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Abstract—Efficient planning of runway utilization is one of
the main challenges in Air Traffic Management (ATM). It is
important because runway is the combining element between
airside and groundside. Furthermore, it is a bottleneck in many
cases. In this paper, we develop a specific optimization approach
for the pre-tactical planning phase that reduces complexity
by omitting unnecessary information. Instead of determining
arrival/departure times to the minute in this phase yet, we assign
several aircraft to the same time window of a given size. The exact
orders within those time windows can be decided later in tactical
planning. Mathematically, we solve a generalized assignment
problem on a bipartite graph. To know how many aircraft can be
assigned to one time window, we consider distance requirements
for consecutive aircraft types. We develop an optimization model,
which can be solved fast in practice but may provide unnecessary
large time buffers, and extend it to a model that solves the
problem to global optimality.

In reality, uncertainty and inaccuracy almost always lead to
deviations from the actual plan or schedule. We present com-
putational results concerning the abovementioned optimization
approaches and investigate the impact of disturbances on our
deterministic solutions. As a next step, we will incorporate uncer-
tainties directly in our model. Therefore, we analyze real-world
data from a large German airport in order to obtain realistic
delay distributions and describe a simulation environment to test
current and future solution methods.

I. INTRODUCTION

ATM systems are driven by economic interests of the
participating stakeholders and, therefore, are performance
oriented. As possibilities of enlarging airport capacities
are limited, one has to enhance the utilization of existing
capacities to meet the continuous growth of traffic demand.
The runway system is the main element that combines airside
and groundside of the ATM System. Therefore, it is crucial
for the performance of the whole ATM System that the
traffic on a runway is planned efficiently. Such planning is
one of the main challenges in ATM. Uncertainty, inaccuracy
and non-determinism almost always lead to deviations from
the actual plan or schedule. A typical strategy to deal with
these changes is a regular re-computation or update of the
schedule. These adjustments are performed in hindsight, i.e.
after the actual change in the data occurred. The challenge is
to incorporate uncertainty into the initial computation of the
plans so that these plans are robust with respect to changes

in the data, leading to a better utilization of resources, more
stable plans and a more efficient support for ATM controllers
and stakeholders. Incorporating uncertainty into the ATM
planning procedures further makes the total ATM System
more resilient, because the impact of disturbances and the
propagation of this impact through the system is reduced.

In this paper, we investigate the deterministic problem of
optimizing runway utilization and the effect of disturbances on
our solutions. As a next step, we will incorporate uncertainties
into the initial plan in order to retain its feasibility despite
changes in the data.

We focus on the pre-tactical planning phase, i.e. we assume
the actual planning time to be several hours, or at least 30
minutes, prior to actual arrival/departure times. We develop
an appropriate mathematical optimization model for this par-
ticular planning phase. The basic idea is that in pre-tactical
planning we can reduce the complexity of the problem by not
determining an exact arrival/departure sequence in terms of
exact landing/take-off times for each aircraft, as we do later
in tactical planning. Instead, we answer the question of how
many aircraft can be scheduled to one time window of a given
size without violating distance requirements. (For example, it
is definitely possible to assign more than one aircraft to a
time window from 12:00 pm to 12:10 pm.) Then, we consider
a discretized time horizon consisting of such time windows
and assign each aircraft to one of them.

This paper is organized as follows: In Section II, we give
an overview over the literature related to runway optimization
and explain why our approach is different. We develop a
mixed integer program (MIP) for the pre-tactical optimization
of runway utilization in Section III. Actually, we describe
two models: The first one is difficult in theory but can be
solved very fast in practice, the second one is an extension
which solves the problem to global optimality at the expense
of longer runtimes. In Section IV we show computational
results and analyze the impact of disturbances on our solution
methods. In order to be able to test our optimization approach
in a more realistic setting, we analyze real-world delay data
from a large German airport in Section V and describe a
simulation environment to test current and future optimization
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approaches. We conclude in Section VI.

II. RELATED WORK

There are many different approaches that deal with the
optimization of runway utilization in the literature. Most of
them treat the runway scheduling problem in the tactical
planning phase.

