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Abstract — General Aviation (GA) pilots are responsible to stay 
well-clear of other traffic and avoid conflicts. This paper outlines 
a research that is aimed to enlarge the time horizon over which a 
GA pilot can solve a conflict. This is done by moving beyond 
state-based predictions to intent-based predictions of flight paths. 
The idea is to use a stochastic filter with a dynamical model that 
embeds a notion of flight intent. This flight intent can either be 
estimated by comparison to a statistic of recurring GA flight 
patterns or by using intents that are shared prior to flight. A 
preliminary assessment of the prediction concept showed 
promising results: the algorithm is capable of producing realistic 
longer-term predictions, also in the presence of turns and sudden 
changes of the pilot’s flight intent.  

Keywords: General Aviation; trajectory prediction; traffic 
awareness; conflict management in unmanaged airspace.  

I.  INTRODUCTION 

This paper presents the midterm results of the SESAR WP-
E project ProGA. ProGA investigates the concept of providing 
pilots of light General Aviation (GA) aircraft with an electronic 
representation of the estimated location of surrounding traffic 
several minutes ahead in time. In scope are aircraft used for 
non-commercial operations in Visual Meteorological 
Conditions (VMC) that are other-than-complex, according to 
the European Commission basic regulations. The goal of the 
provision of this information is to increase the situational 
awareness of the pilot and improve predictability of areas with 
high traffic densities. 

ProGA is to be used by GA pilots in airspace classes where 
no separation services are provided by ATC. Enlarging the 
time horizon over which a GA pilot can solve a conflict with 
airborne traffic increases the probability of conflicts being 
properly managed. The time horizon is enlarged by moving 
beyond state-based predictions (as used by electronic devices 
and pilot visual observation) to intent-based predictions.  

The paper is organised as follows: Sec. II frames the 
problem of predicting the future trajectory of a moving aircraft 
in the GA context, focusing on the benefits that a large 
prediction timeframe will lead to and reviewing the existing 
methodologies to tackle state-based predictions; Sec. III 

explains why it is difficult to cast predictions over a large 
timeframe and introduce intent-based predictions; Sec. IV 
investigates the idea of exploiting recurring GA patterns to 
statistically characterise pilots’ intents whenever these cannot 
be employed for the predictions; Sec. V illustrates and offers a 
preliminary assessment of ProGA prediction concept; finally, 
Sec. VI briefly looks into the next steps of the project, while 
Sec. VII draws some final conclusions. 

II. SUPPORTING NAVIGATION THROUGH TRAFFIC 

MONITORING AND/OR PREDICTION 

A. GA community needs and wishes 

The GA-community has expressed their wish to have traffic 
data displayed on moving map applications [1]. It is also clear 
that the community wants to operate flexibly without any pre-
agreed trajectory [2]. On the other hand, predictability of the 
surrounding-traffic behaviour will have favourable safety 
effects. ProGA aims at providing information on the expected 
surrounding-traffic behaviour without letting the GA 
community wishes out of sight.  

B. Benefits of a large-timeframe prediction 

In some airspace classes the airspace user is responsible for 
operating well clear of other traffic; ATC does not provide a 
separation service. The pilot accomplishes the task of operating 
well clear mainly by the well-known see-and-avoid principle. 
The pilot has to use visual observation to detect other traffic, 
and if necessary make adjustments to the flight path to keep 
well clear - in doing so the pilot predicts the short-term future 
location of other traffic.  The see-and-avoid principle is known 
to have limitations however (see e.g. [3]). 

ProGA will enable a larger timeframe for the prediction of 
the future location of surrounding traffic and provide that 
information to the pilot via an electronic device. Using the 
information provided by ProGA a pilot can therefore stay well 
clear of other traffic without the need of a continuous visual 
acquisition on that same traffic. It is expected that risks of 
conflicts can be detected minutes before an actual encounter 
will take place, increasing the time horizon in which the 
conflict needs to be solved.  
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Reduction from multi-aircraft to single-aircraft scenario 

We will hereafter focus on the problem of estimating and/or 
predicting the position of a single aircraft that does not interact 
with any potential surrounding traffic. This approach is 
justified by the evolution of two GA aircraft being only weakly 
coupled. Indeed, they can in principle operate freely and are 
solely responsible for determining their own flight path. 

