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Abstract—The introduction of a new SESAR scenario in
the European Airspace will impact the functioning and the
performances of the current Air Traffic Management (ATM)
System. The understanding of the features and the limits of
the current system could be crucial in order to improve and
design the structure of the future ATM. In this paper we
present some results of the “Assessment of Critical Delay Patterns
and Avalanche Dynamics” PhD project from the ComplexWorld
Network. During this project we developed a model of Air Traffic
Control (ATC) based on Complex Network theory capable of
reproducing the features of the real ATC in three European
National Airspaces. We then developed an optimization algorithm
based on “Extremal Optimization” in order to build efficient
and globally optimized planned trajectories. The ATC model is
applied in order to study the efficiency of this new planned tra-
jectories when subject to external perturbations and to compare
them to the current situation.

I. INTRODUCTION

In the forthcoming year the Air Traffic Management (ATM)
system is expected to manage an increase of traffic load.
Despite the fact that in Europe this increase will be due mainly
to the economic growth of extra- European countries, it is
possible that the actual system will not be able to function
efficiently, i.e. it could not be able to provide safety standards
and performances to every aircraft crossing its airspace. For
this reason a new possible future scenario has been developed
within the SESAR Project [1]. In this future SESAR scenario
each aircraft will be allowed to fly in a less structured airspace,
following trajectories that meet their business needs in terms
of airspace costs and fuel consumption. Moreover such future
scenario should be more “safe”, meaning that the system will
be expected to be more resilient to adverse occurrences and
easier to manage for the Air Traffic Control (ATC). In this
paper we present some of the results of the “Assessment
of Critical Delay Patterns and Avalanche Dynamics” PhD
project from the ComplexWorld Network [2] within the WpE
of SESAR . The aim of this project was to analyze and
model the current ATM system in the framework of Complex
Systems Theory [3], in order to gain a better understanding
on the capacity limits of the system and of the possible
future scenario. Part of the project has been devoted to the
development of an Air Traffic Control Model using a data-
driven approach in which the activity of the controllers has

been modeled as a local optimization process on a network
of navigation points. In the first part we present some major
details of the model and its application to simulations within
the Italian Airspace. We then proceed to introduce a stochastic
optimization algorithm called “Extremal Optimization” [6] and
apply it to the optimization of aircraft trajectories during the
planning process. We will then proceed to use the ATC model
in order to test the efficiency of the new globally optimized
airspace and compare it to the current one. The paper is
structured as follows: in section II we present the ATC model
applied and its capacity limits when applied to a realistic
airspace built using historical data. The validation of the model
using historical data is also briefly described; in section III we
introduce the Extremal Optimization Algorithm applied to the
trajectory optimization problem and then we proceed testing
its resilience to disturbances such as adverse conditions and
departure delays; in section IV we will draw our conclusions.

II. THE MODEL

The agents of our model are the air traffic controllers whose
duty is to provide separation for the aircraft that are crossing
the sector under their responsibility. Each aircraft is supposed
to fly according to a certain flight plan which is a sequence
of navigation points that it has to cross from its origin to its
destination. Whenever a controller spots a conflict, his duty
is to apply the necessary rerouting and deviations in order
to prevent the conflict from happening. The flight plan of an
aircraft will be then a certain path {n1, . . . , nl} over a network
made of navigation points that represents the airways structure.
For sake of simplicity, we assume that every aircraft flies at
a constant speed of 800 km/h that is the average speed of a
scheduled flight. Moreover at this stage we assume that the
system is bi-dimensional, i.e. that every aircraft is flying at
the same flight level and that vertical deviations are not used
for conflict resolution. Note that both these two hypotheses
can be relaxed in order to improve the realism of the model.
Every time an aircraft is crossing one of the navigation points
in its flight plan, the controller in its current sector looks for
conflicts in the segment connecting its next node. Considering
a couple of aircraft flying M and N on two different segments,
say (n1, n2) and (m1,m2) respectively, we indicate with tn
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and tm the times at which they will cross the m2 and n2. The
conflict between these two aircraft is computed geometrically,
requesting that at every point on the segment over which they
are flying their relative distance is always larger than 5 NM
(assuming that every aircraft has the same speed this spatial
threshold can be translated into a temporal one, δt = 40
seconds). There are 4 possible situations, corresponding to
different patterns of the segments over which the aircraft are
flying:
• n2 = m2, i.e. the aircraft are flying towards the same

