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Abstract—This paper presents a strategic trajectory de-
confliction algorithm that can be applied during the pre-
departure and the flight execution phases. The proposed method
detects conflicts using an algorithm based on axis-aligned min-
imum bounding box and resolves them cooperatively using a
collision-free trajectory planning algorithm based on a stochastic
optimization technique named Particle Swarm Optimization
(PSO). PSO modifies the trajectories of the aircraft involved with
an overall minimum cost. Determining optimal trajectories with
short time intervals in the flight phase is not feasible, hence an
anytime approach using PSO is applied. This approach yields
trajectories whose quality increases with increase in available
computation time. Thus, the method could be applied to Medium-
Term Conflict Detection and Resolution (MTCDR) and even
Short-Term Conflict Detection and Resolution (STCDR) depend-
ing on the look-ahead times. The method has been validated
with simulations in scenarios with multiple aircraft in a common
airspace.

I. INTRODUCTION

The implementation of an efficient, safe, fair and reliable Air
Traffic Management (ATM) system is one of the fundamental
challenges of SESAR for the future because of the increasing
traffic volume in the next years [1]. The automation technolo-
gies will play an important role in this future ATM to satisfy
high air traffic demand and higher levels of automation in ATM
should be explored. These automation technologies should be
supported by methods and algorithms to implement trajectory
based operations by increasing airspace capacity and efficiency
[2]. Currently this management relies on a centralized system
(ATC) and the workload of the air traffic controllers will
increase and the system could respond slower in the future.
Thus, new decision support systems should be proposed to
allow the controller to timely react to dangerous situations by
facilitating collision-free trajectories. Therefore, trajectory de-
confliction algorithms are required to ensure the safety of the
system.

General concepts and methods on path planning could be
applied in order to solve this problem. A review of these
methods with a comprehensive mathematical discussion is
presented in [3]. Among these methods could be highlighted:
potential fields [4], graph search like A* and D* [5] and
Rapidly-exploring Random Trees (RRT) [6]. Other kind of
methods have been proposed such as evolutionary techniques

[7] [8] [9], particle swarm optimization technique [10] and
multi-objective evolutionary algorithms [11].

The problem of trajectory planning is NP-hard [12] [13].
Some differential constraints given by the model of the aircraft
should be considered to make the problem tractable. Sampling-
based techniques, as opposed to combinatorial planning, are
usually preferred in these NP-hard problems. These planning
schemes match particularly well when the solution space is
hard to model or unknown a priori because of its dynamic
nature. The application of evolutionary techniques or particle
swarm optimization are an efficient and effective alternative
for this problem.

The Conflict Detection and Resolution problem has also
been studied extensively and different types of techniques
have been proposed [14]. These techniques are characterized
depending on the following factors: dimensions of the state
information, technique for dynamic state propagation, conflict
detection threshold, conflict resolution technique, maneuvering
dimensions, and management of multiple UAV conflicts.

One method to resolve conflicts is based on the speed
assignment. In [15] the speed profile for all the aerial vehicles
involved in a collision is computed in a centralized way to
solve the conflict. The method presented in [16] is based
on mixed-integer linear program (MILP) and it resolves the
conflict by changing speed to a large number of aerial vehicles
subject to velocity change constraints. However, some conflicts
cannot be solved. Other methods resolve pairwise conflicts
[17] but do not consider more aircraft. [18] and [19] present
a method based on mixedinteger linear program (MILP) to
avoid collision. In [20] a method for multiple-aircraft conflict
avoidance is proposed. It is assumed that aircraft cruise at
constant altitude with varying velocities and that conflicts
are resolved in the horizontal plane using heading change,
velocity change, or a combination thereof. Methods based on
Ant Colony Optimization (ACO) algorithm have also been
proposed. In [21], the application of a game theory approach
to airborne conflict resolution is presented. However, these
techniques are not well suited for applications that require a
high level of scalability.

In this paper, a cooperative trajectory de-confliction algo-
rithm based on PSO has been implemented. The choice of
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PSO is based on its low computational overheads and faster
solution convergence compared to genetic algorithms and
other evolutionary algorithms [22]. The detection algorithm is
based on axis-aligned minimum bounding box. Each aircraft
changes its trajectory maintaining its velocity to solve the
detected conflicts collaborating with the rest of aircraft. The
algorithm presents, as advantages, its low execution time and
its scalability. It can be applied in the pre-departure and flight
execution phase. In the later, an anytime approach is proposed
to resolve the conflicts. This approach yields trajectories whose
quality increases with increase in available computation time.
Therefore, the algorithm can be used with low look-ahead
times although the quality of the solution will not be optimal.

