
SERSCIS: Semantic Modelling of Dynamic,

Multi-Stakeholder Systems

Mike Surridge, Ajay Chakravarthy, Martin Hall-May,

Xiaoyu Chen, Bassem Nasser

IT Innovation Centre

University of Southampton

Southampton, UK

{ms,ajc,mhm,wxc,bmn}@it-innovation.soton.ac.uk

Roman Nossal

Austro Control

Österreichische Gesellschaft für Zivilluftfahrt mbH

Vienna, Austria

roman.nossal@austrocontrol.at

Abstract—This paper describes a novel approach to semantic

system and security modelling developed in the SERSCIS

project. The approach is designed to address dynamic multi-

stakeholder systems that are composed from services at run-time.

This presents several challenges for security risk modelling and

management that are not well addressed by previous work. The

biggest challenge is the fact that at design-time one only knows

the structure but not the composition of the system, forcing an

abstract modelling approach to be used. The SERSCIS approach

deals with this by defining a set of OWL classes describing

generic system assets, threats and security controls and the

relationships between them. This dependability model captures

security expertise concerning the types of threats that can arise in

general and the controls that can be used to address them. An

abstract system model can then be created using OWL

subclasses, to capture the types of assets and their relationships

in a specific system, but still without specifying how many assets,

where they are deployed or what security controls they have. The

resulting models can be used as inputs to run-time semantic

monitoring tools, where the knowledge encoded in the abstract

system model is used to automatically determine system threat

activity and system vulnerabilities. The approach was validated

in an Airport Collaborative Decision-Making scenario.

Keywords-component; semantics; modelling; security

I. INTRODUCTION

The SERSCIS project [13] aims to address the growing

need to manage risks in Critical Infrastructure arising from or

amplified by information system interconnections between

different stakeholders. Increased connectivity is being driven

by the need for efficiency. By sharing data, the organizations

involved in running critical infrastructure can predict events

and manage resources more effectively. Wider access to

information also encourages competition, e.g. by requesting a

service at some future time, so different suppliers can bid to

provide it.

But information sharing also increases vulnerabilities due

to three effects:

 attacks can be made against the information systems or

communication channels, disrupting the flow or the

integrity of exchanged data;

 local disruption in one organization can lead to more

problems elsewhere due to the dependency of others on

data from the disrupted party; and

 the use of exchanged data to increase efficiency

usually leads to a reduction in excess capacity, and so

reduces resilience against any type of disruption.

For example, under the Single European Skies initiative,

the use of airspace in Europe is managed by Eurocontrol, an

international agency that seeks to optimize the flow of air

traffic by assigning take-off and landing slots at airports in real

time. To do this, Eurocontrol defines a collaborative decision-

making process (CDM) in which national air traffic control

services share information via Eurocontrol. The CDM

approach is now being extended to airport operations (A-

CDM), allowing aircraft ground handling operators to provide

predictions of when aircraft will be ready to take off. The chain

of interconnections means air traffic control in Europe could be

disrupted by attacks on or problems of airport service providers

that handle tasks like aircraft refuelling, baggage handling, etc.

The SERSCIS project is addressing these issues by treating

the information systems in a critical infrastructure as a

dynamically composed, multi-stakeholder, service-oriented

system. Dynamic service oriented architectures can be used to

reconfigure information flows in the event of a problem,

providing a dynamic response to mitigate its effects locally or

on other parts of the network. The problem is that the risk

management methods used in critical infrastructure are based

on design-time analysis of information security threats [3,7,10],

as typified by the procedures used in the Single European Skies

research initiative SESAR [15]. These methods cannot cope

with dynamic, multi-stakeholder systems. To overcome this

limitation, SERSCIS has developed a novel approach to system

modelling, designed to support threat modelling and analysis in

dynamic, multi-stakeholder systems. The approach is based on

the use of semantic modelling, so machine reasoning can be

used to automate the analysis of threats when the system is

composed at run-time. In contrast to other approaches, the

design-time models are abstract, describing the structure but

not the composition of the system (which is not known until

run-time). The models are also stakeholder-centric, ensuring

The research leading to these results has received funding from the
European Community's Seventh Framework Programme under grant agreement

n° 225336, SERSCIS

Second SESAR Innovation Days, 27th – 29th November 2012

that they can be used to interpret system behaviour and threats

at run-time from the point of view of an individual stakeholder,

using only system configuration and status information

available to them. This paper focuses on the modelling

approach developed in the SERSCIS project, leaving other

aspects such as policy modelling and run-time monitoring and

risk management to be detailed in other publications [11].

The rest of the paper is organized as follows: In section II

we compare our modelling approach to the state of the art in

risk and security modelling approaches. In section III we

present the layered SERSCIS models (Core, Dependability,

Abstract and Concrete). In section IV, we present a detailed

validation scenario used to evaluate our approach and finally in

section V, we conclude with a description of future work.