 Once that problem is solved for a single aircraft, the 
information about the current and/or future location of each 
aircraft can be broadcasted to each agent, enabling the 
electronic visibility of current and future traffic configurations, 
i.e. traffic-monitoring and traffic-prediction functionalities. 
However, the last step is not covered hereby since it involves 
considerations about the system architecture that are still under 
investigation within the ProGA project.  

C. Typical strategies for tackling the single-aircraft 
prediction problem, state-based predictions 

Stochastic Filters (SFs) are often employed in applications 
demanding estimates and/or predictions of unknown quantities 
that may evolve over time. In the case of an aircraft, the set of 
those quantities generally comprehend, but is not limited to, 
aircraft position and speed. In other words, SFs can be used to 
obtain estimates/predictions of the aircraft kinematic state. 

SFs return estimates/predictions in the form of a Probability 
Density Function (PDF) on the feasible values of the aircraft 
kinematic state. A SF is an iterative update scheme: the PDF 
describing the aircraft kinematic state at time ݐ is projected 
some steps ahead in time through a dynamical model (a 
stochastic equation for the aircraft motion) to obtain the so-
called prior; next, an observation model (an equation for the 
noisy measurements of the aircraft kinematic state) is used 
along Bayes’ Theorem [4]-[7] to update the prior and obtain 
the so-called posterior. Fig. 1 outlines the general design of a 
SF. 

In a SF the dynamical model is appointed to keep the last 
available PDF and the next measurement of the aircraft 
kinematic state up-to-date; technically, the filter prediction is 
the prior obtained this way. However, the process of projecting 
ahead in time a PDF will generally spoil its qualities of 
smoothness or sharpness. Therefore, the prior must be further 
processed to try and make it as smooth and sharp as possible. 
That operation is performed via Bayes’ rule and a measurement 
of the aircraft kinematic state. Since in principle that 
measurement may be affected by some error (noise) and/or not 
cover all the components of the kinematic state, the method is 
completed by an observation model to clear out the noise 
and/or compensate the incompleteness of the measurement. 

As previously explained, SFs work according to the 
following paradigm: PREDICTION > PRIOR > UPDATE > 

POSTERIOR. The prediction phase computes the prior based on a 
dynamical model of the flight evolution and the last computed 
posterior. Since the current kinematic state of the aircraft is in 
general the only ingredient of the dynamical model, we will 
hereafter refer to those predictions as state-based predictions. 

 
Figure 1.  Iterative update scheme of a SF. 

D. State-based estimates/prediction in air traffic applications 

The large majority of research papers about SFs applied in 
air transportation contexts are dedicated to commercial 
aviation. On the one hand, this is symptomatic of the scarce 
attention the scientific community has paid so far to the GA 
domain; on the other, it suggests that the characteristics of GA 
flights make the prediction of their future evolution a very hard 
task to perform. 

Sequential Monte Carlo techniques are SFs extensively 
used in air traffic applications to address the non-linearity of 
the aircraft dynamics, see [8] and [9]-[12]. A very interesting 
algorithm for multi-aircraft trajectory prediction is the so-called 
Sequential Conditional Particle Filter (SCPF), introduced in 
[13] and [14], which is able to provide very accurate estimates 
of both aircraft positions and global wind field.  

None of the filters previously referenced can be used in 
light GA contexts, because they assume an aircraft dynamics 
specific to commercial flights – for example, SCPF includes 
the action of a high-precision flight management system. To 
the best of our knowledge, the only application of stochastic 
filtering to the trajectory prediction of a light aircraft is [15]. 