A. Deterministic Approaches

The most cited MIP model in this context is probably the
one introduced by Beasley et al. [5]. Their linear objective
function minimizes delay, the constraints come from the air-
craft dependent separation times. They also present an integer
program (IP) formulation where time is discretized, but they
don’t explore it further because of disappointing computational
experiences. Soomer and Franx [17] consider the problem
from an airline point of view. They use Beasley’s MIP but
allowing airlines to define their own cost functions for each
flight. Bertsimas et al. [7] develop a comprehensive IP for
Air Traffic Flow Management which integrates all phases of
a flight, different costs for ground and air delays, rerouting,
continued flights and cancellations. Kjenstad et al. [14] state
a time-discretized model. They assign an aircraft to a time
window and claim that a number of subsequent time windows
(dependent on the aircraft type) remains unassigned. In their
model, they also consider minimal taxiways and the possibility
to drop departures. Their linear objective function minimizes
delay and the number of dropped departures.

Many authors use heuristic methods aiming to provide
solutions in close to real-time. To schedule aircraft in a first-
come first-served order (FCFS) seems to be fair and also
reduces the work of traffic controllers. However, such an
approach doesn’t provide maximal throughput or minimal
delay in general (Bennell et al. [6]). Dear [9] developed the
concept of Constrained Position Shifting, were each aircraft
can be scheduled only a limited number of steps away from
the FCFS sequence. Balakrishnan and Chandran [3] solved
this problem as a shortest path problem on a special network.

Anagnostakis and Clarke [2] formulate a two-stage heuristic
algorithm for the outbound runway scheduling problem. In the
first stage, candidate weight class sequences are determined
w.r.t. distance requirements, ordered by the corresponding
throughput. In the second stage individual aircraft are assigned
using operational constraints (e.g. earliest and latest departure
times of aircraft).

As mentioned, in our optimization model we allocate time
windows to aircraft. However, though many papers about
runway optimization deal with ”slot allocation”, this term is
used to describe different problems. Often, it is associated with
the Ground-Holding Problem (GHP), where ”slot” means a
certain departure time which is assigned to an aircraft. Ball
et al. [4] also address the GHP, but they assign arrival slots
to aircraft which provide the corresponding departure delay in
hindsight. They consider matchings in a bipartite graph which
they call the ”flight allocation graph”. The main focus in this
paper lies on the graph structure and matching algorithms.

TABLE I
MINIMUM SEPARATION TIMES (IN SECONDS)

Predecessor \ Successor Heavy Medium Light
Heavy 100 125 150

Medium 75 75 125

Light 75 75 75

None of the approaches above deal with ”slots” as time
windows to which several aircraft can be assigned. Thus, to
the best of our knowledge there is no approach similar to
ours in which the pre-tactical planning phase is modelled by
assigning such time windows to aircraft.

B. Approaches that Incorporate Uncertainties

All runway optimization approaches presented above as-
sume that all parameters are known with certainty. We found
few works where uncertainties are incorporated. Chandran and
Balakrishnan [8], e.g., develop an algorithm with Constrained
Position Shifting that handles uncertainty in the estimated time
of arrival. Hu and Paolo [12] formulate a genetic algorithm and
compute solutions disturbing the estimated arrival time of 20%
of the aircraft. Sölveling [16] presents a two-stage stochas-
tic program for solving the mixed-mode runway scheduling
problem with uncertain earliest times. In the first stage he
determines the weight class sequence. An exact sequence of
individual aircraft follows in the second stage.

III. THE MODELING

As mentioned above, we model the problem of optimizing
runway utilization in the pre-tactical planning phase by as-
signing time windows to aircraft. Throughout this paper, we
consider single-mode runways with only arriving aircraft. In
the future, we will adjust our models to mixed-mode runways.
But since the single-mode problem is already quite complex
from a mathematical point of view, we decided to focus on
arrivals for now. In our modeling approach we claim that each
aircraft has to receive exactly one time window as each aircraft
has to be scheduled. On the other hand, the number of aircraft
that can be assigned to one time window depends on its size
and the weight classes of the aircraft. The underlying idea is
that, contrary to tactical planning, we don’t need to determine
arrival times to the minute yet, because we are several hours
(or at least 30 minutes) prior to the first scheduled time. Thus,
the exact arrival sequences within the time windows can be
decided later.