II. RELATIONSHIP TO THE STATE OF THE ART

A. Risk Management

As noted above, state of the art risk management

methodologies such as COBIT [2], and ISO 27005 [9] are

based on analysis of information security risks for a given

system design and configuration. The analysis allows system

vulnerabilities to be detected, and associated risks quantified. If

the risk is too great to be accepted, strategies are defined to

reduce the risk (using security controls), avoid the risk (by not

using the vulnerable system feature) or transfer the risk to

someone else (by outsourcing system functions, or insuring

against potential losses). In most methodologies, the

effectiveness of control strategies must be monitored, and if

necessary the analysis is revisited, e.g. if new vulnerabilities

are discovered, or threats prove more likely than expected.

However, the approach is essentially a design-time approach,

in which changes are effected by amending the system design

(e.g. adding new controls), having security experts analyse the

new design to check the changes will have the desired effect,

and then adding controls to the system. In a dynamically

composed service-oriented architecture this approach is not

sufficient for two reasons. There is no conventional system

design including controls: the system composition changes

during run time as services are added removed or replaced,

each service having its own controls that may differ from

others of its type. And there is no time for a conventional

security expert analysis of system changes that occur

dynamically.

Matulevicius et al [3] present work on a graphical approach

to identify, explain and document security threats and risk

scenarios. A graphical notation was developed to perform the

five phases needed for security analysis 1. Context

establishment, 2. Risk identification, 3. Risk estimation, 4. Risk

evaluation and 5. Treatment identification. Diagrams are

created during each of these steps (similar to UML models)

under the guidance of a domain expert. We have followed a

similar approach for the identification of threats and their

mitigation strategies. However, the work done by [3] does not

go beyond the modelling phase (diagrammatic modelling). The

novelty of our SERSCIS system modelling approach is that we

use an abstract modelling approach (OWL ontology based) to

address the challenge faced in adaptive systems (where the

composition of the system is not known in advance). Further,

we go beyond the modelling stage and integrate our ontologies

into the runtime dynamic stakeholder system. The concrete

model (instance information) is automatically generated at

runtime depending upon the current composition of the system.

Work by [8] uses an extension of the Secure Tropos

language to support the modelling of security risks. The

domain model is mainly structured around three groups of

concepts: asset-related concepts, risk-related concepts and risk-

treatment related concepts. Further security criteria for each of

these assets are identified in terms of confidentiality, integrity

and availability. This work is an extension of the work on

Secure Tropos, and includes the development of syntactic,

semantic and methodological extensions that would support

security risks and their counter measures. This representation is

in a diagrammatic in nature and is used to present abstract

syntax elements for risk modelling and the rules on how these

can be combined together. The domain model in [8] is similar

to the core ontology model we use in SERSCIS (consisting of

Threat, Asset and Control). The risk modelling approach we

used during the brain storming session uses features from both

[3] and [8], however, in SERSCIS we use OWL ontologies to

model Core, Dependability and Abstract system models in

addition to the diagrammatic representations. This allows our

models to be much more expressive (due to expressive nature

of OWL syntax) and encoded in a way such that existing rule

based languages (e.g. SWRL) and DL reasoners (e.g. Hermit)

can be used with these OWL ontologies for the automatic

identification and mitigation of threats.

B. Security Modelling and Machine Reasoning

One approach that could address the second of these

problems (unknown composition of dynamic multi-stakeholder

systems) is to use machine reasoning to analyse risks, so this

can be done rapidly whenever the system composition changes.

There is an existing body of research into how one might create

semantic models of a system to support such an automated

analysis, though with the motive of capturing security

standards and expertise so tools can be developed to support

non-experts. A useful overview is provided by [1]. For

example, the NRL Security Ontology [10] provides a way to

describe the security properties of Web Services, which was

later used as a starting point for a Web Service vulnerabilities

ontology [16]. The Ontology of Information Security [7] by

Herzog et al describes a system in terms of assets,

vulnerabilities and threats, so making the link to system risks

(via threat models). However, this ontology uses N-ary

relationships making it hard to deduce security properties via

machine reasoning.

The Security Ontology [5] from Secure Business Austria

(SBA) uses only conventional RDF relationships, and captures

security threats and controls from the German IT Grundschutz

Manual [6], so providing a way to model systems with

common threats and control strategies. The SBA approach goes

a long way towards the goal of capturing security expertise in a

form that can be reused (with supporting tools) by non-experts.