node (Fig. 1 panel a). Assuming that tm > tn the
condition for the occurrence of a conflict is

|tm − tn| < max

( √
2 δt√

1 + cosα
, δt

)
, (1)

where α is the angle between (m1,m2) and the segment
over which the aircraft N is supposed to fly after having
crossed n2.

• n1 = m2 (as well as n2 = m1), i.e. an aircraft is
flying towards the last navpoint that the other aircraft
has crossed (Fig. 1 panel b). In this case the condition
for the occurrence of a conflict is

|tm + t̄n| < max

( √
2 δt√

1− cosβ
, δt

)
, (2)

where t̄n is the time at which the aircraft N has crossed
n1 and β is the angle between (m1,m2) and (n1, n2).

• The segments (m1,m2) and (n1, n2) intersects each other
(Fig. 1 panel c). In this case the previous conditions (1)
and (2) still hold considering the intersection as a node
and interpolating the corresponding crossing times.

• The segments (m1,m2) and (n1, n2) do not intersect
each other (Fig. 1 panel d). Also in this case (1) and
(2), but now the intersection of the extensions of the
segments has to be considered as a node and the crossing
times has to be interpolated as the two aircraft fly on a
straight line. Note that even though all the conditions of
conflict occurrence are satisfied it has to be checked that
the conflict occur when both of the aircraft are on the
segments and not when one of them is on the extensions.

Equations (1) and (2) can be derived considering the instanta-
neous relative distance dmn(t) depending just on the crossing
time and the angle between the considered segments and solve
the inequality dmn(t) < δt. Moreover if the inequality has a
certain solution it must be required that such solution overlaps
with the time ranges at which the aircraft are on the considered
segments. Whenever a conflict has been spotted the controllers
must look for possible redirections to apply to the aircraft and
thus sending it from n1 to another nr 6= n2. This process
has been modeled as a local search between the nodes of the
network so that the controller looks for all the possible nodes
toward which redirect the aircraft within a certain subset of
nodes of the network and then choses the one that minimize a
certain cost function. The two basic strategies that a controller
can apply are the redirection within its sector (IN strategy,

m
n

tm
tnα

a)

m
n

tm

tn

β

B)

m

n

tm
tn

α

c)

m
n

tm tn

α

d)

Fig. 1: Geometries used to spot the conflict of a couple of
aircraft.

fig. 2 panel a) and into a nearby one (OUT strategy, fig. 2
panel a). In both case the controller is applying directs to solve
conflicts, trying to speed up the traffic. Note that to do so, the
controller can disregard the airways structure and create a new
link connecting the nodes of the network. It is also possible
a third strategy which corresponds to the “vectoring” of an
aircraft (figure 2 panel c), that corresponds to the generation
of new navigation points in the sector to be used for rerouting.
Once a certain set {nr}r=1...k of navigation points has been
found, the controller choses the one that minimize a cost
function representing the efficiency of the flight. In the simple
bi-dimensional case this cost function is just the temporal
distance to the arrival:

C0(n1, nr, s) = dn1,nr
+ dspnr,s, (3)

where dn1,nr
is the distance between n1 and nr and dspnr,s is

the length of the shortest-path on the navigation point network
between nr and the arrival node of the aircraft s.
In the following we will consider mainly an IN-OUT protocol
for conflict resolution without vectorization, meaning that a
controller will try at first to solve the conflict using a direct
towards a node inside its sector and, if that fails, will try a
redirection towards a nearby sector. Note that if both these
strategies fail, no redirection is applied and the conflict simply
occur.

