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Abstract—Air transportation systems display a rich phe-
nomenology connected with several key topics in Complexity
Science, such as complex networks, cascading failures and
percolation. One example is flight delays that have usually the
origin in primary events localized in limited areas of the network,
but can later multiply and magnify as the daily operations go
along. Given the large costs that delays convey, it is important
to characterize their propagation and to model with predictive
power the potential components or areas of the network affected.
In this paper, we discuss the validation of an agent-based
model, developed within the framework of the SESAR WP-
E TREE project and aiming at simulating the propagation of
delay in the ECAC airport network. Simulation outcomes are
systematically confronted with empirical flight performance, the
results show a good level of agreement with accuracies and
precisions. Furthermore, we use the model to assess the effect on
delay reduction in the network of two delay reduction scenarios:
dropping passenger connections if the delay induced goes beyond
a given threshold τ , or decreasing the service time of aircraft in
the airports if they delay is larger than a given value ∆. Our
results show how optimal values of τ and ∆ can be found within
the simulation framework.

Keywords—Reactionary delays; Complexity Science; Disruption
Management; Network Performance

I. INTRODUCTION AND BACKGROUND

Yearly direct costs of flight ATFM delays (not counting
indirect costs such as reputation damages suffered by the
airlines or business opportunities missed by the passengers)
amount in Europe to over one billion euros [1]. Understanding
the patterns in which delay propagates through the airport
network is therefore a problem of high economical relevance,
besides also being interesting from a more theoretical point of
view as a real-world example of complex system displaying a
rich dynamics. Since airlines and airports operate as a highly
interconnected network, they can easily be subject to cascading
failure effects: a local disruption originated in one part of the
system can spread and multiply, affecting other parts which
may be geographically far away and/or not be connected in
an obvious way with the source of the perturbation.

The state of the art in this subject is predominantly focused
on the US system, even in cases when the investigation is
performed by European researchers. This might be caused

by the fact that data are more readily available for the US
[2]. Optimization of airline schedules for robustness against
delay spreading has received much attention. For instance,
[3] described a model to produce schedules minimizing the
crew cost and maximizing the number of crew members
who are available for swapping during operations in case the
necessity arises. On the other hand, [4]–[6] focused respec-
tively on maintenance routing constraints, redistribution of
existing slack and multi-objective optimization. [7] identified
the reduction of primary delays in the earlier part of the
schedules as a key ingredient to limit the propagation of
delays, and [8] carried the analysis further, considering the
relationship between the system’s resilience and the schedules
of both aircraft and crew. In [9], several of the authors
of the present paper introduced a model to reproduce the
propagation of delay in the US airport network. The model
was later employed to study the robustness of the network
to perturbations at the flight and airport levels [10]. [11]
presented a mathematical model of delay propagation taking
into account the explicit distinction between controllable and
random factors influencing delay propagation, with the goal
of estimating the needed adjustments to slack and flight time
allowance to minimize the impact of the random compo-
nents, namely the variable airport turnaround time between
flights and the variable flight time. The approach presented
in [12] models each airport as a stochastic queuing system,
and uses a delay propagation algorithm to update sched-
ules and demand levels at the network level in response to
local delays. A statistical departure delay prediction model
for a single airport is developed in [13], classifying delay-
inducing factors as seasonal trends (such as seasonal demand
change), daily propagation patterns and random residuals,
i.e. those not accountable in the first two categories, such
as unexpected mechanical failures. On the European side,
[14] found that approximately 50% of delays for low-cost
airlines were reactionary, while the percentage dropped to
40% for regular airlines. This is consistent with the estimates
published by Central Office for Delay Analysis (CODA) of
Eurocontrol [15]. [16] used a mesoscopic model to capture
the emergence of network properties such as performance
degradation, behavior predictability, amplified impact of exter-
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nal events and geographical stability, obtaining straightforward
performance results associated to specific flight prioritization
rules. Resilience to delay propagations depends strongly on
the strategies employed by the airlines; [17] offers a good
description of the most important factors to be considered,
while [18] argued that an approach based on passenger-
centric metrics is desirable. Last year, we also introduced an
agent-based (TREE) model extending and adapting the model
developed for the US [9] to the different way of carrying out
network operations of the ECAC area [19]. These modeling
approaches can help to tackle scenarios such as [20], which
uses a dynamic programming approach to solve the problem
of finding the right amount of time a late passenger should be
waited.