Second SESAR Innovation Days, 27th – 29th November 2012

2

Figure 1. Core SERSCIS ontology

Asset Threat

Control

threatens

protects
blocks/

mitigates
(SWRL
rules)

affects

1
Induced

Behaviour
(T,F)

Level
Classification

(H,M,L)

Description
(String)

Likelihood
1≥[float]≥0

hasCurrent
Likelihood

hasPrior
Likelihood

1

has
Description

has
Severity

Level

uses

hasInduced
BehaviourMetric

1

1

1

1

Figure 2. Dependability model logical asset types

Customer

Client
Specified
Resource

Service
Group

Provider
Specified
Resource

Consumer
Resource

Group

uses

uses

uses

uses uses

selects
from

part of

buys

1

1

uses

However, this ontology describes only deployed systems and

security controls, and cannot be used to create an abstract

system model for a dynamically composed system whose

concrete composition is not known at design time. The SBA

approach also makes extensive use of Web Ontology Language

(OWL) instances, which makes it hard to cater for multi-

stakeholder systems where it is often necessary to attach

different properties to the same threat depending on which

stakeholder or sub-domain is targeted.

III. SERSCIS SYSTEM MODELS

A. SERSCIS Approach and Core Ontology

The SERSCIS approach follows the SBA approach, in that

it uses only conventional semantic relationships (no N-ary

relationships), so conventional semantic reasoning can be used

to make deductions about security from the model. To use this

approach for dynamic multi-stakeholder systems, the SERSCIS

ontology
1
 was constructed such that:

 only OWL classes are used for design-time modelling,

allowing an abstract system structure to be captured in

terms of the relationships between types of services,

and associated threats and controls;

 OWL instances are used to model the run-time system

composition, in terms of concrete services with

specific controls and subject to targeted threats.

The other design criteria for the SERSCIS approach are:

 security expertise must be added at design time (i.e. in

the OWL classes), so run-time models can be created

without expert intervention, yet still access their

expertise (through machine reasoning);

 the ratio of asserted facts to inferable facts in the run-

time model must be as low as possible, since every

assertion has to be constructed automatically based on

monitoring of the running system.

These requirements led SERSCIS to simplify the high-level

class structure used by SBA. The SBA vulnerability class was

dropped as it was noticed that it is most often used only to

represent a lack of security controls. The resulting SERSCIS

core ontology structure is shown in Fig. 1.

1 SERSCIS ontologies downloadable at:

http://www.serscis.eu/?page_id=317

B. SERSCIS Dependability Model

The core structure from Fig. 1 provides the basis for the

development of more specific models and analysis tools. The

next step is to capture security expertise related to the type of

system one is dealing with. In SERSCIS, this is known as a

dependability model, as it includes the types of assets found in

the system, and also the attributes that make these assets

dependable or not (e.g. whether they have threat-induced

behaviours).

In SERSCIS we are concerned with multi-stakeholder

applications in which the relationships between stakeholders

are determined at run-time via dynamic composition. Thus the

SERSCIS dependability model describes systems in terms of

services (and clients), taking a stakeholder-centric view (i.e. the

model represents the system as seen by one of its stakeholders).

Thus different asset classes are used depending on whether the

asset is a service provided by the model stakeholder, a service

used by that stakeholder (i.e. a resource), or a client using a

service from that stakeholder. It is also important that the

dependability model takes account of the fact that in dynamic

systems, delegation is often used. Two types of delegation are

commonly found:

 a user of a service shares access to the service with

another user; or

 a user of two services has one service interact directly

with the other.

The first case leads us to define a special type of Client, the

Customer, who has a relationship with the stakeholder under

which they can use a service. Clients who are not Customers

have access to the service only if access is shared with them by

the Customer. Each Customer normally has a contextualized

endpoint through which they access a service, so each service

is really a collection of services (one per Customer). The

corresponding asset class is therefore called a Service Group,

rather than simply a Service. The second case leads us to

distinguish two types of resources. A Client Specified

Resource is one specified by a client so a service can interact

directly with it. A Provider Specified Resource is not specified

by a client, but chosen by the primary stakeholder. In a

dynamic system this is often done automatically at run time, by

having the service select the resource from a pool of available

resources of the required type. This pool is also an asset,

represented as a Resource Group.

Second SESAR Innovation Days, 27th – 29th November 2012

3

Figure 3. Threat and control modelling

Unauthorized
Customer

DataUpdate

Service
Group

involves

Customer

threatens

Access
Control

Client
AuthN

Delegation

buys

The SERSCIS dependability model defines a set of threat

induced behaviour states that are symptomatic of different

types of asset compromise. A loss of confidentiality arises if

the asset behaviour is ‘indiscreet’ while a loss of integrity is

linked to ‘unreliable’ or ‘inaccurate’ behaviour (one signifies a

process integrity failure, the other data integrity failure). Other

behaviours include ‘overloaded’ and ‘underperforming’

associated with availability failures, and ‘unauthentic’ or

‘unaccountable’ indicating a loss of trustworthiness, etc.

Threats that can give rise to such behaviour are modelled by

their relationships to asset types, and cover the usual range of

accidental or malicious disruption including unauthorized

access, impersonation (e.g. of a Customer but also potentially

delegate impersonation), traffic snooping or corruption, data

tampering (by unauthorized or erroneous access), resource

shortages (e.g. in a Resource Group), deliberate or accidental

service overload, and software bugs. The SERSCIS

dependability model covers different ways these threats can

arise in the interactions between the asset types from Fig. 2,

using different threat classes depending on which asset is

threatened and which are affected. Thus impersonation of a

service to fool a Customer is considered as a different threat

from impersonation of a service to fool a Client Specified

Resource, etc.