A. Model On Realistic Airspace

Using data coming from the Demand Data Repository
(DDR) and gathered together into the ELSA Project ([4], [5])
it is possible to gain information on both the flight plans
and the actual trajectories of the aircraft within the European
Airspace and in a certain time frame (from the 9th to the
21st of June 2011). Here we used the flights in 3 different
National Airspaces (Italian, Greek and Estonian) in a week
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 a) b)

c)

Fig. 2: Strategies of conflict resolution: (a) IN strategy, (b)
OUT strategy, (c) Vectoring strategy. Areas of different colors
are different sectors. Star-shaped points in (c) are geographical
references that are not part of the navigation points network.

in June 2011 to reconstruct the structure of the airways using
their flight plans. Assuming that the planned trajectories follow
the structure of the airways, the navigation point network of
an airspace can be built using all the navpoint crossed by the
flight plans in the dataset and then linking a couple of navpoint
if there is at least an aircraft that has flown from one to another
in the considered time frame. Counting the number of aircraft
that have traveled over every link it is also possible to weight
the links of the network and thus to study the deployment of
the traffic over the airspace.
Moreover information regarding the sectoral structure of each
airspace is present, so that it is possible to define a static and
simplified structure to be used in the simulations. The features
of the used airspaces are presented in table I.
For each airspace, we can build a simulation in order to
understand the limits of the model, i.e. what happens when
the density of aircraft within an airspace is too high and
the optimization algorithm starts to fail. Thus we choose a
certain number of aircraft, say Naircraft , and we randomly
assign to each one of them a flight plan from the dataset.
Since with this procedure the most frequent flight plans are the
most likely to be chosen, we are sure that the most trafficked
routes in the real system will also be the most trafficked in
the simulation. Then we assign to each flight a departure time
from a uniform distribution in [0 hours, 2 hours]. In order to
prevent the generation of conflicts around the airports due to
close departure times of different aircraft, no conflict can occur
within a radius of 21 NM around the airports.
As often happens when dealing with physical systems, the
finite size of a system can highly influence the results of a
numerical or analytical computation. This is usually due to
the effects of the “border” of the system that are known as
“boundary effects”. In our case these effects can lead to a

Fig. 3: Sectors structure of the Greek Airspace. Blue areas are
sectors within the airspace, while red areas are the external
sectors used to compensate boundary effects.

spurious generation of conflicts since an aircraft flying close
to the border will have less possibilities for rerouting than
an aircraft in the inside of the airspace. The problem of
the boundary conditions is solved here considering also the
external part of each airspace, so that aircraft close to the
border can be rerouted outside assuming that conflicts can
only occur inside the airspace. Although, to prevent all the
aircraft to escape in this “safe” region, redirections outside the
airspace are allowed only if the next sector that the aircraft is
about to exit the airspace, that is if its next sector according
to its flight plan lies in another national airspace. Figure 3
shows the sectors within the Greek airspace as well as all the
exterior sectors considered during the simulations. Note that

Name N Nairports Nsectors Surface (NM2)
Estonia 51 4 3 285540
Grece 371 45 9 852729
Italy 725 43 18 1299055

TABLE I: Number of nodes, airports, sectors and surface area
of the national arispaces used in the simulations.

this problem can be also solved using “periodic airspaces”,
but this possibility will not be considered in this work.