III. FROM STATE-BASED TO INTENT-BASED PREDICTIONS 

A. Time limitations to state-based predictions 

In Sec. II.B we have illustrated the benefits that large 
prediction timeframes can have for the GA community. 
However, it is quite challenging to infer the position of an 
aircraft over time intervals of such an extension.  

As mentioned previously, the output of a state-based 
prediction will not be in general a smooth and sharp PDF over 
the aircraft kinematic states. As the prediction timeframe 
increases, the prior will rather spread over a larger and larger 
region of kinematic states. In other words, the uncertainty that 
affected the previous estimation of kinematic state will 
propagate over successive time steps and grow ever larger.  

Figure 2.  shows an aircraft executing a manoeuver, the 
trajectory it is expected to follow in the near future, and the 
uncertainty that affects the predicted trajectory. More in detail, 
Figure 2.  assumes as in [15] that the aircraft is flying at 
(nearly) constant altitude and that its position follows a 
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Gaussian law; the sequence of means and 3ߪ-regions at 
successive steps are represented by solid and dotted lines, 
respectively. 

Let us now suppose an aircraft is flying at fixed altitude and 
with constant speed; suppose that both position and speed are 
known with infinite precision so that the only uncertainties 
about the future evolution of the flight are represented by the 
potential manoeuvers that the pilot may perform. In absence of 
further information, the best assumption is that the aircraft 
motion will not change, because for each manoeuver there 
exists another one that produces the opposite effect, and there 
is no reason to infer that a manoeuver is more probable that its 
opposite. However, the pilot is actually bound to perform at 
least one manoeuver somewhere in the future, i.e. when he/she 
will eventually land.  

Although for short time-periods it is perfectly legitimate to 
assume that the aircraft will keep on flying in the same way it 
has done in the recent past, for large time-horizons the very 
same assumption is likely to produce large errors. Figure 2.  
sketches the situation: the true future evolution of the aircraft is 
drawn in purple, whereas green and orange represent two 
trajectory predictions casted under the assumption that the 
aircraft kinematic-state will not change. As expected, the error, 
i.e. the distance between true and forecasted position, increases 
with the size of the prediction timeframe. 

All in all, state-based predictions may prove themselves 
quite unsatisfactory if casted over a large timeframe. Focusing 
only on the expected future location of the aircraft, we may 
experience that true and expected position are quite distant 
from each other; conversely, if we consider the uncertainty that 
affects the forecasted position, we may obtain a volume 
occupied by the aircraft with high probability, e.g. 90%, that 
has the unfortunate property of being so large to be practically 
meaningless. 

B. Extending the prediction timeframe, intent-based 
predictions 

In the previous subsection we have explained the time 
limitations to state-based predictions. In particular, we have 
highlighted how casting a prediction over an increasing time 
horizon may quickly lead to large errors, or, if volumes are 
considered to compensate the increasing uncertainty, to 
expected occupied-volumes that are so large to be meaningless. 
Both issues do not arise from any inadequacy of the dynamical 
model used in state-based predictions, but rather from the high 
uncertainty that is introduced by the complete lack of 
information about the pilot intent. 

The motion of a flying aircraft can be described with 
different levels of precision, e.g. by a simple coordinated-turn 
model or as the motion of a three-dimensional object in a fluid 
(Navier-Stokes equations). Complex dynamical models may 
lead to more precise estimates/short-term predictions of the 
flight because they can capture more characteristics of the 
aircraft physical motion. However, all those details are like 
noise added to a sort of flight plan when the whole duration of 
the flight is considered.  

 
Figure 2.  True future trajectory of the aircraft (top) and state-based 

prediction casted over short and long timeframes (resp. middle and bottom). 

Shifting the focus from short-term to long-term predictions, 
the aircraft dynamics becomes less and less significant while 
the pilot’s intent gains importance. If observed over a short 
time-scale, the evolution of a flight looks in fact like driven by 
its kinematic state; on the contrary, over a large time-scale the 
pilot’s input appears as the dominant contribution to the 
evolution of the flight. 