The SERSCIS dependability model also includes several

control subclasses representing the types of controls typically

found in a multi-stakeholder service-oriented system. These

include access control, identification (meaning an entity has a

way to prove its identity), authentication (a means to verify

another entity’s identity or other attributes), message

encryption and integrity verification, and a range of resource

and load management mechanisms such as resource

redundancy and failover (to prevent resource shortages), and

SLA enforcement (to prevent overloading of services by their

clients). Finally, the SERSCIS dependability model includes a

set of Semantic Web Rule Language SWRL rules [14] that

specify what combination of controls is sufficient to block or

mitigate each type of threat depending upon the nature of the

control (i.e. proactive or reactive). For example, suppose a

client tells a service to interact with another service, i.e. with a

client specified resource (CSR). If someone else could access

the CSR without authorization, they could interfere with the

data exchanged between the CSR and the service. To prevent

this threat, the CSR must deploy access control, and have a

way to verify a user’s identity or other attributes the access

policy requires the user to have. This in turn means the client

must have a way to delegate access rights to other parties, and

the service (group) needs a way to identify itself so the client

can avoid delegating these rights to the wrong person.

Fig. 3 shows how this threat is modelled in terms of its

relationships with asset types and controls. The diagram

corresponds to a threat class and the associated control rule in

the SERSCIS dependability model (actually several threat

classes depending on whether the unauthorized access is used

to steal or corrupt data at the CSR). If one finds concrete

instances of service group, client and client-specified resource

assets related to each other as shown, one can use the control

rule to deduce whether the system is vulnerable to this threat

against those assets. The SERSCIS dependability model

contains about 50 such threat classes, so a wide range of types

of vulnerabilities can be detected in the running system, using

expertise encoded in the dependability model classes.

C. Abstract System Model

The SERSCIS dependability model provides the starting

point for development of an abstract system model. This

describes a particular system in terms of the types of assets it

contains and the relationships between them. The abstract

system model is a design-time model of a system that will be

composed dynamically at run-time. It does not include the

concrete system deployment and configuration such as who

owns the assets, where they are deployed or with what security

controls in place. The idea is that the abstract system model is

created at design time by a system expert (not a security

expert), using security expertise encoded in the dependability

model. The resulting abstract system model is then used (along

with the underlying dependability model) as input to a set of

fully automated, run-time model generation and analysis tools

connected to the system monitoring infrastructure.

Starting from the SERSCIS dependability model, the

system modeller proceeds as follows:

 Define sub-classes of the dependability asset classes

from Fig. 2, corresponding to the different types of

services, clients and resources in their system.

 Define usage relationships between the client, service

and resource asset sub-classes.

 Automatically generate threat sub-classes against each

relevant combination of asset sub-classes.

The last step can be automated because threats are defined

in terms of their relationships to dependability model asset

classes. The threat in Fig. 3 attacks a client specified resource

by exploiting its relationship to client and service group assets.

It is easy to find all combinations of client, service group and

client specified resource sub-classes that have the same set of

relationships. For each combination, a corresponding threat

class is generated. Thus the system designer (not a security

expert), does not need to know all the arcane ways in which an

attacker might seek to compromise a multi-stakeholder system

through these interactions. If they understand the system assets

Second SESAR Innovation Days, 27th – 29th November 2012

4

Figure 5. A-CDM Data Exchanges from a Ground Handler Perspective

Aircraft
Operator
(Airline)

ACISP

Ground
Handler

Ramp
Service

Provider 1

Ramp
Service

Provider 2

Ramp
Service

Provider n

Network
Manager

Air Traffic
Control

Figure 4. Abstract System Model of A-CDM

ACISP
Inbound

ACISP
Outbound

Fuelling
Service

Cleaning
Service

Catering
Service

Baggage
Service

Fuelling
ServiceGroup

Cleaning
ServiceGroup

Catering
ServiceGroup

Baggage
ServiceGrouppartOf

partOf

partOf

partOf

GHService
Group

uses
usesuses

uses

Airline

and relationships, SERSCIS tools can be used to fill in a

complete set of potential threats.

Once the threat classes have been generated, the system

designer can optionally insert a human-readable explanation of

the threat, information about the impact of the threat if carried

out (high, medium or low), and an estimate of how likely it is

that the threat will be active (a probability between 0 and 1).

All these can be taken from the underlying dependability

model threat classes, but it is advisable to modify the

explanation (at least) as otherwise it will not refer to any of the

system-specific asset types.

D. Concrete Model Generation

Once the system is deployed and running, a SERSCIS

concrete model generator is connected to the monitoring

subsystem, and used to create a model of the running system.