In this section, we develop a MIP for the described problem.
The objective is the maximization of punctuality. In other
words, the deviation from scheduled times in both directions
shall be minimized. The MIP constraints consist of general
assignment constraints and the modeling of minimal time dis-
tance requirement. Those minimum separation times between
two consecutive aircraft depend on their corresponding weight
classes. Hereof, we consider three different aircraft categories
(Light, Medium and Heavy) and use Table I ([13]).
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a1 a2 a3 a4

w1

(12:00 - 12:05)

w2

(12:05 - 12:10)

w3

(12:10 - 12:15)

Fig. 1. Bipartite assignment graph. Red edges show a possible assignment:
aircraft a1 and a2 are assigned to time window w1, a3 and a4 are assigned
to w2.

Before we can state our model, we have to analyze the
underlying problem structure more precisely.

For each aircraft, we consider several corresponding times:
• Scheduled time of arrival (ST): a fix time that yields a

benchmark to identify delay and earliness of the aircraft.
This may be the time the passenger finds on his flight
ticket.

• Earliest time of arrival (ET): depends on operational
conditions (and on the impact of disturbances).

• Latest time of arrival (LT): latest time the aircraft can
land without holdings. It depends on the earliest time ET
and on the actual planning time (or start time, respec-
tively, if the aircraft is still on the ground), denoted by t.
In the pre-tactical planning phase, we use the following
formula (because ET−t ≥ 20 min, see Figure 3):

LT = ET +
ET− t

2
− 120 sec. (1)

• Maximal latest time of arrival (maxLT): a hard condition
for landing which is calculated with respect to physical,
operational and other relevant conditions (for instance,
amount of fuel, prioritization, etc.).

Those times further determine the corresponding time win-
dows STW , ETW , LTW and maxLTW for each aircraft.

A. Assignment Graph

To model the problem of assigning aircraft to time windows,
we consider a bipartite graph G = (A∪W,E) consisting of a
vertex set A of aircraft and a vertex set W of time windows of
a given size in a given time period (ordered chronologically).
An edge (i, j) ∈ E corresponds to a possible assignment of
aircraft i to time window j. Possible assignments concerning
a certain aircraft are all time windows from ETW to maxLTW .

Now, a feasible solution for our assignment problem is a
set of edges such that
• every aircraft vertex is linked with exactly one edge from

this set, i.e. every aircraft is assigned to exactly one time
window,

• every time window vertex is linked with a number of
edges from this set, so that no separation time constraints
are violated.

In Figure 1 we see a small example of a bipartite graph
with a possible assignment of aircraft a1, . . . , a4 ∈ A to time
windows w1, w2, w3 ∈W .

B. Decision Variables

To solve our assignment problem, we have to decide
whether to choose a certain edge or not. To model this decision
in our MIP, we introduce a binary variables xij for each edge
(i, j) ∈ E:

xij =

{
1, if aircraft i is assigned to time window j

0, otherwise

C. Objective Function

Our objective is the minimization of delay and earliness,
respectively. We model delay/earliness as edge weights. The
weight cij of an edge (i, j) ∈ E results from the distance of
time window j to the STW of aircraft i (counted in number
of time windows). Delay is penalized quadratically for reasons
of fairness (e.g., a solution in which one aircraft has a delay
of six time windows is worse than a solution in which two
aircraft have a delay of three time windows each). Earliness
is penalized linearly. If the assigned time window is after
the LTW (i.e. between LT and maxLT), we add an extra
penalization term, namely the squared distance from LTW .
Assume an aircraft i with STW w5, ETW w1, LTW w10 and
maxLTW w13. Then we’d have, e.g., ci 2 = 3, ci 8 = 32 and
ci 12 = 72 + 22.

Now the objective function of our optimization model is the
following:

min
∑

(i,j)∈E

cijxij (2)

D. Aircraft Constraints

First of all, we have to assert that each aircraft is assigned
to exactly one time window. So we claim∑

j∈Wi

xij = 1 (3)

for each i ∈ A, where Wi = {j ∈ W : (i, j) ∈ E} describes
the set of time windows that aircraft i can be assigned to.

