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Foreword - This paper describes a project that is part of
SESAR Work Package E, which is addressing long-term and
innovative research.

Abstract—This paper is presenting the first results of the
ONBOARD project, whose goal is to investigate the incorporation
of information about the levels of uncertainty in Air Traffic Flow
Management (ATFM). The efficiency of ATFM optimizations
in preventing local demand-capacity imbalances is reliant on
accurate predictions of future capacity states. However these
predictions are inherently uncertain due to factors such as
weather effects and unscheduled demand.

This paper describes the integration between two elements, the
Airline Operations Centre (AOC) which calculates the necessary
airspace user recovery plans to cope with adverse scenarios; and
the Network Manager (NM) which solves the demand capacity
balance problem incorporating uncertainty. The core research
aspects are in the introduction of disturbance feedback within
the Network Manager optimization, in order to produce tailored
solutions for all scenarios.

The paper outlines the structure of the system and details
of the AOC and NM algorithms. Results are presented
demonstrating their interaction and the benefits of the
disturbance feedback methodology.

Keywords - network management, uncertainty management

I. INTRODUCTION

Increasing levels of demand in global air traffic over the last
few decades have begun to stretch the air traffic management
(ATM) system [1]. This trend is set to continue with the
Federal Aviation Authorities (FAA) predicting in 2009 that
commercial passenger numbers within the US will reach one
billion by 2021 [2]. In order to meet the predicted traffic levels,
improvements are needed in all areas of ATM.

One of the difficulties in improving the performance of
ATFM through optimization is the presence of uncertainty.
Future capacity state predictions are inherently uncertain due
to factors such as weather effects and unscheduled demand. In
current practice and the SESAR concept of operations infor-
mation that could be available on the uncertainty associated
with the system is not used. The goal of the ONBOARD
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project is to see if improvements can be made in ATFM
performance by explicitly incorporating information about un-
certainty within the optimization in the Network Management
planning and execution phases.

The project is focused on incorporating the two factors that
jointly account nowadays for two thirds of the total ATFM
delay in Europe; weather and knock-on effects. The approach
taken in this paper is to develop two interacting algorithms,
one acting as the AOC and the other as the NM. The concept of
disturbance feedback from control research is applied within
the NM to handle uncertainty information on unscheduled
demand and weather forecast. The solutions produced via this
methodology within the NM are then iterated, with the AOC
providing alternative recovery plans for further iterations.

The paper begins with a platform overview including de-
scriptions of the interactions between the different elements
of the system. The Airline Operations Centre and Network
Manager algorithms are then described in detail. Results
demonstrating the integration of the algorithms and the ef-
fects of the disturbance feedback on the solutions are then
presented. Finally the future directions of the research are
discussed.

II. PLATFORM OVERVIEW
A. Platform Description

The platform consists of two main components, the Network
Manager (NM) and the Airline Operations Centre (AOC). Fig-
ure 1 depicts the high level system architecture. The Network
Management algorithm is the core research goal of the project
as this is where the uncertainty will be incorporated. The Air-
line Operation Centre algorithm is necessary in the project to
interact with the Network Management algorithm and pursuits
its own research challenges. More detailed information on this
can be found in [3].

B. Integration Description

As shown in Figure 1 the AOC and NM algorithms interact
through a shared platform database structure. The rest of
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Figure 1.

the processes are isolated within the separate algorithms.
This allows the algorithms to communicate through a set of
database tables, making the communication independent of
programming languages or operative systems. This provides
great flexibility to the development process meaning that the
algorithms can be developed and operate independently.

Each separate algorithm loads problem case information
from the shared database. The problems are generated by an
Evaluation Scenarios Tool which has been developed as part of
the ONBOARD project in order to generate realistic problems
based on a set of defined parameters, such as number of flights
and airports considered.

III. AIRLINE OPERATIONS CENTRE

The main role of the Airline Operations Centre (AOC)
algorithm is to calculate the necessary airspace user recovery
plans to cope with adverse scenarios (e.g. significant traffic
congestion at an airport or at an airspace volume), by updating
the aircraft rotation plan (e.g. delaying, re-routing or cancelling
flights; swapping slots) and retiming part of the flights sched-
ule until the original flight schedule can be resumed.