This reflects the current system composition, i.e. what assets of

each type are involved, what security controls are in place to

protect each asset, and which threat induced behaviours are

exhibited by each asset. Once the assets are known, instances

of the corresponding threat classes are added. The threat

instances represent potential threats to the system which may

or may not be active, and to which it may or may not be

vulnerable.

The concrete model is then used as input for two further

SERSCIS tools:

 a threat classification tool that decides to which threats

the system is vulnerable, based on the control rules

from the underlying SERSCIS dependability model;

 a threat activity estimation tool that decides how likely

it is that each threat is active, based on the types of

induced behaviour detected in the assets.

The output from these tools provides the following

information at run-time:

 a list of potential threats to the system, classified

according to whether the system is vulnerable to them;

 estimates of how likely it is that each threat is active;

 a description of each threat, including how severe its

impact on the system would be;

 a list of controls that could be introduced to block or

mitigate a threat, and whether these are available in the

system.

SERSCIS has developed a simple prototype decision

support tool to display this information to a run-time system

operator. Such a tool could be integrated into an existing user

interface, and linked to the means to deploy a control (e.g. to

block access for a misbehaving client, or blacklist a resource

that is implicated in an attack). Details of the concrete model

generation and processing and the decision support tool are

beyond the scope of this paper and will be addressed in a future

publication.

IV. VALIDATION

The SERSCIS semantic modelling approach was validated

using an Airport Collaborative Decision Making scenario as

outlined in Section I. The approach is stakeholder-centric, so

the validation case study viewed the system from a Ground

Handler perspective. A Ground Handler has the job of

orchestrating services needed to get an aircraft ready for its

next flight (e.g. refuelling, baggage handling, etc.). The data

flows seen by a Ground Handler are summarized in Fig. 4. The

ACISP is the airport information service supporting data

exchange between the Ground Handler, Airlines and Air

Traffic Control. The Ground Handler uses the ACISP to find

out when incoming flights will arrive, and to pass on its

predictions of when outbound flights will be ready to leave (i.e.

the Target Off Block Time, TOBT). These are based on the

inbound flight data, and planning information from ramp

service providers at the airport. Eurocontrol’s Network

Manager (NM) uses the predictions to allocate slots in

European airspace. The Ground Handler does not interact

directly with NM or Air Traffic Control – this is typical in a

multi-stakeholder system where each actor may interact with

(or even be aware of) only a subset of the others. An attacker

who wished to discredit air travel by disrupting it without

causing any injuries might try to tamper with the data flowing

to and from the ACISP.

The SERSCIS project could not inject such attacks into a

real airport, so validation was carried out using a simple

simulator based loosely on Vienna Airport. This simulated only

airside operations (i.e. it did not include passenger check in and

landside handling), but it did include all the actors shown in

Fig. 4, so the effect of simulated disruptions on them could be

detected.

The first step was to create an abstract system model from

the Ground Handler perspective. The asset classes for this are

shown in Fig. 5. Note that the NM and Air Traffic Control

Second SESAR Innovation Days, 27th – 29th November 2012

5

services are not included – this is because the model captures

the system from the Ground Handler perspective. Since they

have no direct contact with these services, they cannot detect

instances of them in the monitoring data, so there is no point

including them in the model. Note also that in this case, the

Airlines not the Ground Handler are assumed to be Customers

of the ACISP, so that the Ground Handler accesses ACISP data

only when invited to do so by an Airline when they ask the

Ground Handler to turn around an aircraft. The Ground

Handler knows they will be given endpoints where they can

read inbound flight data, or write outbound flight ready-time

predictions, and these client specified resources are modelled

as ACISP_Inbound and ACISP_Outbound sub-classes. From

Fig. 5, it was possible to complete the abstract system model

by automatically generating threat sub-classes to represent

generic attack patterns applied to all the relevant combinations

of asset types in the A-CDM network. This ran to over 100

system-specific threat classes. The generated threat classes

were then refined by adding human readable description

elements, severity levels and activity likelihood estimates. In

addition, estimates of the probability that each threat would

induce specific behaviours in the threatened and affected assets

were compiled so detected behaviours could be used to infer

threat activity in the run-time system.

The SERSCIS run-time
2
 tools were then connected to the

monitoring interfaces of the airport simulator and several

scenarios executed:

 a sunny day scenario in which no attacks are carried

out, and the airport functions normally;

 a scenario in which a bug is accidentally introduced in

the Ground Handler’s turnaround prediction software;

 a scenario in which a ramp service underestimates the

number of crews it will need, causing it to turn up late

when aircraft need servicing;

 a scenario in which a malicious intruder misdirects a

ramp service, causing them to no show when the

inbound flight reaches the stand and needs servicing;

 a scenario in which a malicious intruder tampers with

the Ground Handler’s estimates of aircraft readiness by

overwriting them at the ACISP.

Details of the various scenarios and the changes for the

different failure cases are given in the following section.