E. Time Window Constraints

Further, we have to determine the number of aircraft that
can be assigned to one time window. In order to do so, we
need to consider the distance requirements, dependent on the
weight classes of consecutive aircraft. We use the minimum
separation times shown in Table I1. Clearly, the maximum
number of aircraft that fit in one time window is reached when
a sequence from Light to Heavy is assumed. In more detail,
to avoid separation times of 125 and 150 seconds, such a
sequence contains sub-sequences of aircraft of the same type.
First, all Lights are scheduled, followed by all Mediums, and
finally by all Heavies. According to Table I, we therefore
need a separation time of 75 seconds after each Light and
each Medium, whereas we need 100 seconds after each Heavy

1An adaptation of the results in this paper to other minimum separation
time tables is possible as well.
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except the last one (the needed separation time after the last
aircraft in a time window models the distance requirements at
the window boundary and is analyzed later in this section).

For each time window we get upper bounds on the number
of aircraft by assuming such a sequence from Light to Heavy.
Mathematically, it yields the following two constraints for each
j ∈W :

75
∑
i∈Lj

xij + 75
∑
i∈Mj

xij + 100
∑
i∈Hj

xij ≤ s+ 100 (4)

75
∑
i∈Lj

xij + 75
∑
i∈Mj

xij ≤ s+ 75 (5)

Here, s is the size of the time windows (in seconds). Further,
Lj = {i ∈ L : (i, j) ∈ E} describes the set of Lights that may
be assigned to time window j (and thus, the corresponding
sum yields the number of Lights that are assigned to it). Mj

and Hj are defined analogously.
If we assign aircraft to a time window j without exceeding

these bounds in (4) and (5), we know that there exists a
sequence of those aircraft that fits in the time window.
However, we do not determine how that sequence looks like
exactly in terms of concrete predecessors and successors.
We are still flexible in (re)arranging different aircraft of the
same type. And if the time window contains enough ”empty
space”, we can even deviate from the Light-Medium-Heavy
order without changing the assignment.

In the following we extend (4) and (5), because they do
not assert security distances at the time window boundaries
yet. This means that the last aircraft in one time window
and the first aircraft in the subsequent time window may
be planned to land at the very same time. In order to
obtain feasible solutions, we describe two different ways
to provide appropriate buffers at the end of each time window.

1) Time Window Constraints for Solutions with Generous
Buffers: To assure feasible solutions, we can generally claim
150 extra seconds as buffers in every time window that
contains a Heavy aircraft and 125 seconds otherwise (150 and
125 seconds are the maximal values in our separation time
matrix, see Table I), except for the last time window of the
considered time horizon. Then, for all j ∈ W \ {m} both
constraints (4) and (5) can be formulated as one:

75
∑
i∈Lj

xij + 75
∑
i∈Mj

xij + 100
∑
i∈Hj

xij ≤ s− 50 (6)

Obviously, (4) turns into (6) by simply adding those 150
seconds on the left hand side. And further, xij = 0 for all
i ∈ Hj in (6) yields (5) with additional 125 seconds on
the left hand side. Of course, this approach only provides a
heuristic procedure for solving the problem because those
buffers will be unnecessarily large for some time windows.

2) Time Window Constraints (and Additional Variables) for
Optimal Solutions with Individual Buffers: In the following
we describe a way to model distance requirements at the
window boundaries precisely (dependent on corresponding
aircraft types). For this purpose, we have to consider the
arrivals that are planned at those boundaries. We accomplish
this by introducing additional variables. These new variables
assure suitable minimum separation times at the end of each
time window: We define zHHj with
• zHHj = 1 if we have a Heavy at the end of time window
j and a Heavy at the beginning of the subsequent one
(assuming a sequence from Light to Heavy) and

• zHHj = 0 otherwise,
and variables zHMj , zHLj , zML

j analogously. Note that for a
certain time window j, at most one of these four variables
can be 1. If zHLj = 1 for instance, we need to assure 150
extra seconds of separation time at the end of time window j
(according to Table I). If all four variables are 0, we need to
assure 75 extra seconds at the end of j (and we don’t need to
differentiate if we separate Medium and Heavy or Medium and
Medium etc.). Adding the different cases for the required extra
seconds, the inequality (4) splits into the following inequalities
for each j ∈W \ {m}:

75
∑
i∈Lj

xij + 75
∑
i∈Mj

xij + 100
∑
i∈Hj

xij + 100zHHj

≤ s+ 100 (7)

75
∑
i∈Lj

xij + 75
∑
i∈Mj

xij + 100
∑
i∈Hj

xij + 125zHMj

≤ s+ 100 (8)

75
∑
i∈Lj

xij + 75
∑
i∈Mj

xij + 100
∑
i∈Hj

xij + 150zHLj

≤ s+ 100 (9)

Note that we have such inequalities for each time window
except for the last one again, because we always consider the
end of the windows. For the last time window j = m we
still have the separation constraint (4). Also note that if, e.g.,
zHHj = 1 in (7), then (8) and (9) become redundant for that
time window j, since zHMj = zHLj = 0.

Inequality (5) can be extended analogously.
To determine the new z-variables within the model, we use

another group of binary variables which state whether there
are Heavies, Mediums or Lights, respectively, in a given time
window j or not. Then, we introduce additional constraints
to model the relations between those new variables and the
z-variables. For instance, zHHj = 1 if and only if we have the
following situation:
• there is at least one Heavy in time window j and at least

one Heavy in j + 1,
• there are no Lights and Mediums in time window j + 1

(those would precede the Heavies in the assumed se-
quence).
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IV. COMPUTATIONAL RESULTS

In a computational study, we tested both models introduced
in Section III, the one that yields globally optimum solutions
with individual time buffers at the end of each time window
(in the following referred to as optimal MIP) and the one
that uses general buffers that might be unnecessarily large
(generous MIP). We considered runtime, solvability, quality
and impact of disturbances. In order to investigate the impact
of disturbances, we studied the following situation: Assume
an optimal assignment has been determined for the nominal
realization of the uncertain parameters, i.e. for nominal ET’s
and LT’s. Uncertainties have been ignored in the model. Now
some disturbances on the ET’s occur (and therefore on the
dependent LT’s as well). A natural question is how good the
former optimum solution is for the disturbed situation.

A. Setting

The results were obtained by the integer programming
solver Gurobi (version 5.6). For the experiments we used a
laptop with Intel i7 CPU, 4 cores (2.70 GHz) and 8 GB RAM.
We considered time windows of 10 minutes (600 seconds)
and investigated three different instance sizes which concerns
numbers of aircraft with corresponding time horizons:
• 100 aircraft on 2,5 hours (15 time windows),
• 200 aircraft on 5 hours (30 time windows),
• 400 aircraft on 10 hours (60 time windows).
The distribution of the weight classes was always 90%

Medium, 5% Heavy and 5% Light according to the actual data
from a large German airport. The STW ’s for all aircraft are
chosen randomly, i.e. uniformly distributed. The ETW ’s are
assumed to be the predecessors of the STW ’s. According to
the latest time calculation formula (1), we assumed LTW to be
two hours (12 time windows) after ETW . For simplification,
we set maxLT = LT.

In our setting, the ETW and the LTW are the only uncertain
parameters. The uncertainties are selected at random. For proof
of concept, we used a Gaussian distribution in this preliminary
study. In further investigations, we will test our optimization
approaches with more realistic uncertainties. As we explain in
Section V, this will lead to asymmetric Gamma-distributions.
We assumed that the expected value (EV) for shifting the ETW
is 1 with standard deviation σ = 1.5.

For each of the three test cases, we generated 5 random
instances. In Table II we see the averaged results.

B. Results

The first observation considering Table II is that most
runtimes are very low. Further, they increase with increasing
number of aircraft, because our allocation graph grows bigger
(which yields more variables and constraints in our model).
Only in case of 400 aircraft we frequently reach the determined
time limit of 15 minutes. However, those instances that could
be solved to optimality here were also solved in less than two
minutes.

Mathematically, the optimal MIP is more challenging than
the generous MIP due to an increasing number of variables

and constraints including non-linearities. This is reflected in
longer runtimes. The generous MIP actually turns out to be
extremely fast on all feasible instances. In fact, runtimes for
all those instances were less than 1 second. However, also the
optimal MIP can be solved rather fast in most cases.