Earlier stages of ProGA project demonstrated how planning 
a flight in advance is a common habit among the GA 
community when flying VFR in uncontrolled airspace. In 
particular, what emerged from the discussion of distinctive 
features common to all GA flown paths is that, at least during 
the planning phase, a GA path is a “sequence of straight legs”, 
see [16]. Due to external factors as wind, air traffic, or 
visibility conditions, the realisation of a flight can be in fact 
quite different from the initially planned route, which will be 
hereafter called flight intent. 

The existence of flight intents is of crucial importance to 
the design of a system that could cast predictions about the 
flight execution over a large timeframe. Indeed, let us imagine 
implementing a SF where the dynamical model embeds a 
notion of flight intent. In this respect, one component of the 
aircraft kinematic state is the flight intent, and we no longer 
speak of state-based predictions but of intent-based 
predictions. We expect that intent-based predictions will suffer 
less from the issues detailed in Sec. III.A, allowing an 
extension of the prediction timeframe. 

C. Flight intent, declarations vs. estimation 

Casting intent-based predictions requires knowledge of the 
flight intent an aircraft is following. That information can be 
either known in advance (e.g. if the pilot compiles and shares 
it), but it may as well be not available (e.g. if the pilot compiles 
but does not share it). Thus, we need to find a surrogate to the 
intent whenever the pilot does not make it available. Yet the 
flight intent may be available but prove itself not trustworthy 
(e.g. the pilot partially or totally disregards it, either prior to 
take-off or during the flight execution). Therefore, we also 
need a way to check whether the declared intent, if any, is in 
accordance with the kinematic state of the aircraft. 
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In our view, the missing information of non-declared flight 
intent can be replaced by a statistical characterisation of the 
paths typically flown in a given area by GA aircraft, see Sec. 
IV. Checking whether an aircraft is following a given flight 
intent (or its statistically-derived counterpart) is performed 
within a Bayesian framework, see Sec. V.A. The performance 
of the new prediction concept will be studied through 
numerical experiments in Sec. V.B. 

We would like to stress that estimating the flight intent is a 
very difficult problem, highly dynamic and complex at the 
same time. Moreover, the flight intent is planned by the pilot in 
such a way to connect special geographical points and/or 
elements (e.g. the location of VORs as well as the direction 
defined by rivers, motorways, etc.); therefore, the flight intent 
is an aspect of a GA flight that is strongly local, in the sense 
that it is highly dependent on the geography of the area 
overflown. Thus, the idea of attaining the flight intent through 
a statistical survey of the typical GA local paths may prove 
itself a valid trade-off between the complexity and the efficacy 
of the overall intent-based prediction-concept. 

IV. FLIGHT INTENT AND GA RECURRING PATTERNS 

A. Recurring patterns in GA 

In Sec. III.C we have introduced the idea of replacing the 
flight intent with a statistically derived analogue whenever the 
former is not available or cannot be relied upon. Where does 
that idea come from? Ref. [16] shows an analysis of the way 
GA flights are typically conducted and, in particular, it 
suggests the existence of recurring GA patterns. Such patterns 
are the consequence of the common navigation methods that 
any pilot learns when training in preparation for getting his 
Private Pilot License [22]. These definite paths, typically flown 
by a local GA community, arise as a direct consequence of the 
airspace structure and the location of the reference elements 
(VORs, geographic landmarks, rivers, roads, etc.) commonly 
used by pilots to outline the flight intent and help the 
navigation. 

B. Statistical database of recurring patterns 

The relationship between flight intents and GA recurring 
patterns is twofold. On the one hand, any flight intent can be 
thought of as a recurring pattern because it is planned 
following the very same criteria that let recurring behaviour 
arise. On the other hand, recurring pattern can be regarded as 
flight intents because, if no information is available about the 
pilot intentions then, statistically speaking, the best assumption 
about the evolution of a flight is that it will follow one of the 
paths commonly flown by the local GA community. 

