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Abstract — The chaotic nature of the atmosphere combined with 
limitations in modelling and an insufficient number of 
observations means that inaccuracies continue to exist even in the 
most state-of-the-art Numerical Weather Prediction (NWP) 
systems. In the world of aviation, Trajectory Prediction (TP) is 
currently mostly based on deterministic meteorological forecasts 
and thus does not take into account the probabilistic information 
available from an Ensemble Prediction System (EPS). One of the 
main aims of the IMET project1 is to quantify the predictability 
of flight planning systems by exploring the impact on TP output 
of ensemble weather forecast (EWF) generated by the EPS. In 
this paper, we use Probabilistic TP (PTP) defined by running a 
TP system n times with n being the number of members in the 
EWF. This allows an ensemble of trajectories to be created, 
which provides uncertainty information on flight parameters 
such as flight duration, and trip fuel cost. The information can be 
used to support decision making regarding the predicted 
trajectory. We demonstrate that the three state-of-the-art EPSs 
used within the IMET project are all capable of capturing 
relevant weather events observed from a large data sample of 
AMDAR2 measurements, thirty-six hours in advance of take-off. 

Index Terms — Trajectory Prediction, Uncertainty, Flight 
Planning, Ensemble Weather Forecast, Ensemble Prediction 
System 

I.   INTRODUCTION 

Despite the advancement of forecasting techniques in recent 
decades, meteorological (Met) forecasts are not perfect and 
uncertainties remain even in state-of-the-art Numerical 
Weather Prediction (NWP) systems. Other than limits in 
modelling and observation techniques, the uncertainty can be 
attributed to the chaotic nature of weather, in which small 
errors in the initial state of a deterministic3 NWP model can 
grow rapidly with time thus yielding a prediction that is very 
different from the actual weather scenario. As of today, 
Trajectory Prediction (TP) is based mainly on single 
deterministic Met forecasts with Airline Operations (AO) 
preferences, and Air Traffic Management (ATM) constraints 
imposed. It follows that an inaccurate Met forecast can result 
in poor estimation of trajectory integrated parameters such as 
flight duration or trip fuel cost, and thus in a suboptimal 

1 IMET: Investigation  of the optimal  approach for future trajectory prediction 
systems to use METeteorological uncertainty information. 

2 AMDAR: Aircraft Meteorological DAta Relay observing system [13]. 
3 Deterministic models give a specific forecast at a specific time and place 

with no representation of uncertainty.

selection of flight paths. Indeed, using a deterministic weather 
forecast makes it impossible to estimate the uncertainties 
involved with any route selected; it is still standard practice to 
use past experiences. In recent years, Ensemble Prediction 
Systems (EPSs) have been developed to quantify the 
uncertainties in Met forecasts [1], and have been made 
operational in various weather centres, such as the European 
Centre for Medium-range Weather Forecast ECMWF, Met 
Office, Météo France, and NCEP, the US National Centers for 
Environmental Prediction. The basis of an EPS is to allow a 
NWP model to run repeatedly, each time with a different 
starting state, and/or different physical parametrizations, 
yielding an ensemble of forecasts. This is illustrated in 
Figure 1. 

Figure 1 Schematic showing uncertainty captured in an Ensemble 
Weather Forecast. 

The starting conditions of each ensemble member are 
carefully generated using observations and statistical methods 
to account for limitations in current modelling and 
observation techniques, aiming to capture the uncertainty 
involved in the forecast starting condition. The forecast 
uncertainty can be quantified by the spread of the end states 
of each member in the ensemble. In order to maximise the 
spread of an EWF, and therefore to cover an even greater 
proportion of possible weather futures, a multi-model 
“SUPER” ensemble can be constructed by combining the 
EWFs of different EPSs. Such a large number of ensemble 
members is more likely to capture Met outliers and give a 
higher degree of confidence in predicting future atmospheric 
evolution. 

An EWF can be applied to existing deterministic TP 
systems to construct a Probabilistic TP (PTP) in which 
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uncertainty in the Met input is translated to uncertainty in the 
PTP output. This is illustrated in Figure 2.  

 
Figure 2 Schematic of Probabilistic Trajectory Prediction based on 
Ensemble Weather Forecast 

More specifically, TP can be applied repeatedly for each 
member of the EWF, yielding an ensemble of trajectories 
including parameters such as flight times and routes for a 
given flight. From an ATM point of view, quantified 
information on the potential impact of Met uncertainty on TP 
output, and knock-on effects on TP based decision support 
tools, provides awareness with respect to the predictability of 
the TP/Decision Support Tool (DST) output, leading to an 
increased level of confidence in the predicted trajectory. Using 
this information, airlines may be able to reduce costs by safely 
carrying less fuel, or carrying more than originally planned to 
avoid unforeseen refuelling at an alternate airport. This is 
being investigated in detail in SESAR WP11.1.  