The basic architecture of the AOC algorithm is shown on
the left hand side of Figure 1. The AOC gives an initial desired
plan to the Network Manager and then generates alternatives
taking into account the Network Manager restrictions in an
iterative process.

The Problem Generator module provides feasible problem
cases for each set of flights. This module loads the problem
information from the Evaluations Scenario Tool, as explained,
and distributes aircraft through the network in order to assure
that the problem is feasible, i.e. there are enough aircraft to
fly the schedule.

The Trajectories Calculator module performs a two-step
process. In the initial iteration, it calculates the optimal desired
trajectory for each flight as a function of direct operating
costs. Once the Network Manager has imposed constraints,
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this module calculates new trajectories for affected flights
which take into account the restrictions.

The Cost Calculator module calculates the cost of flying
all the trajectories generated before and after restrictions,
considering direct costs (i.e. fuel cost, time related costs).

The Integer Program Optimizer module calculates optimal
fleet assignment plans for several scenarios, taking into ac-
count the planned flight legs and associated costs by modelling
the problem as an Integer Program (IP).

The Alternatives Generator module calculates alternative
plans and their associated costs, taking into account the
Network Manager restrictions. It generates sets of alternative
flight plans to operate affected flights by re-routing, re-timing
and updating trajectories.

A. Objective

The objective of the AOC is to find the sequence of flights
to be flown by each aircraft that minimizes the total cost and
guarantees that all the planned flights have been flown once
and only once. The optimization problem can be formulated
as a linear integer programming optimization problem, which
can be summarized as:

minc’ z

Ar=b, 2 <C, C=1, z€0,1™ (1)

Where A is a matrix in which rows represent the nodes and
columns the arcs; b is a vector expressing net flow at node i;
c represents the cost of sending a unit of flow through an arc
and z is the vector of variables defined as:

Subject to:

1 if an aircraft operates arc j,

2

xr =
0 if no aircraft operates arc j

B. Time Line Network

In order to represent the air traffic problem as an IP problem,
a commodity flow model has been used. A generic commodity
flow network consists of a set of nodes linked by arcs through
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which commodities are sent. Each arc has a capacity, as well
as a cost/profit associated with sending a unit of flow through
it. Each node has a net flow associated with it. The problem
variables are the levels of flow sent through each arc. It is
important to note that source nodes (i.e. commodities initial
position) and sink nodes (i.e. commodities final position) must
be defined beforehand.

The commodity flow model used in the AOC has been
termed the Time Line Network model. In this network each
node represents an airport at an instant and each arc represents
a movement between two nodes (two airports different times
or one airport different times). Aircraft are the commodities
which are routed through the network with every arc having
a given capacity (the number of aircraft possible to send
through) and cost/profit of sending an aircraft through it. A
basic representation of this model is shown in Figure 2.

IV. NETWORK MANAGER

The focus of the Network Manager (NM) is on the subset of
ATM which deals with allocating airspace resources such that
the balance between capacity and demand is maintained in the
presence of both enroute and airport capacity constraints. This
is known as Air Traffic Flow Management (ATFM) and many
studies, including Refs [4]-[9], have applied optimization
to the problem to find the best solution (subject to some
objective).

The scope of the system considered covers airport departure
and arrival capacity limits at airports as well as enroute sector
capacity limits. Control actions available are delays to the
arrival, departure, and sector crossing times. Modelling of
ATFM problems can broadly be divided into three categories:
discrete decision models (sometimes referred to as Lagrangian
models) which consider the individual plan of each aircraft
in the problem (Flight-by-flight) [4], [5], [10], [11]; aggregate
flow models (sometimes referred to as Eulerian models) which
consider the flow rates and densities in control volumes but do
not track individual aircraft plans [6], [12], [13]; and hybrids
of the two (Eulerian-Lagrangian), which augment aggregate
models to include some knowledge of individual flights [7],
[9]. The NM adopts an Eulerian-Lagrangian or primarily flow-
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based ATFM viewpoint, meaning that a separate optimization
stage is required to disaggregate the solution. Disaggregation
is not discussed in this paper but has been extensively covered
previously, for example in [14]. Flow re-routing decisions can
also be handled under the formulation presented, but are not
considered here.

