

verification and validation of the testbed succeeded. The KPI 

“perform attempts” was expected to increase if a service 

provider does not have sufficient resources to honour all 

requests in parallel. In this case some of the requests must be 

repeated, which means a larger figure. When introducing the 

                                                           
3 In the testbed the ground handler uses a simple strategy to update 

the TOBT. A new estimate for TOBT is calculated, and the TOBT 

is updated if the new estimate is more than 10 minutes after the 

previous TOBT. Note that in the current simulation every TOBT 

change automatically results in the issuance of a new slot. For this 

reason, the number of slots per flight is equal to the number of 

TOBT updates.  

possibility to choose an alternative provider in case the first 

one fails to honour requests, the total number of perform 

attempts should decrease again. This is exactly the behaviour 

of the testbed. Case 2 and also case 3 exhibit a significantly 

larger number of perform attempts than the sunny day case 1. 

With the introduction of an alternative service provider in case 

4, the number of request drops close to the value of the sunny 

day case again. Note that it is still slightly larger than in the 

sunny day case, because additional perform requests are issued 

(and not honoured) while the alternative provider is being set 

up. Hence the KPI provides meaningful characteristics of the 

testbed and the testbed shows the expected behaviour.  

TABLE I.  KPI VALUES 

Scenario 
Scenario 

Case 1 Case 2 Case 3 Case 4 Case 5 

Baggage 
perform 

attempts 

249 556 961 266 249 

Average TOBT 
error 

4 min 14 min 49 min 4 min 4 min 

Average TOBT 

updates per 

flight 

1 1.5 2.7 1 1 

Average 

number of slots 

issued 

1 1.5 2.7 1 1 

Take-offs 

outside STW 
0% 15% 31% 0% 13% 

 

The TOBT-related KPIs reflect the quality of service 

delivery by a ramp service provider. With a decreasing number 

of workers in cases 2 and 3, the TOBT accuracy decreases as 

well and the required number of updates to this value per flight 

increases accordingly. When the ground handler has the option 

to choose an alternative service provider in case 4, the trend 

reverses and case 4 delivers the same performance as the sunny 

day case 1. Similarly, the number of slots issued per flight 

increases with the number of TOBT updates per flight. In case 

4, in which TOBT does not get updated, only one slot is 

required as in case 1. 

The last KPI, which was assesses in the testbed evaluation, 

is the percentage of take-offs outside the slot-tolerance window 

(STW). In the case of a sufficient number of workers at all 

service providers (case 1), none of the flights should miss its 

slot
4
. Hence the KPI must be 0%. With turn-arounds being 

delayed due to an insufficient number of workers at one of the 

service providers, flights will miss their slots and take off 

outside the STW. For this reason the value increases to 19% in 

case 2. When an alternative service provider steps in to take 

over the tasks from a failed provider as in case 3, turn-arounds 

are on time again. The percentage of missed slots falls back to 

0% again. In the event of communication delays with the 

ACISP we see the percentage of take-offs outside the slot 

tolerance window increase in proportion to the delay. This is 

                                                           
4 The limited capacity of taxiways and runways might cause flights to 

miss their slots despite a timely turn-around, but this is not 

modelled in the testbed. 
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caused by delays in communications resulting in windows of 

opportunity to be missed. 

D. Validation conclusions 

Tests showed that if left untreated, the injected faults all 

cause the performance of the airport to be degraded: more 

flights take off late, and Eurocontrol wastes airspace by 

allocating slots that the Airlines cannot use. Moreover, all the 

faults lead to inaccurate forecasts to be passed to NM (in the 

last case the Ground Handler’s forecast is accurate, but it is 

then corrupted at ACISP). However, the SERSCIS monitoring 

tools were able to detect these different threats and correctly 

diagnose them based on the monitoring data available. These 

experiments demonstrate that the SERSCIS approach provides 

a practical solution for security risk analysis in a dynamically 

composed, multi-stakeholder system. Security expertise is 

captured beforehand in the SERSCIS dependability model 

OWL classes, and these can be used by a system expert at 

design-time to create an abstract system model. This captures 

the structure of the system but does not specify how many 

assets it contains, where they are deployed or what security 

controls they have. The abstract system model provides inputs 

to run-time semantic monitoring tools, where the knowledge 

encoded in the OWL classes is used to automatically determine 

system threat activity and system vulnerabilities. 

V. FUTURE WORK 

The SERSCIS semantic modelling approach was validated 

using a subset of the European Air Traffic Management 

system. As outlined in Section I, it was applied to an Airport 

Collaborative Decision Making scenario at a major European 

airport. The authors are aware that A-CDM is a relatively small 

part of the overall ATM system, but it exhibits characteristics 

that make it well suited as a test bed: 

 involvement of several stakeholders, coming from the 

core ATM as well as other domains; 

 involvement of several technical systems 

interconnected by various communication 

infrastructures; and 

 closely linked processes, in which the disruption of one 

sub-process without treatment will lead to major 

disruptions of the entire system. 