The paper is structured as follows: Section 2 describes the 
method by which the trajectory ensemble is created; Section 3 
deals with model uncertainty and verifying the models’ ability 
to correctly represent real world patterns. Some results and 
conclusions are touched upon in Sections 4 and 5, 
respectively. 

II.    APPROACH 

Existing deterministic TP systems can be used in 
conjunction with ensemble NWP models to quantify the 
uncertainty in flight planning due to weather. In this study, we 
consider a single deterministic trajectory T0, determined e.g. 
using a deterministic weather forecast. The question is what  
the predictability of an integrated parameter of this trajectory 
is with respect to the ensemble weather forecast. It can be 
estimated by first creating a trajectory ensemble using 
trajectory T0 and each member of the EWF, and then 
calculating the spread of the trajectory ensemble integrated 
parameter. The spread is a measure for the uncertainty of the 
trajectory integrated parameter with respect to the EWF. If the 
spread is small, the parameter is relatively insensitive to the 
EWF, and hence highly predictable. If the spread is large, the 
parameter is highly sensitive to the EWF, and relatively 
unpredictable. In the latter case, one could seek alternatives 
which are more predictable. 

Given any trajectory, the uncertainty due to weather from a 
user’s perspective can be assessed by creating a Probability 
Density Function (PDF), which involves calculating the 
relevant parameter of interest (e.g. flight duration, fuel cost) 
along the specified route in each possible weather projection. 
The user is then able to select the trajectory which best suits 

his requirement. For simplicity, only time/fuel costs are 
considered here. 

In general, it is assumed that the end user provides the 
initial trajectory T0, and a set of potential alternative 
trajectories T1, T2,…, Tm. The set could be constructed in 
various ways, e.g. taking into account different preferred 
rerouting options. Each potential alternative trajectory Tj, 
j=1,...,m, is examined on predictability with respect to the 
EWF. To this end, for each j, the corresponding trajectory 
ensemble T1,j, T2,j,…, Tn,j, and the spread of the trajectory 
integrated parameter are calculated. This is illustrated in 
Figure 3. 
 

 
Figure 3 Example PDFs for trajectory integrated parameters. 

In IMET, potential alternative trajectories are created by 
iteratively running the TP system supplied by NLR, reusing 
the input for the deterministic trajectory T0, except for the 
weather forecast, which is replaced with members of the EWF. 
Thus, in IMET, we have m=n. 

For predictable weather conditions, it is likely that the 
ensemble trajectory ensemble members will be geospatially 
similar, which implies a small spread, thus simplifying 
decision making in ATM. In Figure 3 this is illustrated by 
trajectory T1. The column entries tk1 denote the time/fuel cost 
to fly along route T1 in weather scenario k (k=1,…,n). At the 
bottom of the corresponding column, an approximation of the 
PDF of the cost for T1 due to weather (keeping other TP input 
parameters fixed) is displayed. The end user could decide to 
use the fuel amount estimated using T0.  

In contrast, if the weather conditions are unpredictable, 
which is often the case under severe weather conditions, and 
assuming TP is able to produce trajectories avoiding severe 
weather areas (e.g. [2]), geospatially dissimilar trajectories or 
bifurcations may be observed in trajectory ensembles. This 
topic is discussed at length in [3]. As each member of the Met 
ensemble, and hence each member in the trajectory ensemble, 
is equally probable, as is assumed by design, this presents 
difficulties in decision making on flight planning without 
further analysis. At the bottom of the second column in 
Figure 3, a PDF of the cost for trajectory T2 due to weather is 
displayed. The relatively large spread makes it difficult to 
choose an appropriate amount of fuel. The end user might 
choose to take (at most) the average value on board, and 
accept the risk of unforeseen refuelling at an alternate airport, 
or to take more than the average value on board, to reduce the 
risk of unforeseen refuelling, or to look for an alternative 
trajectory leading to a smaller spread. Optimisation of weather 
forecast for TP has been addressed in detail in IMET. The 
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approach is also applicable to other ATM areas, e.g. Flow 
Management ( [4], [5]). 