The baseline flow based optimization model implemented is
a slight reformulation of the model presented in Sun and Bayen
[7] which was inspired by the Lighthill-Whitham-Richards
theory [15], [16] and by the Daganzo cell transmission model
[17], [18] commonly used in highway traffic. For ease of ex-
position of the disturbance feedback methodology the decision
variables and objective are outlined below. For full details of
the model the reader is directed to [7].

A. Decision Variables

The decision variables introduced by the Sun and Bayen [7]
model are integer variables which encode the control actions
introduced.

u’(k) = no. aircraft held back at cell i in time period
u*J (k) = no. aircraft moving, cell 4 — j in time period k

3)

Note the u*/ are only defined for indices where they
are variable, i.e. for cell indices which represent a pair of
connected cells. Sun and Bayen also use a cell state variable,
ﬂ(k) which represents the aircraft count in each cell, 7, at
each time period, k. We have reformulated to eliminate this
variable to aid the inclusion of feedback.

B. Objective

The objective to be minimized is a weighted combination
of airborne delay and ground based delay, this allows the
imbalance in the costs to be represented.

minz Z Z caui(k)JrZ Z cou' (k)

keT \s€SieB(s) acAieB(a)

“4)

Where ¢, and ¢, and the weightings on airborne delay and
ground delay respectively. Note that this equation does not
capture delays due to diversions on to longer routes. Re-
routing is not explicitly considered in this paper however this
matter is the subject of on-going research.

C. Feedback

As already discussed due to the presence of uncertainty
simply planning for the most likely, or “nominal” capacity
availability outcome will often result in demand capacity
imbalances. Therefore uncertainty in the ATM planning phase
is usually addressed by robust planning (to make an operation
plan resilient to all possible capacity scenarios), contingency
planning (e.g. predefined recovery plans for each scenario) and
re-planning.

Robust planning involves designing a single plan which
would satisfy the demand-capacity balance in all possible
scenarios. Unfortunately such a solution is often infeasible and
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certainly would be very conservative. Instead it is desirable to
create tailored solutions for each scenario, otherwise known
as contingency planning. Agustin et al. [19] describe one
approach to this type of planning rightly identifying that
solutions cannot differ based on the scenario if it is unclear
which scenario is coming to fruition. This kind of restriction
has been termed as a set of non-anticipation constraints.

The approach taken in this paper is Model Predictive
Control (MPC) with Disturbance Feedback [20]. Incorporating
feedback into the solution is an efficient way to calculate
contingency plans for a series of possible scenarios. As well
as a single “nominal” plan, the decision variables of the
optimization also include a set of feedback parameters. This
enables future actions to depend on information that will
become available between the time of planning and the time
of execution: in this case, the feedback acts on the distur-
bances acting on the system, with the advantage of keeping
the overall optimization linear. Including feedback in MPC
reduces conservatism [21] by allowing the system to respond
to disturbances.

The following equations describe how feedback can be
incorporated such that the decisions u‘(k) and w7 (k) are
allowed to vary with the disturbance signal .

Each hold-back decision variable is re-written as

Nw
u'(k) =vi(k)+ Y Mi(k)Wa(c) (5)

nitw(n)<k

where the new decision variables are v'(k), an affine or
nominal decision, and M (k), the feedback term relating
uncertainty signal W,, to decision ¢ at time k. The diversion
decisions are similarly re-written:

Nw

D

n:itw(n)<k

uI (k) = v (k) + NI (kYW (c) (6)

Substituting (5) and (6) into the Sun and Bayen model [7]
yields the final form of the model constraints with disturbance
feedback. The objective is also augmented to take into account
the delays introduced in the feedback solutions as well as the
nominal case. The solutions are weighted by the probability
of their respective scenarios occurring.

D. Scenario Model

A scenario is a realization of the uncertain parameters in
the given time horizon. In order to take into account the
capacity uncertainty a set of capacity reduction scenarios are
defined each having a given probability of occurrence and
an associated set of capacity reductions with time period, k,
q(c, s, k), where ¢ indexes the scenario, and s the sector.

Much previous work has been done on the definition of
capacity reduction scenarios based on weather forecast data
and airspace configuration data [22]-[24]. Recently this work
has been brought together by Taylor et al. of the MITRE
corporation [25] to allow a representative sample of weather
impact scenarios to be developed with associated probabilities.
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It is therefore assumed that such scenarios will be available to
the NM.