For every value of N , we simulate various realizations
corresponding to different initial conditions. Since with the
same value of N but different sizes of the airspace the density
of aircraft flying in the system may vary, Naircraft it is not a
good parameter itself to compare the results of the simulation
as the size of the system grows. Although the average number
of flying aircraft Nf (t) per sector grows linearly with Naircraft

in every case and thus it can be used as the free parameter of
the model.
For each size of the system, we find a transition from a phase

in which the optimization process solve all the conflict to a
phase in which many are not. This can be seen looking at
the average number of unresolved conflicts (Nconflicts ) as a
function of Nf (t) in figure 4. For small values of the free
parameter we have Nconflicts = 0, while above a certain
threshold depending on the size of the system Nconflicts = 0
grows with Nf (t) in power-law fashion with exponent ∼ 4.5.
The transition presents also a scaling property with the system
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Fig. 4: Nconflicts as a function of Nf (t) for the Estonian,
Greek and Italian Airspaces. (Inset) Nconflicts as a function of
Nf (t) rescaled with N0.43 for the Estonian, Greek and Italian
Airspaces.

size. Assuming that the size is represented by the number of
navigation points N within the airspace, all the shown curves
collapse into one if Nf (t) is rescaled with Na with a ' 0.43
(figure 4 inset). This transition represent the validity limit of
the model and the boundary in which it performs “safely”.
Every simulation of realistic situation must take into account
the possibility of conflict generation, so that it must be assured
that the density of aircraft must always lie below the transition
point.

B. Model Validation

The validation of the model can be performed using the
historical data used to build the previous simulations. As well
as we can use the flight plans to build the structure of the
airways and study the deployment of the traffic over them, we
can use the real trajectories to build a similar network. Such
network will be similar to the previous one with a different
pattern of traffic and a different topology. All these changes
are the results of the activity of the air traffic control and its
management activity over the planned routes. Thus one part
of the validation has been performed checking if the model is
able to reproduce such topological changes in the structure of
the airspace, performing simulation of one day schedules in
the previously introduced airspaces. The metrics on which we
will focus our attention are well-known in the field of Complex
Networks [7], [8]:
• Degree k of a node: the number of other nodes that are

linked to the considered one.
• Strength s of a node: the sum of the weights of all the

links connected to the considered node. In our case this
metric represents the traffic load of a navigation point.

• Betweenness Centrality b of a node: this metric, introduce
initially for social networks [9], measures the “impor-
tance” of a node in the network, i.e. how likely is to
cross it if one wants to travel from a node to another
following the shortest-paths of the networks.

Together with this “macroscopic” validation, it is also possible
to compare the distribution of the changes in length, crossed

navigation points and en-route delay of each flight in order to
see if the ones generated by our model are compatible with
those found in the data.
The setup for the validation activity is slightly different with
respect to that presented when we studied the capacity limits
of the model. In this case the protocol used by the controllers
is:

• IN-OUT protocol for conflict resolution.
• The flight levels are taken into account and each aircraft

is supposed to fly at the required flight level indicated in
the dataset. We will consider just the en-route phase, so
the ascend and descend part will not be simulated.

• Small flight level changes of ±10 FL from the required
flight level are allowed in order to solve a conflict.

• Capacity constraints are enforced: each sector has a
maximum number C of aircraft per hour that can manage.
Every redirection that generates a path violating this
constraint in one sector is not allowed.

• Controllers can assign directs, sending an aircraft to its
next sector with a probability pdirect that is checked just
before the conflict resolution procedure presented before.
If the direct is assigned, the controller tries to send the
aircraft in a nearby sector using the OUT strategy, but
the redirection is applied only if it shortens the length of
the flight.

The capacities of each sector are measured from the dataset
as the maximum number of aircraft that has traveled over
the sector in an hour. The probability pdirect of a sector has
been measured counting the fraction of aircraft that has been
rerouted from a node in the sector to a node in another sector
with a segment long at least 80 NM.
We simulated the schedule of flights on the 9th of June
2011 in three distinct airspaces, the Italian, the Greek and the
Estonian. Table II shows the correlations coefficients between
the variations of the networks metrics for the navigation point
network measured using the real trajectories and the output
trajectories of the simulations. These variations are computed
in both cases with respect to the corresponding navigation
point network built with planned trajectories. The positive
values of these coefficients indicate that the simulation is
able to reproduce the variations correctly, in particular the
correlations between the variations of strength δs indicates that
the modifications in the deployment of the traffic performed
by the ATC are similar to those obtained with the simulations,
while δd and δb are respectively the variations in degree
and betweenness. Concerning metrics regarding the variations
over the single trajectory, the distribution of the variation in
number of crossed way points and in the traveled distance
during the flight are reproduced correctly (Fig. 5 panel a and
b). On the other hand the distribution of the en-route delays
are not coincident since many small positive delays are not
reproduced (Fig. 5 panel c). To increase the agreement with
the dataset, we introduce disturbances in the system which
represents every kind of occurrence that can happened during
the flight (e.g. bad weather conditions). These disturbances are
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Nation Estonia Greece Italy
nlinks (data) 90 1022 3056