The idea underlying ProGA is then the following: if we 
manage to acquire sufficiently many flight traces recorded by a 
Global Navigation Satellite System (GNSS) then we may build 
up a statistical description of GA recurring patterns in a given 
area. That statistical description is a set of couples ሺݐ, ߳ሻ, where 
 is a reference trace, i.e. a statistically inferred analogue of a ݐ
flight intent, and ߳ is a measure of how much a flight trace 
typically deviates from ݐ; Sec. IV.C will show a potential 

method to obtain such a statistical description of GA recurring 
patterns. 

Once the statistical database of known GA patterns is 
available, the reference traces are a valid surrogate of the flight 
intent whenever the latter is not made available or cannot be 
relied upon. Moreover, should the deployment of ProGA 
introduce a flight-trace recording functionality, the capability 
of the statistical database to describe recurring GA patterns 
could be continually improved and increased. However, this 
last point may present some privacy and acceptance issues, so 
it is still under investigation. 

C. Statistical analysis of recurring patterns 

This section briefly introduces some statistical techniques 
that may lead to the creation of a statistical database out of a set 
of GNSS traces. The idea is based on a clustering of the 
observed trajectories, and [17] applies the technique to radar 
tracks in a terminal radar approach control. Unfortunately, the 
scarceness of available GA flown traces makes not possible 
any quantitative validation of the method illustrated hereafter. 

Let us consider the case study of a GNSS trace flown in 
France between Saint-Cyr-l’École (LFPZ) and Bernay (LFPD). 
The cruise altitude is nearly constant throughout the flight, so 
the following analysis is carried out as if the aircraft motion 
occurred in a plane. Figure 3.  presents a change-point analysis 
[18] of the aircraft track (measured in radians with respect to 
the East) over the whole flight duration; the red horizontal line 
has the meaning of average aircraft track, thus discontinuities 
in this line are associated to turning points. Superimposed to 
the initial path, the position of the turning points and the 
straight legs connecting them are depicted in Figure 4. . The 
last analysis can be generalised to the case of an aircraft not 
flying at constant altitude using multivariate1 change-point 
techniques, e.g. [19]-[20].  

Once the GNSS trace have been processed like in the 
example above, it is possible to classify a whole dataset as 
follows. After running a clustering analysis [21] of the turning 
points, each class is formed by the traces that can be 
represented as a sequence of turning points that fall within the 
same clusters. Next, the representative of each class, i.e. the 
reference trace, can be chosen, for example, as the polyline 
constructed by joining the centroids of consecutive clusters of 
turning points. Further, by measuring the distance between the 
elements in each class and the class representative, a 
probabilistic characterisation of the typical deviations from the 
reference trace can be derived. 

The classification above is a way to produce a statistical 
description of GA recurring patterns, i.e. conduits of airspace 
that are likely to be flown in. The classification procedure may 
be refined to include as many factors as desired, e.g. period of 
the day, season, wind conditions, traffic density, etc.; it is more 
than reasonable to expect that such a refinement should 
improve the statistical description of GA recurring patterns. 

                                                           
1 It is indeed well known that two angles are sufficient to characterise an 
arbitrary direction in the three-dimensional space. 
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Figure 3.  GNSS trace used as a case study. 

 
Figure 4.   Estimation of the flight intent resulting from the change-point 

analysis. 

V. PROGA INTENT-BASED PREDICTIONS 

A. Prediction concept 

ProGA introduces a modular prediction concept, which 
combines all the elements discussed above, namely, a statistical 
database of GA recurring patterns, a unit for casting state-based 
predictions, and a Bayesian estimator of the flight intent. The 
latter deserves some more elaboration. 