Once defined, scenarios are grouped into a scenario tree
structure, as shown in Figure 3. In this structure each root-
to-leaf path represents an individual scenario. Each white
branching node represents a point in time at which the
scenarios divergence. Beyond the branching points there is a
difference between the separate scenario branches. Differences
can be modelling uncertainty in the speed, strength and path
of disruptive storms.

These branching points are represented mathematically for
each scenario, ¢, by the binary disturbance signals W, (c).
These signals are those fed back in the feedback solutions at
time periods beyond the times, tw,, at which the result of each
decision point W,, becomes clear. The four scenarios in the
example tree shown are represented by 3 binary decisions.

V. RESULTS

A. Implementation

1) Database Interaction: The databases used to facilitate
the interaction between the AOC and the NM are implemented
in MySQL.

2) AOC: The prototype has been developed using C++ as
a programming language and Eclipse SKD 3.5.2 as integrated
development environment. The tool operates in Linux and for
the optimization process is used the software package IBM
ILOG CPLEX optimization studio.

3) NM: The NM optimization was translated into the
AMPL modelling language [26]. An AMPL model file con-
tains the constraint forms for all instances, while the data is
written to an AMPL data file by a Matlab script. CPLEX 10.1
optimization software is used on a 3.4GHz PC with 2.98GB
of RAM to solve all problems.

B. Airline Problem Set-Up

The integration example problem presented in this work
consists of a set of 30 flights between 5 airports with ICAO
codes: EBCI, EDDB, EDDF, EDDN and EHAM. The flights
are distributed through a day of operations between 6:00 to
16:00 hours. Each flight has an associated optimal nominal
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TABLE I
COSTS SCENARIO PARAMETERS

Strategic (€/hr) Tactical (€/min)

Maintenance: At Gate 100 0.4
Airborne 740 34
Crew: 360 7.8

Passengers Delay: c=0.01724%77%

trajectory and plan. All airspace sectors involved in the prob-
lem are considered to have a 5 aircraft capacity in any given
5-minute time window.

From the point of view of airline operational costs a refer-
ence cost set has been selected based on the study presented
in Ref. [27]. The aircraft considered is the A320. Table I
summarises the cost coefficients considered in the optimization
processes.

C. Capacity Reduction Scenarios

The storm case considered here is a combination of four
separate storms, the first of which, “Storm 17 is subject
to some uncertainty in its speed resulting in four different
possible traversals. The combination of each of these traversal
with the three certain storms form the four different weather
impact scenarios. Each storm has capacity reduction strength
4, meaning affected sectors capacity is reduced to one aircraft
per 5-minute time window. Table II outlines the paths and
traversal times of Storm 1 for each individual scenario, c,.
Similarly, Table III outlines the paths and traversal times of
the other three storms, which are the same across all scenarios.
Note that, for example, S4 indicates Sector-4 and similarly
Al indicates Airport 1. The sector numbers relate to the map
shown in Figure 4.

These storm transitions are converted into a scenario tree
by identifying the points at which the scenarios diverge and
modelling these as branching points with associated binary
values W,,. The appropriate capacity reductions are then stored
in the previously discussed parameter ¢(c, s, k) for use within
the optimization.

550°N —

475N

Figure 4. Problem Scope
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D. NM Solutions

In this section the output of the NM’s first iteration with
the AOC, in a case conducted with NM objective weightings
ce = 2 and ¢4 = 1, will be discussed in detail in order
to demonstrate the benefits of incorporating feedback. Four
solutions will be compared. Firstly the AOC’s ideal plan as
submitted to the NM will be analysed, then the solution
considering only the “nominal” weather impact scenario, ¢;. A
single-plan robust solution and finally the disturbance feedback
solution will also be compared. Table IV summarises the
statistics being discussed.

1) AOC Ideal: 1f the AOC ideal flight plans are accepted
demand-capacity-imbalances were found to occur in between
13 and 15 sector-times depending of the scenario enacted. As
would be expected in this case there is no ground or airborne
delay.