The paper is organized into five sections. The formulation
of the problem is described in Section II. The trajectory de-
confliction algorithm is explained in Section III. Section IV
presents the simulations performed. Finally the conclusions
are detailed in Section V.

II. PROBLEM FORMULATION

The problem considered in this paper is the collision-free
trajectory planning of airspace users in a dense ATM scenario.
A trajectory is defined by a sequence of waypoints. The
aircraft share a common airspace and the separation between
aircraft should be greater than a given safety distance. It
is also assumed that velocity changes are not allowed. The
solution only considers the addition of intermediate waypoints.
After a collision is detected, the problem is solved when
a collision-free trajectory for each aircraft is computed. All
aircraft cooperate to solve the problem changing their initial
trajectory. The information that the system needs in order to
solve the problem is the following:

• Initial trajectory of each aircraft
• Parameters of the model of each aircraft
• Initial location and goal location of each aircraft.
• Look-ahead time to know the available computation time
The objective is to find collision-free trajectories that mini-

mize the probability of having a collision while minimizing the
changes of waypoints for each aircraft. The initial and solution
trajectory should have the same initial and goal locations.

III. PROPOSED TRAJECTORY DE-CONFLICTION
ALGORITHM

This section describes the blocks of the proposed algorithms
to resolve the conflict. First, an algorithm based on axis-
aligned minimum bounding box is implemented to detect
collision. Then, a resolution algorithm based on PSO is
implemented to compute collision-free trajectories.

A. Axis-aligned minimum bounding box for detection

The detection algorithm is based on axis-aligned minimum
bounding box. This technique presents as advantages the low
time of execution and the need of few parameters to describe
the system. On the other hand, it presents two disadvantages:
it is not very accurate and it depends on the coordinate axes.

Each aircraft is represented with two boxes, horizontal and
vertical box, joined in order to detect the conflicts (see Figure
1). Each box is defined by the intersection of three intervals,
one by axis. The measurement of the horizontal box is related
to the minimum horizontal separation between aircraft and
the vertical box is related to the vertical separation. Thus, the
minimum separation, S, between two aircraft is defined by
the dimension of both joined boxes. A collision is detected
when there is an overlapping between the intervals that define
each box. Thus, the 3D problem is reduced to three problems
of overlapping, one in each coordinate. Let us consider the
intervals in one coordinate A = [Ai, Ae] and B = [Bi, Be].
The condition of overlapping for this coordinate is given by:

(Ae > Bi) Λ (Ai < Be) (1)

Figure 1. Detection algorithm based on axis-aligned minimum bounding
box: A and B overlap (collision).

B. Resolution algorithm based on PSO

The trajectory de-confliction algorithm is based on the PSO
method, which is a heuristic global optimization algorithm.
This algorithm was first proposed in [23]. It is developed from
swarm intelligence and is based on the research of bird and fish
flock movement behavior. It works by maintaining a swarm of
particles that move around in the search-space influenced by
both the improvements discovered by the other particles (social
behavior) and the improvements made by the particle so far
(greedy behaviour). Its main advantages are its simplicity, easy
implementation and the existence of few parameters to tune
when comparing with other evolutionary algorithms.

In this paper, we will consider constant speed flights where
the initial position is known and the final waypoint of each
vehicle must be the same as the one in the original plan. There-
fore, this algorithm will generate one intermediate waypoint
for each vehicle so the potential collision is avoided. So, the
goal of this algorithm is to obtain collision-free trajectories
by adding one intermediate waypoint in the trajectory of each
aircraft while minimizing the following cost function:
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J =
N∑
i=1

Li + ωc (2)

where where Li is the total length of trajectory ith, N
is the total number of aircraft in the system and ωc is the
collision penalty that will be added if the new trajectories still
lead to collisions in the system. This function can be easily
modified in order to take into account energy analysis and
other operational costs.

The algorithm implemented is based on in [24]. Let S be
the number of particles in the swarm, each having a position
xi ∈ <n in the search-space and a velocity vi ∈ <n. Let
pi be the best known position of particle i and let g be the
best known position of the entire swarm. In first place, the
swarm is initialized by assigning random initial locations and
velocities. A uniform distribution in the search space has been
chosen for this step.

Then the exploration loop is executed. In each iteration, both
the position and the velocity of each individual is updated
by applying the formula indicated in steps 10 and 11 (see
Algorithm 1). The most important parameters in this formula
are the social weight (φg) and the local weight (φp). rg and
rp are vectors where each component is generated at random
with a U(0, 1) distribution. xi and vi are the position and
velocity of individual i, pi is the best position of particle i so
far and g is the best position found so far. Local and global
best positions are also updated if necessary (steps 13-15).