As expected, the optimal MIP performs much better regard-
ing objective values and numbers of delayed aircraft than the
generous MIP. This is because the buffers in our time windows
for the generous MIP can be unnecessarily large.

The parameter Infeasible Assignments shows whether the
optimal solution of the corresponding approach is still feasible
after the disturbances occurred. It describes the percentage of
aircraft that have been assigned to time windows to which
they cannot be assigned in the disturbed situation. Thus, it
can be seen as probability for an aircraft to be assigned to an
infeasible time window. This situation is very unsatisfying for
a practitioner. Namely, the solution that has been computed
earlier becomes useless because it is not feasible anymore.
Then, usually replanning has to be performed, often in real-
time. The goal of this study is to understand how sensitive the
computed solutions are to disturbances. As we see in Table II,
the optimal MIP assigned 23.8−27.2% of the aircraft to time
windows that became infeasible after disturbances occurred.
11−21.9% were assigned to ”wrong” time windows by the
generous MIP. This experimental result shows that it is crucial
to enrich the optimization approaches by protection against
uncertainties, such that less replanning is necessary. Thus,
in the future we will incorporate disturbances directly in the
model.

We did the above tests also for time windows of 15 minutes
and 5 minutes. In general, we observed the following trends:
Runtimes increased with decreasing window sizes because of
a bigger allocation graph. Further, the smaller the windows
the more delayed aircraft were obtained, due to measurement
accuracy. Also the objective value increased with decreasing
window sizes for the same reason.

So far, in this paper we have described mathematical ap-
proaches for optimizing runway utilization in the pre-tactical
planning phase. Further we have tested the impact of (Gaussian
distributed) disturbances on our computed solutions. In the
following section, we now analyze real-world disturbances
from our database from a large German airport. Finally, we
describe a simulation environment to test our current and
future approaches with those realistic disturbances.

V. STATISTICAL ANALYSIS AND MODELING OF ARRIVAL
DELAY DATA

A. Stochastic Delay Modeling

Understanding and modeling the statistics, dynamics, and
propagation of air-traffic arrival and departure delays is a
prerequisite of any attempt to optimize the punctuality of
schedules and airport capacity, and minimizing necessary
buffer times for required robustness of performance (e.g. Wong
and Tsai [19], Tu et al. [18]). In support of the development of
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TABLE II
EXPERIMENTAL RESULTS

Number of
Aircraft

Approach Runtime
(sec)

Solved
(%)a

Objective
Value

Delayed
Aircraft (%)

Infeasible
Assignments (%)

100 optimal MIP 0.43 100 48.00 33.60 23.80
generous MIP 0.05 100 137.20 62.00 17.40

200 optimal MIP 2.41 100 53.40 25.80 25.50
generous MIP 0.07 100 150.00 51.10 21.90

400 optimal MIP 170.86 60 149.33 34.83 27.17
generous MIP 0.16 100 2355.60 80.85 11.00

aAmount of instances that are solved optimal within the time limit of 15 min. If < 100, averages are taken over the instances that could be solved to
optimality only.

new optimization algorithms we investigate simple stochastic
arrival and departure delay models derived from empirical
delay data from a large German airport. In general, histograms
of delay data exhibit a pronounced non-symmetry (e.g. [18]).
Wu [20], [21] used the two-parametric Beta-probability density
function (PDF) for modeling arrival time statistics (with actual
arrival times ATA, = actual in-block time AIBT, in what
follows). The ATA-PDF is also valid for delays (= ATA−STA)
which differs only by a translation by the deterministic
scheduled arrival time STA. The argument in favor of the
Beta-PDF as compared, e.g., to the log-normal PDF was its
analytical form and easier tractability in calculations. The two
parameters were quantified by fitting to 1999-flight data from
an European airline with sample sizes of 90 flights each for
three different cases of operation: domestic flights, exhibiting
a quasi normal pattern (Beta(18, 20)), short haul international
flights exhibiting a right tailed PDF (Beta(4, 14)), and long
haul (inter-continental) flights which showed a long right tail
(Beta(2, 13)).