nlinks (simulation) 90 1284 3160
δd corr. coeff. 0.55 0.61 0.60
δs corr. coeff. 0.61 0.82 0.81
δb corr. coeff. 0.70 0.85 0.87

TABLE II: Comparison between the real navigation points net-
works built with the data and with the trajectories generated by
simulations for each national airspace used in the validation.
The variations of each metrics are computed with respect to
the navigation point network built with the planned trajectories
used for the validation.

modeled as delay generating perturbed areas with a radius rdist
randomly chose from a uniform distribution in [1 NM, 15 NM].
If an aircraft crosses one of this areas it gains a random
penalty delay from a uniform distribution in a range between
1 min. and 0.14 NM−1 min rdist (0.14 NM−1 min.range
between 1 min. and 0.14 NM−1 min rdist (0.14 NM−1 min.
The position of these areas are completely random in the
airspace and their distribution is reassigned every 60 minutes
of simulation time. As we vary the number of disturbances
next (the only free-parameter of the model), the agreement
between the simulated and real en-route delays distribution
starts to improve until next ≈ 200. Above this value the
generated delays is too much and the agreement is completely
destroyed (Fig. 5 panel d and e).

III. GLOBAL OPTIMIZATION

In the future SESAR scenario the structure of the airspace
will be particularly different from the current one, not just
because of different regulations, but also because a more
flexible planning of the trajectories of the flights will surely
result in a new airways topology. With this perspective it is
reasonable to ask if the new structure will effectively be more
efficient than the current one, in terms of performances for
the flights and in manageability for the controllers. Since our
model is able to reproduce the action of the ATC in a normal
situation, one of its possible applications is the study of new
configurations and its response to the typical disturbances that
can occur during the operations.
Since we do not have information about possible future sce-
narios, we built a new solution for the planned trajectories in
which besides the usual capacity constraints of the sectors also
the conflicts between the trajectories are taken into account.
In other words, if the controllers act as local optimizer, this
solution is a globally optimized one computed with a stochas-
tic optimization algorithm well-known in complex systems
physics.

A. Extremal Optimization Algorithm

In complex systems physics a lot of optimization algorithm
have been developed in order to solve heuristically a wide
variety of problems. Despite the fact that many of these
algorithms have been developed to solve specific problems,
they can be applied to situations far from the framework of
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Fig. 5: (a) Distribution of the variation in length (δl) of the
real (black) and simulated (red) trajectories. (b) Distribution
of the variation of the number of crossed navigation points
(δn) of the real (black) and simulated (red) trajectories. (c,d,e)
Distribution of the en-route delays (δtenr) of the the real
(black) and simulated (red) trajectories with 0, 200 and 2000
external disturbances.

physics. Some notable examples are the “simulated annealing”
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techniques [10] and the “genetic algorithms” [11]. In relatively
recent times a new algorithm has been proposed, the “Extremal
Optimization” (EO) algorithm, based on the avalanche phe-
nomenon present in systems with “Self-Organized Criticality”
(SOC). One of the most notable example of systems with
SOC is the Bak-Sneppen model [12], which modeled the
evolution of interrelated animal species. At each time step the
species with the smallest fitness is updated and its fitness is
randomly reassigned (representing the death of such species
and its substitution with a new one). This change in fitness
has an impact also on the neighbors, so that their fitness is
also randomly reassigned. The system rapidly reaches a state
called SOC, in which all the fitnesses are above a certain value
and avalanches take place. These are chain reactions leading
to large fluctuations that make every possible configuration
of the system virtually accessible. Extremal optimization is
based on the same principles of the Bak-Sneppen model.
The optimization is performed updating at each step the
element of the system with the lowest “fitness” (or cost in
this case). The generation of fluctuations through avalanches
in this optimization process, make the system visit much of its
accessible configuration preventing it from being trapped in a
local minimum (or maximum) of its cost function. Considering
a certain set of variables xi each one with an assigned fitness
γi so that each fitness contributes linearly to the cost function
C(γ) defined as