As mentioned in Sec. III.B, we consider a kinematic state 
that is composed by the aircraft position, speed, and flight 
intent. The flight intent is not bounded, in fact, to be constant 
over time, so it makes sense to include it in the aircraft state. 
As a consequence, the PDF describing the aircraft state is a 
joint distribution ܲሺݔ,   are the properݐ  andݔ ሻ, whereݐ
kinematic state (position and speed) and the flight intent at 
time ݇, respectively. Please note that the variable ݐ takes 
values on the union of the declared flight intent, if any, and the 
recurring GA patterns contained in the statistical database we 
have discussed in Sec. IV. 

Let ݖ be the observation of the aircraft kinematic state, ݔ 
(e.g. a GNSS signal carrying the aircraft position and speed). 
The formula of conditional probability yields 

ሺ1ሻ								ܲሺݔ, ሻݖ	|	ݐ ൌ ܲሺݔ	|	ݖሻ	ܲሺݐ	|	ݔ,  .ሻݖ
Since the observation ݖ is a function of the true state ݔ, 

														ܲሺݐ	|	ݔ, ሻݖ ൌ 	ܲሺݐ	|	ݖሻ. 
Therefore, 

ሺ2ሻ							ܲሺݔ, ሻݖ	|	ݐ ൌ ܲሺݔ	|	ݖሻ	ܲሺݐ	|	ݖሻ. 
The importance of (2) is that ܲሺݔ	|	ݖሻ is the posterior at 

time ݇ returned by a SF like the one presented in [15]. The 
factor ܲሺݐ	|	ݖሻ is computed using  

ሺ3ሻ							ܲሺݐ	|	ݖሻ ൌ 	
ܲሺݖ	|	ݐሻ	ܲሺݐିଵ	|	ݖିଵሻ	

ܲሺݖሻ
 

and the model 

ሺ4ሻ							ܲሺݖ	|	ݐ	ሻ ൌ
expሾെߚଵ߂ െ ሿ߆ଶߚ

ܼ
	, 

where ߚଵ,ଶ are suitable constants, ܼ is a normalisation factor, 
  is the Euclidean distance between the aircraft observed߂
position and ݐ, and ߆ is the angle between the aircraft 
observed track and the leg of ݐ that is closest to the aircraft 
position.  

Model (4) penalise those flight intents that are too distant 
from the current kinematic state by assigning them an 
exponentially small weight. In other words, if the aircraft 
position is too far away from a potential flight intent ݐ, or if 
the track of the aircraft and that of the intent are diverging, 
model (4) will consider ݔ too large a deviation from the 
intended trajectory ݐ and penalise the event that the aircraft is 
actually following ݐ. 

Figure 6.  summarises the ProGA prediction concept. 
GNSS traces of flown paths are acquired and processed offline 
as discussed in IV.B-C; the result is a statistical 
characterisation of GA recurring patterns. During the in-flight 
phase, the unit deputed of casting state-based predictions takes 
care of continually estimating the aircraft position and speed 
by filtering a signal-in of GNSS type. Since ܲሺݖሻ in (3) can 
be treated as a normalisation factor, it is possible to sample 
from the joint prior ܲሺݔ,  ሻ using (2)-(4). Each sampleݖ	|	ݐ
can be propagated ahead for as many steps as desired by the 
dynamical model outlined in Figure 5.  and detailed below. If 
sufficiently many samples are drawn and simulated, the 
expected future trajectory can be reconstructed via Monte 
Carlo techniques. 

The dynamical model used to simulate the aircraft motion 
embeds the flight intent, which drives the evolution of the 
flight. At time ݇, let ,   be respectively the aircraftݐ	and	,ݍ
position and speed (three dimensional vectors), and the flight 
intent (a three dimensional polyline); let the flight intent ݐ be 
a sequence of adjacent segments, and let ݓ be the segment 
composing ݐ that minimise the distance from the aircraft 
position, ; finally, let ݓෝ be the unit length vector aligned 
with the segment ݓ. 