Because the Beta-PDF is strictly limited to the open (0, 1)
interval and because standard models of inter-arrival statis-
tics usually are based on the Poisson process (exponential
inter-arrival time distribution), we prefer the two-parametric
Gamma-PDF as fitting model for empirical delay-histograms.
It appears more appropriate for comparing the empirical delay
statistics because it extends to +∞ which captures the empir-
ical data after shifting the values to positivity by subtracting
the largest negative delay (minimum earliness). The family of
Gamma models includes the Poisson process and it has been
extensively investigated recently (e.g. Dodson and Scharcanski
[10]). As will be shown below, the analysis of measured
arrival and departure delay histograms together with Monte
Carlo computer experiments indicate Gamma models to be
a suitable approach for modeling the stochastic part of the
delay dynamics. Following the definition in [10], the Gamma
density represents a generalization of the Poisson model of
inter-arrival time (t) density with mean inter-arrival time τ
and variance σ2 = τ2

α :

f(t; τ, α) =
(α
τ

)α
· t

(α−1)

Γ(α)
· e−αtτ (10)

with shape parameter α and scaling parameter β (defined
via τ = α · β yielding the variance σ2 = α · β2) as
parameters for maximum likelihood fitting of empirical delay
histograms. For α = 1, (10) reduces to the Poisson case of
maximum randomness, i.e. exponential t-distribution ([10]).
For α < 1, (10) models a process with larger variance than
the random process due to clustering, i.e. non-independent
clustered events. For integer α = 1, 2, 3, . . . , (10) models
a process that is Poisson with intermediate events removed to
leave only every α-th, which has a smoothing effect for α > 1.
Citing Dodson and Scharcanski [10]: ”...Gamma distributions
can model a range of stochastic processes corresponding to
non-independent clustered events, smoothed events, and the
random (Poisson) case.”

B. Statistical Analysis of Empirical Arrival Delay Data

We want to investigate the question in how far arrival
and departure delays can be modelled as random events with
random deviations from scheduled times. It is expected that
any realistic model has to be a combination of deterministic
and random components (Abdel-Aty et al. [1], Tu et al.
[18]). This is due to the deterministic character of the flight
plan and the possible influence of delay of an aircraft ai−1
on delay of its successor ai, as well as influence of origin
airport departure delay on destination airport arrival delay, and
arrival delay on departure delay from the destination airport
(turnaround delay). As proposed in [1], we analyze daily
delays observed within the time series of all flights during full
days of operation, as well as delay data from a selection of
single flights over a couple of months (with ≥ 150 monitored
arrival or departure times).

Figure 2 shows examples of arrival delay statistics
f(ATA(=AIBT) − STA) for a single full day of traffic and
arrival delays for a single flight periodically repeated over half
a year. The χ2-acceptance tests of the Γ-fits to the empirical
delay histograms differs significantly between single days as
well as between single flights. This is no surprise, of course,
due to the neglection of any deterministic effect (correlations
between flight arrival times or delays depending on traffic den-
sity, ATC-sequencing, departure delays, previous flight delay,
etc.). Despite the rough matching between histograms and Γ-
fits, the Γ-hypothesis for the single-day case of Figure 2a) and
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Fig. 2. Examples of empirical arrival-delay histograms (AIBT−STA shifted
into R+ by adding |min. earliness|) with Γ-density max. likelihood fits. a)
(top) Full-day (17 hours) traffic with 205 evaluated arrivals (ATA−STA+24
min). b) (bottom) One of 33 single flights measured over 6 months (July-
December 2013), 179 arrivals (ATA−STA+16 min).

for the single flight example of Figure 2b) are both rejected at
the p = 5% level. This is basically due to the deviations around
STA which shows the necessity for including correlations into
a complete model of the delay statistics ([1], [18]).

C. Simulation of Arrival Delays with Baseline Algorithm

With random disturbance of start times we expect our simu-
lation to yield realistic delay distributions, i.e. Γ-distributions.
For testing, preliminary simulations using a heuristic schedul-
ing algorithm (Take Select with parameters 8 and 2 (Helmke
[11]) for complete flights with repeated optimization during
each simulation time step were performed. For this purpose a
simple arrival time-interval model is used as shown in Figure
3.