2) Nominal: If only the “nominal” scenario, ¢, is consid-
ered in the optimization, as would be expected delays have
been introduced in order that no demand-capacity-imbalances
occur when this scenario is enacted. As the problem case
explored here has a relatively sparse population of flights,
this solution is also adequate for two further scenarios, co

TABLE 11
STORM 1: TRANSITION PATHS FOR EACH SCENARIO, ¢

Time Periods
=)

ct | A4 S1 S9 S4 S4 S3 S3
coc | A4 S1 S9 S9 S4 S4 S3 S3 S3 A2 A2 A2
c3 | A4 S1 S9 S4 S4 S3 S3 S3 S3 S3 A2 A2
cy | A4 S1 S9 S9 S4 S4 S4 S3 S3 S3 S3 A2

TABLE III
STORMS 2,3 AND 4: TRANSITION PATH FOR ALL SCENARIOS, ¢y,

Time Periods
O O 90 9 O 9 9O 9 9 9O 9 9 9 9O 9
0 <t O O o0 N <+ 0 S on O O A un o0
<t v O =] O o~ o~ o~ oo o0 0 O N [*)}
Storm 2 A4 A4 S1 S1 S9 S9 S4 S4 S3 S3 A2
Storm 3| A2 S3 S6 S14 S14 S8 S8 Al
Storm 4 Al S8 S4 S3 S2 A2
TABLE IV

COMPARISON STATISTICS BETWEEN AOC IDEAL, NOMINAL, ROBUST
AND DISTURBANCE FEEDBACK SOLUTIONS

No. Sector
Scenario  Capacity Breaches Ground Delay

c1 13 0

AOC Ideal Plan co 13 0
cs 13 0

Solve Time: 4.6 s c4 15 0
c1 0 18

. c2 0 18
Nominal ca 0 18
Solve Time: 4.9 s cq 2 18
c1 0 20

co 0 20

Robust ca 0 20
Solve Time: 14.5 s c4 0 20
c1 0 18

Disturbance Feedback c2 0 18
c3 0 18

Solve Time: 130.3 s c4 0 20
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and c3. However, in the final scenario, ¢4, demand-capacity-
imbalances were found to occur in 2 sector-times.

3) Robust: In the robust case one plan is made to satisfy all
scenarios. As a result no demand-capacity-imbalances occur.
However the price paid for this is that in all scenarios are
subject to the most conservative level of delay required in any
one scenario. As previously mentioned in more dense problem
cases it is also highly likely that a robust solution is infeasible.

4) Disturbance Feedback: The disturbance feedback case
also incurs no demand-capacity-imbalances. However, as tai-
lored feedback solutions are developed, the minimum amount
of delay needed for each scenario can be applied.

Figures 5 and 6 demonstrate the effects of feedback on
the interactions between three aircraft, FO17, FO20 and F021
which all require the use of one sector, S3. Figure 5 shows
the state of the aircraft at time period 82 (time = 765 mins) in
scenario cy. In this scenario there is no restriction on sector S3
and the three flights overlap their use of the sector (FO17 has
just finished using the sector and landed prior to this still).
However, in scenario, c4, depicted in Figure 6 sector S3 is
subject to weather impacted capacity and therefore can only
allow one aircraft to occupy it in any given time window. As a
result of this restriction the three flights, FO17, FO20 and F021
must make cross the sector in turn, meaning that both F020,
and FO21 are delayed on the ground, and therefore appear
further back in their trajectories in Figure 6.

TABLE V
NM MEASURES, ITERATION 1
Flight Id | Resource Id OTA (mins) | TTA (mins)
16852 EDUUFULL 503.6 513.6
EDUUFFMML | 512.0 522.0
EDYYMNHI 514.7 524.7
EDYYFLELO 534.4 544.4
EDYYZEELO 548.6 558.6
EHAM 550.7 560.7
1227 EDYYMNHI 564.9 574.9
EDYYFLELO 582.1 592.2
EDYYZEELO 596.2 606.2
EHAM 598.3 608.3
2223 EDYYFLELO 635.9 645.9
EDYYRHHI 643.6 653.7
EDUUNTMML | 656.2 666.2
EDUUFFMML | 660.8 670.7
EDUUSLNH 663.3 673.3
EDDF 666.6 676.6
2224 EDUUFFMML | 718.7 743.7
EDUUSLNH 721.3 746.3
EDDF 724.6 749.6
1229 EDYYMNHI 680.9 690.9
EDYYFLELO 698.1 708.2
EDYYZEELO 712.2 722.2
EHAM 714.3 7243
16854 EDUUFULL 911.6 916.6
EDUUFFMML | 920.1 925.1
EDYYMNHI 922.7 927.7
EDYYFLELO 942 .4 962.4
EDYYZEELO 956.6 976.6
EHAM 958.7 978.7
1233 EDYYMNHI 912.9 917.9
EDYYFLELO 930.1 945.2
EDYYZEELO 944.2 959.2
EHAM 946.3 961.3
SESAR