III.   MODEL DESCRIPTION AND VERIFICATION 

In order to demonstrate that the EPSs can reliably reproduce 
real world wind patterns, before coupling to the TP system, the 
Met ensembles were to be verified against wind observations. 
Three different EPSs have been verified: Prévision d’Ensemble 
Action de Recherche Petite Echelle Grande Echelle (PEARP), 
Met Office Global and Regional Ensemble Prediction System 
(MOGREPS) and the EPS of the ECMWF. A combination of 
these ensembles is then used to produce a SUPER ensemble, 
which has also been verified. Each of the ensembles and their 
verification is discussed hereafter. Two key measures of each 
ensemble have been analysed, namely the resolution (the 
ensemble’s ability to discriminate between events) and the 
dispersion (the ensemble’s ability to capture the envelope of 
possible weather scenarios). 

A. PEARP 
The French operational global ensemble forecasting model, 

PEARP [6] consists of 35 members (one control plus 34 
perturbed members) run twice daily at 0600 UTC (+72 hour 
forecast range) and 1800 UTC (+108 hour forecast range). 
PEARP was conceived as a short-medium range (4-5 days) 
ensemble with a maximum horizontal resolution of 15.5km 
over France. The perturbed members of PEARP are 
constructed by using a combination of ensemble data 
assimilation and singular vectors for the initial conditions (IC) 
while model uncertainties are represented through a multi-
physics approach. The output interval of the model is 6 hours. 
B. MOGREPS 

MOGREPS [7] has been the Met Office’s operational EPS 
since 2008. MOGREPS consists of 12 members (one control + 
11 perturbed) and is run at t=0000, 0600, 1200 and 1800 UTC 
daily. The IC of each ensemble member is generated using the 
ensemble transform Kalman filter as described in [8]. Unlike 
other EPSs (e.g. the one at ECMWF), MOGREPS is designed 
to represent Met uncertainty in the short range (days 1-2) 
rather than medium range (days 3-10), which coincides with 
the time frame in which Reference Business Trajectories 
(RBTs) are usually determined. The version of MOGREPS 
used in this study covers the whole of the globe and has a 
horizontal resolution of N 400 (33km at mid-latitudes) with 70 
model levels in the vertical. The output interval of the model 
is 3 hours. 
 
C. ECMWF 

The Integrated Forecasting System (IFS) of the ECMWF is 
a 51 member ensemble (1 control + 50 perturbed members) 
has a forecast range of up to 15 days with forecasts being run 
twice daily at 0000 UTC and 1200 UTC, at a horizontal 
resolution of 32 km (16 km for the control) and with 91 layers 
(137 layers for the control) in the vertical. The ensemble has 
an output interval of 6 hours. The 50 different ensemble 
members are constructed using a combination of perturbations 

upon the ICs (singular vector technique), an ensemble data 
assimilation approach and by stochastically perturbing the 
models physical parameterisations [9]. The dates considered in 
this study are from the 1st of January 2015 to the 31st January 
2015 inclusive and applies to all the NWP models described. 
 
D. SUPER 

A multi-model ensemble system was constructed by 
combining the three previously introduced EPSs. The 35 
members of PEARP, the 12 members of MOGREPS and the 51 
members of the IFS were mixed together in order to form a 98 
member EPS. This ensemble was initialised at 18UTC, just like 
the PEARP and MOGREP EPSs and 6 hours after the 
initialisation time of the ECMWF EPS. This meant that the 
SUPER ensemble had a forecast range of +42 hours. The output 
interval of the model was 6 hours as this was the interval 
common to all component models. 
 
E. Model verification  

A comparison of the inherent uncertainty that exists for each 
of the NWP models introduced above was carried out by 
comparing the capacity of each of the models to forecast the 
observed wind values at a fixed flight level of FL340 
(corresponding to 250hPa). Wind observations from the 
observational Aircraft Meteorological Data Relay (AMDAR) 
database for a domain encompassing much of Western Europe, 
the North Atlantic and North America as far as the Midwest 
(75N-10N, 105W-15E) were used. Such a large geographical 
zone and relatively long time period meant that for each model 
validation time, thousands of AMDAR observations were 
available and thus a statistically robust calculation of the Met 
uncertainty could be undertaken. 

The ensemble forecasts utilised covered a time window 
from the initialisation time (1800 UTC for 
PEARP, 1800 UTC for MOGREPS and 1200 UTC for 
ECMWF) to 48 hours ahead, thus falling well within the RBT 
requirement of having a reliable probabilistic forecast 36 hours 
in advance of take-off time. However, since only a forecast 
window of +42 hours is common to all ensembles, this is the 
window reported upon here within. 