C(γ) =
∑
i

γi. (4)

Indicating with S a generic configuration of the variables xi,
Ω(S) will be the set of neighbor configurations of S, i.e. a
set of configurations that are close and accessible from the
configuration S. Note that the definition of Ω(S) is completely
arbitrary. The algorithm proceeds as follows:
• Choose a starting configuration and set Sbest := S
• For the configuration S:

– Evaluate the fitness γi of each variable
– Find the variable with the highest fitness (indicated

by the letter j)
– Choose a new configuration S′ ∈ Ω(S) so that the

variable j changes its value
– Accept S := S′ unconditionally
– If C(Sbest) ≥ C(S), set Sbest = S.

• Repeat the previous point as long as desired.
• At the end the sub-optimal configuration will be Sbest

and the sub-optimal cost will be C(Sbest).

B. Application to Trajectory Optimization

In our case the variables to be optimized are the trajectories
of the aircraft. In order to simplify a bit the problem we
will disregard the departure and arrival part of the flight and
will focus on the en-route phase, meaning that the within
a certain radius to the airports (≈ 20 NM) all the conflicts
between the aircraft are disregarded. We will also assume that
each aircraft fly at its required flight level and that height
changes are not possible in the optimization process. Moreover

we can assume that the optimization has to be performed
using fixed geographical references, that we assume to be the
same navigation points existing today. Thus each variable xi,
corresponding to the trajectory of the ith aircraft is

xi = {(nstart, tstart), (n1, t1), . . . , (nstop, tstop)}, (5)

where nk is the kth crossed navigation point and tk is the
corresponding crossing time. Note that tstart is fixed, while
tstop depends on the path. As in the ATC model, we will
assume that each aircraft flies at the same constant speed of
800 km/h. All the previous simplifications, i.e. constant speed,
constant flight level and fixed departure time could be relaxed
leading to better optimal solutions, but the behavior of the
algorithm will not be affected. Finally we assume that capacity
constraints must be satisfied, i.e. configurations S in which the
number of aircraft per hour inside a certain sector is above
the threshold must be rejected during the optimization. Given
a certain configuration of trajectories S = {x1, . . . , xN}, its
cost function will be

C(S) =
N∑
i=1

l(xi) +
ε

2

N∑
i=1

N∑
j=1,j 6=i

m(xi, xj), (6)

where l(xi) is the length of the path xi divided by the length
of the straight line connecting it departure and arrival node and
m(xi, xj) is the number of conflicts between the aircraft i and
the aircraft j. The parameter ε is a positive real number that
quantifies the weight of conflicts in the optimization process.
If ε = 0 then the optimal solution is when all the trajectories
are a straight line from departure to arrival and l(xi) = 1
for every xi. On the other hand if ε � 1, we will have a
conflict-free solution. In order to apply the EO algorithm to
this problem, the cost function must be in the form (4). This
can easily achieved by defining the fitness of each trajectory
xi as

γi = l(xi) +
ε

2

N∑
j=1,j 6=i

m(xi, xj). (7)