E. AOC Response / Iterations

Several iterations between the AOC and the NM have been
carried out on the example problem described above. Each
iteration consists of three steps: AOC shares an ideal plan,
NM applies restrictions and AOC re-adapts the plan taking
into account these restrictions. This iterative process repeats
until the problem has converged, when the AOC plan meets all
capacity restrictions. Several runs were conducted each using
different weightings within the NM optimizations objective.
The outputs from two iterations conducted with weightings
¢ = 1 and ¢; = 100 are shown in Tables V-VII. These
results demonstrate the algorithms iteration leading to coherent
results.

Table V contains delays introduced by the NM for the
nominal weather case in the first iteration plan. As expected
based on the NM weightings heavily penalizing ground delay,
all the suggested delays are mid-air. As seen, the delays
are applied to specific trajectory sectors and are presented
referenced to the original trajectory, i.e. Target Time of Arrival
(TTA) and Original Time of Arrival (OTA). TTA and OTA are
measured in minutes from 12 midnight. It can be seen that
in this case, 7 of the 30 flights were delayed airborne or on
ground, by between 10 and 25 minutes.

TABLE VI

AOC RESTRICTED FLIGHTS ALTERNATIVES
Flight Id | Alternative
16852 On Ground Delay (600)
1227 On Ground Delay (600)
2223 Modified Trajectory (0.95)
2224 On Ground Delay (1500)
1229 Modified Trajectory (0.95)
16854 On Ground Delay (300)
1233 Modified Trajectory (0.95)

Table VI presents the alternatives generated by the AOC
taking into account the NM delays. In this problem the
AOC generated both types of alternative, delaying departures
and replanning slower trajectories, in response to the NM
interaction. On ground delays are presented with the total
minutes delay and modified trajectories with the associated
speed factor applied. It is necessary to remark that from the
airline point of view this set of alternatives is the cost optimal
solution taking into account the NM delays. Since each change
in the planned schedule flights affects the rest of the network,
the NM response includes a new set of measures to introduce
delays into this new ideal plan, see Table VII.

As seen, the second iteration measures set affects to 3
flights. In this particular case, these 3 flights were included in
the initial plan but with different delays. The iterative process
continues until converges and no more measures are applied.

VI. CONCLUSION

The structure of a combined AOC/NM ATFM system has
been outlined in this paper. The integration of the two parts of
the systems has been discussed and results have shown that the
database interface defined is working well and initial iteration
results are coherent.
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TABLE VII
NM MEASURES, ITERATION 2

Flight Id | Resource Id OTA (mins) | TTA (mins)
2223 EDYYFLELO 635.9 640.9
EDYYRHHI 643.8 648.8
EDUUNTMML | 656.9 666.9
EDUUFFMML | 661.5 671.5
EDUUSLNH 664.3 674.3
EDDF 667.6 677.6
16854 EDUUFULL 916.6 921.6
EDUUFFMML | 925.0 945.0
EDYYMNHI 927.7 947.7
EDYYFLELO 947.4 967.4
EDYYZEELO 961.6 981.6
EHAM 963.7 983.7
1233 EDYYMNHI 9134 923.4
EDYYFLELO 931.7 946.7
EDYYZEELO 946.1 961.1
EHAM 948.2 963.2

More detailed analysis of the NM output during a single
iteration has demonstrated the benefits, in terms of reduced
delays, of a disturbance feedback approach to capacity uncer-
tainty over a single robust plan. During the remainder of the
project the disturbance feedback model will be further devel-
oped to reduce computation by intelligently fixing potentially
redundant feedback values in the pre-solve of the optimization
scheme.
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