The aircraft motion is described by the following discrete-time 
model: 

p୩ାଵ ൌ p୩  q୩  ν୩
q୩ାଵ ൌ |q୩|ሺ1  ω୩ሻ ∙ wෝ୩

	, 
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where ν୩ is a Gaussian perturbation acting on the plane 
orthogonal to wෝ୩, |q୩| is the module of vector q୩, and ω୩ is a 
zero-mean Gaussian noise.  

The evolution of the aircraft position, p୩, and role played by 
the term ν୩ are illustrated in Figure 5. . The velocity ݍ 
produces a reference displacement that is in accordance with 
the flight intent, in the sense that it is along the direction of the 
closest leg composing the intent. The length of the reference 
displacement is variable because of the presence of the 
Gaussian noise ω୩, which models small intrinsic fluctuations 
in the cruise speed. The reference displacement is summed to 
a Gaussian perturbation, acting orthogonally to the 
displacement itself, which models natural fluctuations from 
the originally intended trajectory. 

B. Numerical Experiments 

In this subsection we present a preliminary assessment of 
the ProGA prediction concept through some numerical 
evidences. The experiments presented in this section focus on 

1. intent-based predictions when the flight intent is 
declared and actually flown; 

2. the capability of equation (3) above to 

a. discover unknown flight intents; 

b. cope with changes in the intent being flown. 

 

Figure 5.  Intent-based prediction: dynamical model. 

 
Figure 6.  Outline of ProGA prediction concept. 

Figure 7.  shows a GNSS trace from a flight that took place 
in the South of Belgium between Courtrai and Liège. An 
expert GA pilot has estimated the flight intent used for the 
experiment through operative considerations. Figure 8.  
displays the outcome of the prediction algorithm when 
initialised with a state picked at random from the trace in 
Figure 7. . The path flown is drawn in black; the yellow point 
marks the starting position at time ݐ; the particle clouds in 
green, red, cyan, and magenta shows the volume that is 
expected to be occupied by the aircraft after 5, 10, 15, and 20 
minutes, respectively.  

A thick magenta dot, partially hidden by the cloud of 
particles, marks the true position of the aircraft after 20 mins. 
The green, red, and cyan clouds hide the corresponding true 
position, which is well inside the forecasted volume. 
Repetitions of the experiment outline that the probability of 
the true position being far from the centroid of the forecasted 
volume less than 1 km is about 50%. Moreover, the prediction 
algorithm works well in presence of a turn, which is a critical 
issue according to the analysis put forward in Sec. III.A. 

Experiments 2a and 2b consider a set of six GNSS traces 
recorded west of Paris between Saint-Cyr-l’École and Bernay 
(Figure 9. ). Associated to the traces there are four different 
flight intents: “Ref1”, “Ref2”, “Ref3”, and “Ref4”, which refer 
to the flight intent of the dark red, dark blue, green, and orange 
traces, respectively. Those intents have been validated by 
means of the change-point analysis illustrated in Sec. IV.C and 
through the operative considerations detailed in [16]. 

The result of experiment 2a is presented in Figure 10. . 
Here the pilot flies according to intent “Ref3” without 
declaring it. The estimator is started with uniform knowledge 
(25% of probability assigned to each flight intent). “Ref2” is 
immediately penalised being “far” from the flown trace; 
accordingly, the probability of “Ref2” being the true flight 
intent quickly vanishes. The remaining flight intents are 
initially given roughly the same probabilistic weight. After a 
while, “Ref1” starts diverging from “Ref3” and “Ref4” and the 
probability of the red intent quickly vanishes as well. The 
subsequent yellow probability peak is due to a local, transient 
configuration of “Ref3” and “Ref4” with respect to the flown 
path. This situation can be partially avoided by a careful tuning 
of the estimator parameters βଵ	and βଶ (see Sec. V.A). Finally, 
when “Ref4” diverges from “Ref3”, the estimation converges 
to the true value. The experiment hence shows the capability of 
the estimator to discard with relative ease those flight intents 
that are obviously unlikely of being flown. At the same time, 
the behaviour of the estimator is sufficiently conservative not 
to exclude those flight intents that are similar to the flown path. 