A. Scenario details

All scenarios use a schedule of 124 flights to be turned

around during a day. All of those are regulated flights, i.e. all

require a slot. Apart from the non-failure case, three degraded

mode cases are listed and assessed below. The first case, the

‘sunny day’, provides sufficient resources for all ramp service

providers. Hence none of the flights experiences a delay in

turn-around. Case 2 is characterized by a reduction in the

number of workers of the baggage handler to 23. In this case

2 SERSCIS run-time tools downloadable at:

http://www.serscis.eu/?page_id=317

the baggage handler fails to honour several perform attempts

and the flights experience substantial delays. In case 3 the

number of workers is further reduced to 18. Hence even fewer

perform attempts get honoured. In case 4, a second baggage

handling resource is introduced (i.e. the Ground Handler starts

with two SLAs for the provision of baggage handling services

with different suppliers). If the primary baggage handler fails,

an alternative service provider can replace it. If this arises as a

one-off problem it can be handled by service orchestration (i.e.

failing over to the replacement service), though some delay

will still be experienced. If the primary supplier persistently

fails, it is better to manage the situation by excluding it from

further use. This was done by specifying a policy on the

individual baggage handler resources (as seen by the Ground

Handler). This policy sets the condition of the service to

‘failed’ if there is more than one failure, and deregisters the

service so preventing it being available for selection. This

addresses the immediate problem of a failing supplier, but it

reduces the number of available options for baggage handling

to one. A further policy is therefore needed that causes the

resource manager to procure a new SLA with a replacement

baggage service provider. Finally, case 5 implements a

simulation of communication delays to demonstrate the effects

of a denial of service attack on the ACISP. Due to the slow rate

of communications, a number of flights take off outside their

slot windows. No mitigation for this was considered in the run-

time tests, as the only one that could be handled by the

emulated components was to have redundant ACISP endpoints,

which duplicates the mechanisms tested in Cases 1-4.

B. Key Performance Indicators (KPI) used in the evaluation

To evaluate the performance of a ramp service provider

level, two KPI are considered: arrival reliability and service

delivery duration. In the proof-of-concept evaluation the

second KPI is a constant and disregarded. The first KPI on the

other hand is taken into account to show the effect of a reduced

number of workers. It is assumed that the reliability decreases

if the number of workers available at a service provider is

reduced. In the testbed this is measured by the number of

“perform attempts” issued to the service provider. If a service

provider has sufficient resources, every flight requires exactly

one perform attempt that is honoured by the service provider;

i.e., the number of perform attempts must be equal to the

number of flights. If the provider cannot immediately honour a

perform attempt due to a lack of workers, the perform attempts

will be repeated. Thus the number increases beyond the

number of flights.

The ramp service performance also has an effect on the

ground handler’s KPI. The ground handler’s performance is

characterized by two KPI: TOBT (Target Off Block Time)

accuracy and TOBT stability. TOBT accuracy is derived from

comparing the TOBT with a reference value (Actual Ready

Time, ARDT). The mean square deviation between TOBT and

ARDT is calculated for all flights departing in a day, where the

value for TOBT is taken at TOBT freeze time, i.e. 30 minutes

before TOBT. TOBT stability parameter measures how stable

the prediction mechanism of the ground handler is. For this

Second SESAR Innovation Days, 27th – 29th November 2012

6

http://www.serscis.eu/?page_id=317

purpose the average number of TOBT updates per flight is

calculated. Since the actual delivery time of the ramp services

is a distribution with a certain variation, e.g. dictated by the

actual service requirements or by the service provider’s

resource trade-offs, TOBT accuracy will decrease with a

reduction in the number of workers at the ramp service

provider. TOBT stability expresses the number of updates to

the TOBT required for each flight. In a sunny day scenario this

number should be 1 or close to it, i.e. once a TOBT is issued it

will not be changed. In degraded scenarios, however, a ramp

service will deliver late due to a lack of workers. In the testbed

the ground handler re-issues a TOBT whenever the estimate

deviates from the previous value by more than 10 minutes.

Hence the longer the ramp service delays its service delivery

the more TOBT values need to be issued for a flight.

Both above-mentioned KPIs affect the number of take-offs

outside the slot-tolerance windows (STW), which is an overall

KPI for the A-CDM network. The value will increase in a

ripple on effect of the ramp service provider’s inaccuracy. If

the ramp service provider fails to show up on the initial

perform request, there is a risk that they will delay the turn-

around of a flight and cause it to miss its slot. This effect,

however, might be countered in part by the available slack in

the turn-around process. A policy change that allows the

ground handler to replace the service provider with an alternate

in case it fails to respond to a perform request must reverse the

above effect. Choosing an alternative service provider when

the primary provider failed, will replace the overall service

delivery reliability and thus result in fewer take-offs outside the

STW.