In order to determine the resolution of the different models, 
an ensemble skill score called a Relative Operating 
Characteristic (ROC) was used. A complete description of the 
score and its meaning can be found in [10]. The ROC score 
determines the ensemble’s ability to correctly reproduce hits 
(when an observed event is forecast), correct misses (when an 
event is not observed and not forecast), false alarms (when an 
event is not observed but forecast) and misses (when an event 
is observed but not forecast) for a prescribed observational 
threshold. These four factors allow a contingency table to be 
produced and thus the Probability of Detection (POD) and 
False Alarm Rates (FAR) to be calculated. An example of a 
contingency table is given in Figure 4. The area underneath 
this curve (a score value between 0.5 and 1, with 1 being a 
perfect ensemble) of POD’s versus FAR’s is then used as a 
measure of the usefulness of an ensemble. 
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The models’ spread was measured using a score called the 
Reduced Centred Random Variable (RCRV). This score 
compares the average of each ensemble to the observational 
data taking into account the observational and model error. A 
value of 1 for the dispersion of the RCRV indicates a perfect 
level of ensemble dispersion while a value greater than (less 
than) 1 indicates under-dispersion (over-dispersion).  

An important factor to be taken into account in the RCRV’s 
calculations is the observational error σ0 . Following the 
example of the σ0 value used in the ARPEGE Four-
dimensional Variational Assimilation (4D-VAR) data 
assimilation process, the observational error for an AMDAR 
observation was taken to be equal to 2.3m/s. A more complete 
description of the score can be found in [11] and [6]. 

Along with the ROC and RCRV scores of each of the 
operational ensemble products introduced in the previous 
sections, the scores related to a multi-model ensemble (referred 
to as SUPER), comprised of a mix of the ECMWF, 
MOGREPS and PEARP ensembles, were also measured. This 
was done in order to underline the advantages of having as 
 

  
Figure 4 Example contingency table from which a ROC curve can be 
plotted. 

 
many ensembles at ones’ disposal as possible.  

Figure 5 shows the area underneath the ROC curve for 
each of the three operational ensembles, along with the 
SUPER ensemble, at a horizontal resolution of 0.5 (56km) and 
for a lead time of +42 hours after initialisation time. The 
values plotted represent the median value of the score while 
the extremes of the error bars represent the 5th (lower bound) 
and 95th (upper bound) percentile values, after performing a 
statistical test known as a boot-strap test [11].  

The scores were calculated for an observational wind 
threshold of 55 m/s (average observed for January 2015, 
+10%). Since in real-time it takes approximately 10 hours 
after initialisation to have access to all three ensembles (for 
example, a run of PEARP at 1800 UTC becomes available at 
around 0400 UTC the following day), only the scores from the 
+12hr lead time onwards are relevant for TP. The previous 
time steps are included for completeness, and to give an 
impression of the evolution of the ensemble scores in relation 
to lead time.  

What Figure 5 illustrates is that for a lead time of +36 
hours, one obtains scores in the range 0.82 to 0.93, indicating 
an excellent level of model resolution in all models. As the 
lead times increase, the area under the ROC curve score of the 
SUPER ensemble becomes the best amongst the four 
ensembles.  

 
Figure 5 Area under the ROC curve for each operational ensemble 
and for the SUPER ensemble for a lead time of up to +42 hour after 
initialisation for the month of January 2015. 

This not only underlines the importance of using multi-
model ensembles, but also demonstrates that each of the 
ensembles does a good job in reproducing the observed 
situation and could be relied upon to capture the envelope of 
possible weather futures. Figure 6 displays the dispersion of 
the RCRV, and gives an indication of the spread in each of the 
models. 
 

 
Figure 6 The dispersion of the RCRV for all operational models and 
for the SUPER ensemble for the month of January 2015. As in Figure 5, 
the error bars represent the 5th and 95th percentile values of the score. 

In order to compliment the ensemble spread illustrated by 
the RCRV, each model’s bias is shown in Figure 7. Zero bias 
means that the ensemble neither under- nor over-forecasts the 
wind at altitude with air pressure 250hPa, while negative 
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values suggest a slight under-forecast, with positive values 
indicating an over-forecast. The dispersion of the RCRV in 
Figure 6 illustrates that at early lead times, all models tend to 
under-disperse somewhat. However from the +12 hour lead 
time onwards (the first realistically usable ensemble output), 
the dispersion of all models increases illustrated by the values 
getting closer and closer to 1. Indeed for the SUPER 
ensemble, the perfect score of 1 is attained at +12 hour lead 
time while it also displays the best levels of dispersion of all 
the models for all other lead times. This underlines again the 
clear advantages of a multi-model ensemble approach for TP 
as even at lead times of +36 hour the SUPER ensemble gives 
an excellent level of dispersion and thus is sure to capture the 
entire envelope of possible weather futures.  