The arrival time-interval between latest and earliest time
(LT−ET) converges linearly to the target time as optimization
result with regard to minimizing deviation from schedule STA
(according to (1) for the pre-tactical phase, > 20 min before
ET), with a constant phase after entering the TMA, and
a very small time interval leaving path stretching area, i.e.
turning to final approach segment. An iteration of optimized
ai-sequences is calculated for each simulation time step. As
an initial test, disturbance effects introduced at start time
were analyzed for a single day of traffic with the same

Fig. 3. Simplified model for arrival time-interval during a simulated flight
between origin and destination airport. Abscissa: remaining flight duration
ET−tSim. Ordinate: arrival time-interval LT−ET.

STA’s as those in Figure 2a), resulting in a delay statistic
after the final optimization at arrival time (ATA−STA). This
is motivated by the fact that departure delays at the origin
airport have the dominating effect on the arrival delays at the
destination (Performance Review Commission [15], 2013). An
example histogram is shown in Figure 4 of a single flight ai
out of the total number of n = 210 arrivals. The statistics
is obtained from a Monte-Carlo simulation with Gaussian
N(18.2 min, 11.8 min) density for random disturbances of
departure time. Runtime of a single MC-run was 25 s yielding
about 1.5 hrs for the complete statistics of n = 200. The
difference between maximum likelihood fit and histogram
appears significantly better than that one of the empirical delay
data (Figure 2b)) which can certainly be attributed to the
neglected deterministic contributions (e.g., daily and seasonal
periodicities) in the latter case.

Figure 4 depicts the modification of the departure delay-
pdf by the scheduling algorithm. The correlation coefficient
r(α, β) of the Γ-coefficients appears counterintuitive when
comparing the good fit of the simulated data with low α− β
(anti-)correlation value r = −0.88, with the worse fit of the
empirical data, however higher (absolute) value of r = −0.94.
The reason for this effect is the independence of mean τ and
coefficient of variation σ

τ of a random sample with common
PDF being equivalent to the PDF being a Γ-density (Dodson
and Scharcanski [10]). The χ2-test in this case supports the
Γ-hypothesis. However, specific experiments are required,
e.g. with different objective functions, in order to investigate
the reason for the Γ-PDF to provide a good model for the
delay statistics.

As a next step, we will develop optimization methods that
cope with uncertainty, and test them within the simulation
environment instead of using the Take Select algorithm. These
new methods will contain techniques from robust optimization
and stochastic optimization. The abovementioned results of
the empirical data analysis and baseline simulations indicate
the two-parametric Γ-PDF to be a reasonable approach for
modeling the random disturbances for the validation of our
future approaches. For improving the empirical data modeling
we have to include the correlations and periodicities of the
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Fig. 4. Example Monte-Carlo simulation of arrival delays with 200 repeated
runs, with random variations of start time (departure delays) drawn from
N(18.2, 11.8)-Gaussian PDF and using a standard optimizer (Take-Select82).
Histogram depicts a single flight out of a full day scheduling-sequence of
simulated ATA−STA+4 min with the same 210 flights as those of Figure 2.
Γ-PDF fit with χ2-test acceptance (p = 0.58) at 5% rejection level.

delay time-series. For the planned validation of the stochastic
optimizer algorithms additional disturbances will be added
during flight time.

VI. CONCLUSION AND FUTURE WORK

We have developed two mathematical optimization models
for the pre-tactical optimization of assigning time windows
for runway utilization. In these models, several aircraft can
be assigned to the same time window which reduces the
complexity of the problem. The first model can be solved
very fast in practice for determining good pre-tactical solutions
with generous time buffers at the window boundaries. The
second model extends upon the first and yields globally
optimum solutions by modeling occasions at the boundaries
more precisely.

We tested the impact of disturbances on both models. The
results strengthened our intention to enrich the models by
protection against uncertainties. We performed a statistical
analysis of real-world data from a large German airport and
described a simulation environment to test current and future
optimization approaches.

As a next step, we will analyze the nominal models,
presented in this paper, in more detail using realistic data
and test it against standard algorithms (e.g. FCFS) within
our simulation. Furthermore, we will incorporate uncertainty
into our optimization models. Therefore, we will adjust our
nominal models using techniques from robust and stochastic
optimization.
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