In this paper, we show the systematic validation of the
TREE model by comparing model predictions and empirical
flight performance data. The validation is implemented at
three different scales: predictions on delayed flights, congested
airports and major network congestion. In all three levels, the
TREE model predictions adjust to empirical events with high
precision and accuracy. Since the performance data come from
different sources, it is also possible to study the impact of
uncertainty of the input in the final model performance. After
the validation of the model, its potential for policy assessment
is shown by considering two delay reduction scenarios and
how they affect the system level congestion. The first scenario
considers a threshold to the maximum time that an airline waits
for a passenger before dropping the connection. The model
allows to explore the possible threshold values systematically
and to search for an optimal value. Similarly in the second
scenario the service time of an aircraft in the airport is reduced
(with a cost) to recover delay. This second mechanism does
not have such a strong impact in the network, although an
optimal time before triggering this process may also exist.

II. MODEL DESCRIPTION

A. Usage of empirical data within the model

The model follows the state of each aircraft and airport
as the aircraft attempt to perform the scheduled flights in
their daily rotations. Delay can be propagated between flights
through several mechanisms: aircraft rotations, passenger and
crew connections, and limited airport capacities - the max-
imum number of aircraft movements which can take place
during each hour. The model is data-driven in the sense
that as many details of the simulated system as possible
are reconstructed from empirical data, accounting for airport
capacities, passenger connectivity patterns, flight schedules
and primary delays. The output of each simulation run is
primarily the amount of reactionary delay each flight has
suffered, as well as the structure of the simulated delay
propagation trees, i.e. from/to which flight the delays were
propagated. Since stochastic processes are involved, the results
need to be averaged over multiple runs when compared with
empirical data, as described in section III.

The capacities of the airports are obtained from Eurocon-
trol’s DDR2 (Demand Data Repository). Capacity of other

airspace structures than airports such as sectors has not been
considered. In the case of strong external perturbations, such
as bad weather or strikes, airports typically operate at a lower
capacity, and this must be taken into account in the modelling
in order to obtain good results. In this paper, however, we
are focusing on the validation of the model in nominal
conditions (those in which no major external disruptions as
extreme bad weather or strikes affect the system). Note that
the airports may have more than one capacity value depending
on the operational configuration of the runaway and the wind
intensity and direction. However, here for simplicity sake, a
single capacity value per airport is considered.

Passengers on one flight might connect to another at the
destination airport, and the latter might need to wait for them
if the airline determines it is economically convenient. In our
model, this process is represented in a stochastic way. Each
flight Fi has a set of connection candidates Fj , which satisfy
the properties:

• Fj’s origin airport coincides with Fi’s destination.
• Fj’s scheduled departure time lies in a time window

starting at Fi’s scheduled arrival time plus a buffer time
TP , and ending at T ′p. TP represents the minimum time
needed for passengers to transfer from one flight to the
other. In the model, it is the same for all airports and
flights, and set at 45 minutes, while T ′p is set at three
hours.

The actual connections are selected randomly between the
candidates at the beginning of each simulation run. The
probability of a flight being selected depend on the airlines,
origins and destinations of both Fi and Fj , and the time period
(the month) in which the day to be simulated is located, and
were determined by analyzing market sector data obtained
from Sabre [21]. Connections are only allowed between flights
operated by companies in the same alliance, and passengers of
point-to-point airlines (such as Ryanair or Easyjet) do not have
connections. We introduce an effective parameter α ∈ [−1, 1],
so that there are no connections for α = −1, all passenger
connect for α = 1, and connection probabilities are the same
as in the market sector data for α = 0. For every other value of
alpha, the probabilities are obtained by linearly interpolating
between the extreme cases above. The market sector data of
Sabre contains information on the monthly flows of passengers
in each route. It is indicative of the possible connections but it
does not necessarily reflects the daily flows. The parameter α
is thus needed to modulate the importance of the connections.
Although its value should be close to zero (α = 0 can be used
in absence of further information), its optimal may variate
from one day to another.

As a final flight coupling mechanism, crew members may
also connect from one flight to another. Typically, the effect
of crew connectivity in the model is minor since the crew
teams are maintained together along the aircraft rotation.
However, in some cases the teams may split and some crew
members may connect to develop their tasks on other flights.
The absence of a crew member is major issue, if we are
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talking about pilots or co-pilots it may ground the aircraft
until the arrival of the connection. This is implemented in the
model in an effective way by adding a certain probability of
connecting flights within the same airline. The probability of
a two-flights connection is approximated by the fraction of
connecting passengers of the airline in the particular airport
multiplied by a tuning parameter γ. In hub-and-spoke airlines,
this method ensures that the crew connections occur in the
main hubs of the company. While in the case of point-to-
point airlines, the connections are set in the logistic hubs
that are the only airports for which we assign a non zero
crew connection probability. The simulations presented here
have been performed with γ = 0.01. Other values of γ have
been also tested but the results are not very sensitive to this
parameter as long as it is maintained within a reasonable range.
Passenger connections play usually a much more significant
role than crew connectivity.