Another KPI is applied to evaluate the overall CDM

system’s performance: the average number of slots issued per

flight. Obviously, in the ideal case one slot is issued for a flight

and this one is used subsequently. In less ideal situations delays

in the turn-around prevent a flight from meeting its slot. Thus a

new slot has to be issued, potentially wasting the previous one

if it cannot be claimed by another flight. The longer the delay

of a turn-around, e.g. induced by a lack of workers at a ramp

service providers, the more slots must be issued for a flight
3
.

C. Experiment results

The KPI obtained from the above scenarios are listed in

Table 1. The results shown here clearly indicate that the chosen

KPIs are meaningful for the testbed and the scenario and that

verification and validation of the testbed succeeded. The KPI

“perform attempts” was expected to increase if a service

provider does not have sufficient resources to honour all

requests in parallel. In this case some of the requests must be

repeated, which means a larger figure. When introducing the

3 In the testbed the ground handler uses a simple strategy to update

the TOBT. A new estimate for TOBT is calculated, and the TOBT

is updated if the new estimate is more than 10 minutes after the

previous TOBT. Note that in the current simulation every TOBT

change automatically results in the issuance of a new slot. For this

reason, the number of slots per flight is equal to the number of

TOBT updates.

possibility to choose an alternative provider in case the first

one fails to honour requests, the total number of perform

attempts should decrease again. This is exactly the behaviour

of the testbed. Case 2 and also case 3 exhibit a significantly

larger number of perform attempts than the sunny day case 1.

With the introduction of an alternative service provider in case

4, the number of request drops close to the value of the sunny

day case again. Note that it is still slightly larger than in the

sunny day case, because additional perform requests are issued

(and not honoured) while the alternative provider is being set

up. Hence the KPI provides meaningful characteristics of the

testbed and the testbed shows the expected behaviour.

TABLE I. KPI VALUES

Scenario
Scenario

Case 1 Case 2 Case 3 Case 4 Case 5

Baggage
perform

attempts

249 556 961 266 249

Average TOBT
error

4 min 14 min 49 min 4 min 4 min

Average TOBT

updates per

flight

1 1.5 2.7 1 1

Average

number of slots

issued

1 1.5 2.7 1 1

Take-offs

outside STW
0% 15% 31% 0% 13%

The TOBT-related KPIs reflect the quality of service

delivery by a ramp service provider. With a decreasing number

of workers in cases 2 and 3, the TOBT accuracy decreases as

well and the required number of updates to this value per flight

increases accordingly. When the ground handler has the option

to choose an alternative service provider in case 4, the trend

reverses and case 4 delivers the same performance as the sunny

day case 1. Similarly, the number of slots issued per flight

increases with the number of TOBT updates per flight. In case

4, in which TOBT does not get updated, only one slot is

required as in case 1.

The last KPI, which was assesses in the testbed evaluation,

is the percentage of take-offs outside the slot-tolerance window

(STW). In the case of a sufficient number of workers at all

service providers (case 1), none of the flights should miss its

slot
4
. Hence the KPI must be 0%. With turn-arounds being

delayed due to an insufficient number of workers at one of the

service providers, flights will miss their slots and take off

outside the STW. For this reason the value increases to 19% in

case 2. When an alternative service provider steps in to take

over the tasks from a failed provider as in case 3, turn-arounds

are on time again. The percentage of missed slots falls back to

0% again. In the event of communication delays with the

ACISP we see the percentage of take-offs outside the slot

tolerance window increase in proportion to the delay. This is

4 The limited capacity of taxiways and runways might cause flights to

miss their slots despite a timely turn-around, but this is not

modelled in the testbed.

Second SESAR Innovation Days, 27th – 29th November 2012

7

caused by delays in communications resulting in windows of

opportunity to be missed.

D. Validation conclusions

Tests showed that if left untreated, the injected faults all

cause the performance of the airport to be degraded: more

flights take off late, and Eurocontrol wastes airspace by

allocating slots that the Airlines cannot use. Moreover, all the

faults lead to inaccurate forecasts to be passed to NM (in the

last case the Ground Handler’s forecast is accurate, but it is

then corrupted at ACISP). However, the SERSCIS monitoring

tools were able to detect these different threats and correctly

diagnose them based on the monitoring data available. These

experiments demonstrate that the SERSCIS approach provides

a practical solution for security risk analysis in a dynamically

composed, multi-stakeholder system. Security expertise is

captured beforehand in the SERSCIS dependability model

OWL classes, and these can be used by a system expert at

design-time to create an abstract system model. This captures

the structure of the system but does not specify how many

assets it contains, where they are deployed or what security

controls they have. The abstract system model provides inputs

to run-time semantic monitoring tools, where the knowledge

encoded in the OWL classes is used to automatically determine

system threat activity and system vulnerabilities.

V. FUTURE WORK

The SERSCIS semantic modelling approach was validated

using a subset of the European Air Traffic Management

system. As outlined in Section I, it was applied to an Airport

Collaborative Decision Making scenario at a major European

airport. The authors are aware that A-CDM is a relatively small

part of the overall ATM system, but it exhibits characteristics

that make it well suited as a test bed:

 involvement of several stakeholders, coming from the

core ATM as well as other domains;

 involvement of several technical systems

interconnected by various communication

infrastructures; and

 closely linked processes, in which the disruption of one

sub-process without treatment will lead to major

disruptions of the entire system.