The exploration loop can be ended by using many differents
termination criteria. In this paper, the algorithm concludes
when the loop is repeated a determinate number of times.
However in real-time approaches other criteria can behave
better. Among these criteria a timeout condition and a con-
vergence condition (most of the individuals lay in to a tight
region of the search space) are the common approaches.

Last, the two main parameters (φg and φp) have been tuned
by performing several tests with the same conditions and
only changing one parameter at a time. These parameters are
usually selected in the interval [0, 1]. In our case, the best
values found were φg = 0.9 and φp = 0.1.

IV. SIMULATIONS

A comprehensive set of simulations have been carried out
to validate the proposed method. Also, a random generation
proccess of the test considered has been performed to evaluate
the proposed method.

A. Test set design

The definition of a metric play on important role to evaluate
the results. In cases of difficult path or motion planning
problems for one only mobile object, there are some de facto
benchmark standards in the academic context, like the bug
trap or the alpha test [25]. However, this is not the case when
dealing with multiple object planning.

In this paper, a test set has been developed in a given
scenario to validate the proposed method and to provide a

Algorithm 1 Basic PSO algorithm
1. for Each particle do
2. Initialize particle position xi with the desired proba-

bility function
3. Initialize particle best position pi ← xi
4. If f(pi) < f(g) update the swarm best position g ←

xi
5. Initialize the velocity vector vi. An uniform distribu-

tion is usually used.
6. end for
7. repeat
8. for Each particle do
9. Pick random numbers rg rp with U(0, 1)

10. Update the particle’s velocity:
vi ← ωvi + φprp(pi − xi) + φgrg(g − xi)

11. Update the particle’s position: xi ← xi + vi
12. if f(xi) < f(pi) then
13. Update the particle’s best known position
14. if f(xi) < f(g) then
15. Update the swarm’s best known posi-

tion g ← xi
16. end if
17. end if
18. end for
19. until A termination criterion is met

way to measure the properties of the method regarding time of
execution, optimization and level of scalability with number of
vehicles. Furthermore, the test set and the design methodology
can be useful for comparison with other methods developed.

The scenario has a base of 50 × 50 dimensional units.
Different problems are defined considering the same scenario,
as well as the same random problem generation process. Each
problem is formulated as a set of entry and exit points located
in one of the lateral sides of the scenario.

The adopted strategy is regressive. Random candidate so-
lutions are generated and the problem is defined using them
when they are found.

The random generation process of the tests is performed
following the Algorithm 2. For each vehicle, an entry side
is randomly chosen, selecting a uniformly random number
between 1 and 4 (line 4). Then, the exit side is randomly
selected from the resting 3 sides (line 5). Entry and exit points
are randomly selected from the corresponding side (line 6). A
certain number, M , of intermediate waypoints inside of the
scenario along with the entry and exit points define the flight
plan.

The algorithm (see line 8) should ensure the following:
• The solution is valid, i.e. vehicles do not collide
• The initial plans generate a conflict, i.e. the vehicles

initial plans lead to collision
The test set consists of 90,000 different problems grouped

by the number of vehicles involved, from 2 to 10, in subsets of
10,000 tests. This classification, using the number of vehicles,
is useful to study the scalability characteristics of the method.
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Algorithm 2 Random test generation algorithm
1: for each test do
2: while test is not valid do
3: for each aircraft do
4: Choose a random entry side
5: Choose a random exit side from the resting 3
6: Choose entry and exit points from the correspond-

ing entry and exit sides
7: Add M random intermediate waypoints
8: Check for the flight plan validity
9: end for

10: end while
11: end for

B. Simulations results

Many simulations have been carried out from the test set.
The tests have been performed in the same computer and under
the same conditions. The results are shown in order to check
the properties of the trajectory de-confliction algorithm.

The algorithms have been run in a PC with a 2GHz Dual
Core processor and 2 GB of RAM. The operating system used
was Kubuntu Linux with kernel 2.6.32. The code was written
in C++ language and compiled with the gcc-4.4.1.

The minimum horizontal separation between aerial vehicles
in XY plane is Sxy = 0.8m. The dimensions of the scenario
are 50m × 50m. The number of intermediate waypoints, M ,
is set to 1. Two hundred tests have been performed for each
subset.

First, we analyzes the relation between the time of execution
and the number of iterations performed, and its dependence
with the number of vehicles (see Figure 2). The slope usually
depends on the number of vehicles and the relation is linear
and additive, so each iteration should have the same compu-
tational cost.