Finally we must define Ω(S) and the process to go from S
to S′ ∈ Ω(S). At the beginning of the optimization process
every trajectory is composed by one long segment going from
nstart to nstop, i.e. in the optimal configuration if ε = 0.
At each optimization step, the path of the less fit aircraft is
built using a biased random walk process starting from nstart
and ending in nstop. Note that the interaction term in (7)
guarantees that changing xi will modify all the fitnesses of the
others trajectories. The new random path is built starting from
(n0, t0) = (nstart, tstart). At each step (nk, tk), the next node
nk+1 is randomly chose from the set of all the other nodes
with a probability

p(nk+1) ∝
(
dnk,nk+1

+ dnk+1,nstop

dnk,nstop

)α
, (8)

where α < 0 and dn,m is the geographical distance between
the navigation points n and m. The process ends when nk+1 =
nstop and it is restarted whenever a step violates the capacity
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Fig. 6: 〈l(xi)〉 (a) and Nconflicts (b) as functions of the
optimization step for ε = 2.

constraints of the sectors. Note that (8) disadvantages steps
that are far from being on the straight line connecting the
previous step with the destination. In the following we will
fix the parameter α = −4 arbitrarily. Other choices may fail
to converge (e.g. if α is too close to 0) or may lead to solutions
too close to the straight line (e.g. if α is too large).

C. The Optimal Solution

We apply the algorithm to the Greek National Airspace in
order to optimize all the trajectories of the flight that took
place on the 9th of June 2011. We assign to each flight its real
departure time, i.e. considering the departure delay acquired
that day and we do not put any constraint on the arrival time.
As it is shown in figure 6, initially the algorithm generates
deviation for many trajectories in order to solve some or all
the conflicts and thus increasing the values of l(xi). As we
vary the parameter ε, we modulate from a trivial solution
in which all the aircraft fly on a straight line to a conflict-
free solution. Figure 7 shows the sub-optimal values of the
average 〈l(xi)〉 over all the trajectories and the total number of
unresolved conflicts Nconflicts = 1

2

∑N
i=1

∑N
j=1,j 6=im(xi, xj)

as ε varies. Starting from the trivial case ε = 0, a conflict-
free solution is obtained for ε ≥ 2. Note that the 〈l(xi)〉
is close to 1 for every value of ε, so every solution is a
set of trajectories that are slightly deviated from the straight
case. In every considered case the resulting structure of
the airspace is very different from the current one. Since
building a simple navigation point network as no meaning
in this new optimal case (navigation points are just arbitrary
points in space used for the optimization, they could have
been substituted by any other set of geographical references),
we proceeded considering all the intersection points between
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Fig. 7: 〈l(xi)〉 (a) and Nconflicts of the sub-optimal solution
as functions of ε.

the trajectories and applying a clustering algorithm, so that all
the close intersections are clustered together into one single
node. Then two nodes are linked if at least two intersections in
each cluster belong to the same trajectory, i.e. if an aircraft has
flown from a node to the other. We applied the same procedure
also to the real historical trajectories in the same day of the
dataset in order to obtain two comparable networks. Figure 8
shows the inverse cumulative distribution of the traffic load
over the nodes in the two networks. The number of highly
trafficked nodes is considerably reduced in the optimal case
and the network is more homogeneous due to the fact that
more of the available spaces has been used by the flight plans.

D. Efficiency of the Optimal Solution

The topological properties by themselves are not sufficient
in order to understand if a different kind of planning is well-
performing. In fact despite the fact that a global sub-optimal
solution might be conflict-free, such solution is built in a situa-
tion in which many external factors are not taken into account.
For example it is not possible to forecast departure delays
due to for example to reactionary delays or the occurrence of
every adverse weather condition. In particular in our case none
of this conditions have been considered in the optimization
process and the solution found is valid in a idealized situation
in which everything goes just as planned. Thus it is important
to test how the planned routes are working when such external
occurrences are taking place and the ATC model we developed
is suited to give useful insights about this issue.
In particular we built a new simulation setup similar to that
presented in II-B for the validation of the ATC model. In
particular:
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the nodes for the real and optimal Greek Navigation Point
Networks.

• Every aircraft flies according to a flight plan obtained
with the EO algorithm for various values of ε.