These properties also apply to the entire European ATM

system. At the same time, the sheer complexity and size of the

European ATM system forestalls any security approach that

tries to tackle the system as a whole. Rather a hierarchical

methodology will be required. Hence future work will be to

scale up the approach described here.

The SERCIS project ends in late 2012. In the final year,

improvements to the SERSCIS core and dependability model

have been made to make the model suitable for future research

work. Improvements to the core ontology (Fig. 1) allow us to

model physical and electronic attacks on airport connectivity

and spaces. These include the ability of actors (including

intruders) to move around the airport, the use of private

networks to support communications with and in the airport,

and the potential for physical or electronic attacks on

communication assets as well as services that use them.

A final rationalization of the threat model has been to

describe threats according to their target, action and

consequence, based on [18]. This provides a basis for

evaluating the coverage of the threat model and makes it easily

extensible for different types of systems to provide threat-

centric, run-time security analysis.

REFERENCES

[1] Blanco, C., Lasheras, J., Fernandez-Medina, E., Valencia-Garcia, R.,
and Toval, A.: “Basis for an integrated security ontology according to a
systematic review of existing proposals,” Comput. Standards &
Interfaces, vol. 33, no. 4, pp. 372-388, 2011.

[2] COBIT 4.1, IT Governance Institute, 2007.

[3] Matulevicius, R., Mouratidis, H., Mayer, N., Dubois, E., and Heymans,
P.: "Syntactic and Semantic Extensions to Secure Tropos to Support
Security Risk Management", Journal of Universal Computer Science
(J.UCS), Vol. 18, N°6, pp.816-844, March 2012.

[4] EBIOS Methodology.”Expression des Besoins et Identification des
Objectifs de Sécurité”. Specification white paper.
www:http://www.ssi.gouv.fr/IMG/pdf/EBIOS-1-GuideMethodologique-
2010-01-25.pdf (last accessed, February 2012)

[5] Fenz, S., and Ekelhart, A.: “Formalizing information security
knowledge,” in Proceedings of the 4th International Symposium on
Information, Computer, and Communications Security (ASIACCS'09),
Sydney, Australia, 2009.

[6] German Federal Office for Security in Information Technology (BSI),
“IT Grundschutz Manual,” 2005.

[7] Herzog, A., Shahmehri, N., and Duma, C.: “An ontology of information
security,” International Journal of Information Security and Privacy, vol.
1, no. 4, pp. 1-23, 2007.

[8] Hogganvik, I., and Stølen, K.: “A graphical approach to risk
identification, motivated by empirical investigations”. International
conference on Model Driven Engineering Languages and Systems
(MoDELS'06). 2006.

[9] ISO/IEC 27005:2011. Information technology – Security techniques –
Information security risk management, International Organization for
Standardization, 2011.

[10] Kim, A., Luo, J., and Kang, M.: “Security ontology to facilitate web
services description and discovery,” Journal on Data Semantics, vol. 9,
pp. 167-195, 2007.

[11] Leonard, T., Hall-May, M., and Surridge, M.: “Modeling Access
Propagation in Dynamic Systems”, submitted to ACM Transactions on
Information and System Security, March 2012.

[12] MEHARI “Risk management concepts and methods”, Specification
white paper.

[13] www:http://www.clusif.asso.fr/fr/production/ouvrages/pdf/CLUSIF-
risk-management.pdf(last accessed, February 2012).

[14] Semantically Enhanced Resilient and Secure Critical Infrastructure
Services, EC FP7 Project 225336, 2008-2012. See also
http://www.serscis.eu

[15] SWRL “A Semantic Web Rule Language Combining OWL and
RuleML” www: http://www.w3.org/Submission/SWRL/ (last accessed,
February 2012).

[16] Touzeau, J., Hamon, E., Krempel, M., Gölz, B., Madarasz, R., and
Alemany, J.: “SESAR DEL16.02.01-D03: SESAR ATM Preliminary
Security Risk Assessment Method.,” 2011.

[17] Vorobiev, A., and Bekmamedova, N.: “An ontology-driven approach
applied to information security,” Journal of Research and Practice in
Information Technology, vol. 42, no. 1, pp. 61-76, 2010.

[18] Shirey, R.: “Internet Security Glossary,” IETF RFC 2828, May 2000.

Second SESAR Innovation Days, 27th – 29th November 2012

8

http://www.clusif.asso.fr/fr/production/ouvrages/pdf/CLUSIF-risk-management.pdf
http://www.clusif.asso.fr/fr/production/ouvrages/pdf/CLUSIF-risk-management.pdf
http://www.serscis.eu/
http://www.w3.org/Submission/SWRL/