Experiment 2b (Figure 11. ) shows what happens if an 
imaginary pilot declares intent “Ref3” but flies “Ref4” instead. 
Due to the initial knowledge of the flight intent, the prior is set 
to 97% of probability mass to “Ref3” and 1% of probability 
mass to the remaining intents. As at the beginning “Ref3” and 
“Ref4” are very close and run parallel to each other, the 
estimator gives high confidence to the hypothesis that the pilot 
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is really flying “Ref3”. However, as soon as the flight path 
gets away from “Ref3”, the algorithm quickly catches the 
change and adjusts the prediction giving around 100% of 
probability to “Ref4”, the intent actually flown. 

All in all, experiments 2a and 2b demonstrate the capability 
of the algorithm to cope well with missing or wrong 
information about the flight intent. Moreover, the estimator is 
quick in the response and adjusts itself to sudden changes in the 
flight intent actually followed. 

VI. HOW PROGA MAY SUPPORT PILOT’S OPERATIONS 

The ProGA prediction concept has the great advantage of 
being highly modular. Each module displayed by Figure 6.  
contributes to the prediction of the future evolution of a 
single-aircraft, the core functionality of ProGA. Sec. II.B has 
illustrated why it is important for a GA pilot to have 
knowledge of the likely evolution of nearby flights. Some 
modules may have standalone uses, though, which we list in 
the following. 

 
Figure 7.   GNSS trace used for experiment 1. 

 
Figure 8.   Outcome of the particle filter for the long-term prediction. The 

yellow dot is the initial position of the aircraft. Four clouds of particles show 
the forecasted occupancy volume after 5, 10, 15, and 20 (resp. green, red, 
cyan, and magenta). The true position is always wel inside the forecasted 
volume. Repeated trials show that the median distance between true and 

expected position (cloud centroid) is about 1 km. 

 
Figure 9.   GNSS traces used for experiments 2a and 2b. 

With reference to Figure 6. , the unit deputed to casting 
state-based predictions can be also used to monitor the traffic 
situations since it continually estimates the kinematic state of 
each aircraft. The position and track of each aircraft can be 
therefore employed to bring in the cockpit electronic visibility 
of surrounding traffic; further, this unit can detect airspace 
infringements, which may be communicated to the ATC via 
SWIM or recorded for offline safety investigations. The unit 
that estimates the flight intent being flown can be set to flag 
non-typical behaviours, which may be symptomatic of a 
dangerous situation. Finally, the statistical database and the 
GA recurring patterns can be queried during the planning 
phase of the flight to get an idea of which routes are typically 
flown by the local GA community, where the major traffic 
flows intersect, and what airspace volumes are typically more 
congested. In this way the pilot may decide to avoid those 
hotspots or knowingly fly them; in both cases, this is expected 
to result in an increased level of safety. 

VII. CONCLUSIONS 

The present work has detailed some aspects of ProGA, a 
SESAR WP-E project. At the core of ProGA there is the 
collection, the processing and the use of flight data to cast 
long-term predictions about the future evolution of one or 
more flights. The ProGA prediction concept is highly 
modular, and the units contributing to the computation may be 
exploited to support GA pilots both in the planning phase and 
during the execution of a flight. The paper has also presented a 
preliminary assessment of the prediction concept realised 
using real flight data. The experimental results reveal that the 
prediction concept proposed in this paper is really promising 
and worth of further investigation in later stages of the project. 
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Figure 10.   Experiment 2a: no flight intent declared, "Ref3" actually flown. 

 
Figure 11.  Experiment 2b: flight intent "Ref3" declared, "Ref4" flown instead. 
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