Figure 2. Time of execution vs. number of iterations depending on the
number of vehicles.

Figure 3 shows the evolution of the minimum costs with
the iterations. The proposed method finds a better solution as
time passes, i.e. a smaller cost each iteration. The median of
the minimum costs computed in the population of all the tests
have been chosen as statistical indicator.

Figure 3. Median of minimum cost throughout successive iterations.

This indicator indicates how much time it would cost to
achieve a solution with certain level of optimality. This relates
the cost in a given iteration to the obtained minimum cost in
the corresponding problem.

Table I shows the mean time of execution and the mean cost
computed after 100 iterations and depending on the number
of vehicles.

Table I
MEAN TIME OF EXECUTION AND MEAN COST CONSIDERING 200

SIMULATIONS FOR EACH NUMBER OF VEHICLES.

Vehicles Mean Time of execution (s) Mean Cost (m)
2 110.114 90.233
3 166.735 136.353
4 199.668 181.769
5 254.527 222.778
6 290.975 266.107
7 310.634 313.713

Figure 4 shows a normalization of the cost against the
number of iterations. A line that marks the required number of
iterations to compute for a 90% level of optimality is drawn.
If the test set is executed in the same computer where the user
has installed the proposed method, Figure 2 will provide an
estimation of the time needed for that number of iterations,
and therefore, that level of optimality.

For the cost normalization, a linear transformation, f(x) =
ax+ b, is applied to the actual cost values to set them in the
range [0,1]. Therefore a and b are chosen in such a way that
the maximum cost equals to 1 and the minimum cost equals
to 0. Therefore,

a =
1

Costmax − Costmin
(3)

b =
Costmin

Costmin − Costmax
(4)

Depending of the number of vehicles, a solution of great
quality, 90%, is computed between 15 or 35 iterations. This
means that this kind of solutions can be computed in less
than one minute. This characteristic is important to apply this
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Figure 4. Normalized cost throughout successive iterations. The line marks
the 90% optimality.

trajectory de-confliction algorithm in the flight execution phase
even when the look-ahead time is of few minutes. Moreover,
the trajectory de-confliction algorithm based on PSO presents
better results than the algorithm based on genetic algorithms
presented in [26].

As an example of the general operation of the proposed
method, Figure 5 shows the evolution of the solution trajecto-
ries of three vehicles. The possible solution trajectory of each
vehicles in a given iteration (1, 10, 30 and 60) is shown. The
trajectories obtained in the same iteration are represented with
the same line colour. Note that this algorithm leads to shorter
trajectories as the evolution goes on.

Figure 5. Evolution of solution trajectories with 3 vehicles throughout various
iterations: 1th in green line, 10th in blue line, 30th in black line and 60th
iteration in red line.

Figures 6, 7, 8, 9, 10 and 11 show the study of the anytime
approach using PSO by considering two hundred simulations
in each case. The results can be compared with the data shown
in Figures 1 and 2, and Table I. Thus, the advantage of this
approach can be observed because one good quality of solution
can be obtained before one hundred iterations. The solution
is reported in ten instants. The time of execution depends on
the number of vehicles and the quality of solution improves as
the time increases, that is, anytime approach yields trajectories
whose quality increases with increase in available computation
time. For example, look-ahead times of few minutes can be

considered to resolve conflicts among seven aircraft.

Figure 6. Anytime approach with two aircraft.

Figure 7. Anytime approach with three aircraft.

Figure 8. Anytime approach with four aircraft.

V. CONCLUSION

In this paper, we have presented a strategic trajectory de-
confliction algorithm based on a stochastic optimization tech-
nique named Particle Swarm Optimization that can be applied
during the pre-departure and the flight execution phases. The
conflicts detected are resolve cooperatively and only changes
of the heading of the aircraft are allowed. The algorithm has
been validated with many simulations performed in different
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Figure 9. Anytime approach with five aircraft.

Figure 10. Anytime approach with six aircraft.

Figure 11. Anytime approach with seven aircraft.

scenarios and several studies to analyze the characteristics of
the algorithm.

The main advantages of the algorithms are their low time
of execution and scalability for the applications proposed.
In fact, the presented algorithm improves continuously the
result from a very fast first solution and results considering
an anytime approach are presented. Therefore, the algorithm
can be adapted to different applications that require different
response times.

Future is the validation of these techniques with a larger
number of aircraft (up to 10) and to performin real experiments
in the CATECs testbed. Also the proposed method will take

into account 4D trajectories considering times of arrival to
waypoints.
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