• The structure of the sectors is unvaried with respect to
the one used in II-B, but the airways structure is not
considered. After every redirection and aircraft is sent
directly to its destination following a straight line.

• Since the trajectories are already as straight as possible,
directs in order to speed up the traffic are not considered.

• As in the previous case, controllers solve conflicts using
the IN-OUT protocol.

• Capacity constraints are considered as in the previous
case.

We tested the solution considering two kinds of external
stochastic disturbances, i.e. the delays generating perturbed
areas presented in II-B and random departure delays. In the
second case we apply to each flight a departure delay from
a uniform distribution in a range [−τ, τ ], where τ is a free
parameter. For both cases we studied the response of the
system in terms of generated delays and number of actions
performed by the controllers as functions of next (the number
of perturbed areas) and τ for different sub-optimal solutions
obtained with different values of ε. Moreover we performed
the same studies, using the validation setup in II-B in order to
compare such results to a case close to the actual situation. The
most natural way in order to compare these different situation
is, according to our model, the number of actions that have
to be performed to manage the traffic, despite the fact that
some actions may require more effort for the ATC with respect
to others. Figure 9 shows the number of actions performed
by the ATC (considering also the directs) as a function of
the parameter τ of the delay distribution. Each value of the
curve is averaged over many realizations of the same initial
conditions. It is evident that such number is constant and it is
not affected by the intensity of departure delays in the current
situation. This fact is not surprising since nowadays, the ATC
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Fig. 10: Number of actions as a function of the number of
external disturbances next for the current system and for the
sub-optimal planning in the Greek Airspace.

does not care about the delay of an aircraft crossing a sector
as long that capacity limits are not overcome. On the other
hand with the sub-optimal planning this number is independent
from τ only for ε = 0. As ε grows instead the curve presents
a clear trend, growing from small values to a constant value
for large τ . Note that the constant value for large τ depends
on ε and it is lower as the planning approaches the conflict-
free initial situation. Moreover, for any value of τ or ε, the
number of actions in the sub-optimal case is always lower than
the constant value for the system in the current situation.
Considering the other kind of disturbances, the system in
the current situation is not able to function in the same
way independently from their number (Fig. 10). In this case
the number of actions grows as the number of disturbances
grows and it does not seem to approach any constant value.
The behavior is the same also considering the sub-optimal
solutions. For every value of ε, the number of actions grows
with the number of disturbances and it does not approach
a constant value. Although, as it happens for the departure
delays case, the actions required to manage the sub-optimal
cases are always less than those needed in the current situation
and their number gets smaller as ε grows.
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IV. CONCLUSIONS

In this paper we presented a model of Air Traffic Control
based on a local optimization dynamics on the complex
network of navigation points within a national airspace. The
model has been built and validated using historical data about
flight plans and real trajectories covering a time frame of a
couple of weeks in June 2011. Setting up simulation of a one
day schedule in the Italian, Greek and Estonian airspaces the
model is capable of reproducing the statistics of the single
trajectories of the aircraft as well as the topological modifica-
tions of the navigation point network of the considered nations
performed by the action of the ATC in its traffic management
activity.
By simulating an increase of traffic load with a simplified
setup, the model shows a transition to a state in which the
optimization process is not able to solve many of the occurring
conflicts. This transition represents the theoretical limit of the
model, indicating the maximum density of aircraft that the
model can simulate correctly.
We then built a global optimization algorithm based on Ex-
tremal Optimization, in which avalanche effects are used in
order to reach a local minimum of the cost function of a
system. Tuning a parameter of the algorithm, we constructed
flight plans ranging from the shortest possibles to completely
conflict-free ones. We used the ATC model in order to test the
efficiency of these solution in the Greek Airspace, measuring
the number of actions performed by the ATC in response
to adverse occurrences such as departure delays and delay
generating areas. In both cases the solutions are performing
better than the current situation, even though their behavior is
less stable as the number or the intensity of the disturbances
varies.
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