 
Figure 7 The bias of the RCRV for all operational models and for the 

SUPER ensemble for the month of January 2015. As in Figure 5 and Figure 6, 
the error bars represent the 5th and 95th percentile values. 

Figure 7 displays the bias of the RCRV, and further verifies 
this point. All models give very low levels of bias with values 
varying between 0.2 and 0.1. This alone points to a reliable 
representation of the observed situation. However, as was the 
case in Figure 6, it is the SUPER ensemble bias which follows 
the most satisfactory evolution throughout the different lead 
times and thus underlines its ability to more accurately capture 
the observed variability than simply one operational ensemble 
would on its own.  

All of the scores illustrate a very high degree of confidence 
in the different models’ ability to accurately and reliably 
forecast the observed situation. However, a SUPER ensemble 
utilising ensemble products from many operational centres 
seems to be the most reliable and would thus be a preferred 
option for the TP. 

 

IV.   RESULTS 
 

As an example, the MOGREPS ensemble was used as an 
input to a Dijkstra-based [12] TP in order to demonstrate 
quantitatively the benefits of using ensemble TPs. The case 
study of a flight from London (EGLL) to New York (KJFK) on 
the 25th of January 2015 was used. This could also have been 
done using the ECMWF, Météo France and SUPER ensembles, 
but for the purposes of this study, solely the results obtained 
using the MOGREPS model, are reported upon.  

Figure 8 provides a graphical representation of the 
trajectory matrix for this case. The trajectories Tj are shown in 
individual panels and a PDF of the flight times for each 
trajectory is shown in the bottom right of each panel. This 
(Gaussian) PDF has been constructed using the mean value 
and the spread of the 12 flight times obtained from the 
trajectory ensemble. In this particular example, it is observed 
that the predicted (sub-)optimal trajectories are very similar for 
each member of the MOGREPS ensemble, with the exception 
of two members (shown on rows 2 and 3 of column 2, referred 
to as outliers) which picked a high latitude route.  

Assuming the predicted trajectories shown are indeed 
optimal for the corresponding member of the ensemble, the 
outliers Tj have a PDF with a long tail, which implies that they 
might be the quickest to fly under certain weather projections 
and that it will take much longer to fly along other weather 
projections of the ensemble. In this case study, decision 
making is relatively easy as the outliers have a long average 
flight time (location of the peak of PDF) with large spread 
(width of PDF) in flight times. The user can choose any 
trajectory shown as they are all very similar to each other, both 
in terms of the trajectory taken and the PDF of spread times. 
The fact that the majority of the trajectories and their 
corresponding PDFs are similar in this case study provides an 
additional level of confidence. 

V.   CONCLUSIONS 
 

The objective of this paper was to assess a PTP system 
incorporating state-of-the-art ensemble weather forecasts into 
an existing deterministic TP system. The methodology 
considered is applicable to any deterministic flight planning 
support TP system. Using ROC and RCRV as metrics, it can 
be shown, as has been illustrated here for TP, that all of the 
state-of-the-art EPSs considered (ECMWF, MOGREPS and 
PEARP) are capable of capturing specific nominal weather 
events observed from AMDAR measurements 36 hours before 
take-off time.  

We have also illustrated that the Met performance can be 
further improved by combining the different EPSs to form a 
so-called SUPER ensemble. As an alternative to a 
deterministic TP system, we presented in this study an 
ensemble TP system from a single trajectory and the members 
of the ensemble Met forecast. Each member in the trajectory 
ensemble represents the optimal path from the origin to the 
destination predicted by TP using the corresponding weather  
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scenario (i.e. the member of the Met ensemble) as input. 
Assuming that there is no update to the observations 
available, it is impossible to determine which weather 
scenario represents the future the best, as EPSs are designed 
in such a way that each projected weather scenario is 
assumed equally probable. To support decision making, the 
uncertainty involved in each member of the trajectory 
ensemble was visualised. That is, for each member the 
calculation of the cost (e.g. flight duration, fuel usage) was 
repeated for each weather projection, yielding a PDF of the 
cost involved. This would allow TP users to select the 
trajectory that meets their optimum cost distributions (i.e. 
full/time constraints). For instance, if low uncertainty in the 
Required Time of Arrival (RTA) is mandated (e.g. at 
congested airports) the total fuel cost may necessarily 
increase. In contrast, minimising total costs at the expense of 
higher flight time uncertainties may be more appropriate for 
other flights.  

The IMET approach is currently being validated in 
SESAR WP11.1, validation exercise 791. 
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