These properties also apply to the entire European ATM 

system. At the same time, the sheer complexity and size of the 

European ATM system forestalls any security approach that 

tries to tackle the system as a whole. Rather a hierarchical 

methodology will be required. Hence future work will be to 

scale up the approach described here. 

The SERCIS project ends in late 2012. In the final year, 

improvements to the SERSCIS core and dependability model 

have been made to make the model suitable for future research 

work.  Improvements to the core ontology (Fig. 1) allow us to 

model physical and electronic attacks on airport connectivity 

and spaces. These include the ability of actors (including 

intruders) to move around the airport, the use of private 

networks to support communications with and in the airport, 

and the potential for physical or electronic attacks on 

communication assets as well as services that use them.  

A final rationalization of the threat model has been to 

describe threats according to their target, action and 

consequence, based on [18]. This provides a basis for 

evaluating the coverage of the threat model and makes it easily 

extensible for different types of systems to provide threat-

centric, run-time security analysis. 

REFERENCES 

[1] Blanco, C., Lasheras, J., Fernandez-Medina, E., Valencia-Garcia, R.,  
and Toval, A.:  “Basis for an integrated security ontology according to a 
systematic review of existing proposals,” Comput. Standards & 
Interfaces, vol. 33, no. 4, pp. 372-388, 2011. 

[2] COBIT 4.1, IT Governance Institute, 2007. 

[3] Matulevicius, R., Mouratidis, H., Mayer, N., Dubois, E., and Heymans, 
P.: "Syntactic and Semantic Extensions to Secure Tropos to Support 
Security Risk Management", Journal of Universal Computer Science 
(J.UCS), Vol. 18, N°6, pp.816-844, March 2012. 

[4] EBIOS Methodology.”Expression des Besoins et Identification des 
Objectifs de Sécurité”. Specification white paper. 
www:http://www.ssi.gouv.fr/IMG/pdf/EBIOS-1-GuideMethodologique-
2010-01-25.pdf (last accessed, February 2012) 

[5] Fenz, S., and Ekelhart, A.: “Formalizing information security 
knowledge,” in Proceedings of the 4th International Symposium on 
Information, Computer, and Communications Security (ASIACCS'09), 
Sydney, Australia, 2009. 

[6] German Federal Office for Security in Information Technology (BSI), 
“IT Grundschutz Manual,” 2005. 

[7] Herzog, A., Shahmehri, N., and Duma, C.: “An ontology of information 
security,” International Journal of Information Security and Privacy, vol. 
1, no. 4, pp. 1-23, 2007. 

[8] Hogganvik, I., and Stølen, K.: “A graphical approach to risk 
identification, motivated by empirical investigations”. International 
conference on Model Driven Engineering Languages and Systems 
(MoDELS'06). 2006. 

[9] ISO/IEC 27005:2011. Information technology – Security techniques – 
Information security risk management, International Organization for 
Standardization, 2011. 

[10] Kim, A., Luo, J., and Kang, M.: “Security ontology to facilitate web 
services description and discovery,” Journal on Data Semantics, vol. 9, 
pp. 167-195, 2007. 

[11] Leonard, T., Hall-May, M., and Surridge, M.: “Modeling Access 
Propagation in Dynamic Systems”, submitted to ACM Transactions on 
Information and System Security, March 2012. 

[12] MEHARI “Risk management concepts and methods”, Specification 
white paper.  

[13] www:http://www.clusif.asso.fr/fr/production/ouvrages/pdf/CLUSIF-
risk-management.pdf(last accessed, February 2012). 

[14] Semantically Enhanced Resilient and Secure Critical Infrastructure 
Services, EC FP7 Project 225336, 2008-2012. See also 
http://www.serscis.eu 

[15] SWRL “A Semantic Web Rule Language Combining OWL and 
RuleML” www: http://www.w3.org/Submission/SWRL/ (last accessed, 
February 2012). 

[16] Touzeau, J., Hamon, E., Krempel, M., Gölz, B., Madarasz, R., and 
Alemany, J.: “SESAR DEL16.02.01-D03: SESAR ATM Preliminary 
Security Risk Assessment Method.,” 2011. 

[17] Vorobiev, A., and Bekmamedova, N.: “An ontology-driven approach 
applied to information security,” Journal of Research and Practice in 
Information Technology, vol. 42, no. 1, pp. 61-76, 2010. 

[18] Shirey, R.: “Internet Security Glossary,” IETF RFC 2828, May 2000. 

 
 

Second SESAR Innovation Days, 27th – 29th November 2012 
 

 

8

http://www.clusif.asso.fr/fr/production/ouvrages/pdf/CLUSIF-risk-management.pdf
http://www.clusif.asso.fr/fr/production/ouvrages/pdf/CLUSIF-risk-management.pdf
http://www.serscis.eu/
http://www.w3.org/Submission/SWRL/