B. Simulation strategy

A detailed description of all the elements of the model
was provided in [19]. We summarize next the most relevant
mechanisms involved in the simulations presented in this work.
The model uses an event-based approach, where events consist
of determining whether a flight is ready to depart or delayed
(εF ), or whether the traffic demand at one or more airports
exceeds the nominal capacity (εA). Initially, the (priority)
queue of events is populated as follows: one event εF (i) is
placed at the scheduled departure time of each flight Fi, and
one εA is placed at the beginning of each hour.

When executed, events of type εF (i) will cause flight Fi

to depart if its actual departure time τ (sum of scheduled
departure time and total delay) coincides with the current
time in the simulation. If the actual departure time has not
yet been reached, another εF (i) is scheduled at τ , in case i
acquires further delay before being able to depart. Then, delay
is propagated to the connections according to the following
rules:
• If Fj is the next leg of the Fi rotation, then there must

be TT between the actual arrival of Fi and the departure
of Fj .

• If Fj must wait for passengers coming from Fi, TP
minutes must pass between the actual arrival of Fi and
the actual departure of Fj .

Where TT and TP were defined in section II-A, and Fj

acquires reactionary delay so that the above conditions are
met. Once a flight has departed, it will arrive at destination at
the scheduled arrival time plus its delay, i.e. the duration of all
flights is fixed, and can no longer be influenced by any other
event. This is a simplifying assumption to avoid the complexity
of dealing with trajectories, sectors’ congestion and weather
effects on aircraft navigation. Typically, the flights within the
ECAC area are not long so this approximation should hold but
this is one of the limits of the model.If a flight has accumulated
a delay of over four hours, or has been delayed past the end of
the day, it is cancelled (and so are the next legs of the rotations,
if any) instead, so it does not propagate delay any further.

Note that even though this condition may seem excessively
restrictive, flights departing past the end of the day do not
contribute to the evolution of the largest cluster (see section
III), and cancellations during the day happen rarely in the
simulations.

Events of type εA check the capacity demand at each
airport, by counting the number of flights departing from or
arriving at the airport taking the delays into account. At every
airport with excess demand, the following actions take place:
• The hour is divided into a number of consecutive slots,

whose number is equal to the airport’s capacity.
• The affected flights choose a slot each, on a first-

scheduled-first-served basis. Scheduled departure (arrival)
is used for the departing (arriving) flights to determine
the priority. Each flight chooses the free slot closer to
its scheduled departure (arrival) time, and its delay is
updated if needed.

• The flights that are not able to find a slot are “passed
over” to the next hour, and the procedure is repeated until
there are no more flights to re-schedule.

This method can be seen as a simplified version of the CASA
(Computer Assisted Slot Allocation) algorithm. One exception
to this rule is that flights which have already departed at
the moment this procedure takes place are allowed to land
regardless of the capacity constraints. Finally, there exists
the possibility that both the origin and destination airports
of the same flight are having demand problems at the same
time period. In this case, the procedure might return two
different pair of arrival/departure times for the same flight,
one corresponding to the ”preference” of each airport, and the
earlier possible combination is chosen.

III. VALIDATION METHODOLOGY

The validation of the model and the analysis of the results
are based on the notion of cluster of congested airports. Since
we are interested in modelling the European air transportation
system at the daily level, we consider a different airport
network for each day, so that two airports are connected if
there is at least one direct flight between them in the day’s
schedule. We define an airport as congested if the average
departure delay (calculated hour by hour) exceeds a given
threshold, the proper value of which is to be determined so that
it is coherent with the input dataset (see section IV). As a way
to track the evolution of system-wide congestion, we use the
size of the largest cluster of congested airports, i.e. the largest
subset of the network satisfying the following properties:
• All the nodes in the subset are congested.
• For each pair of nodes in the subset, there is at least

one sequence of adjacent edges connecting them that is
entirely contained within the subset.

In principle there can be many congested clusters, but for the
sake of brevity we will use the term “congested cluster” to
refer to the largest one. The central idea is that the largest
size reached by this cluster through one day could be a
good proxy of whether the system displayed network-wide
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Fig. 1. European airport network from the 20 Jun 2013 Dataset. The airports
in the largest congested cluster between 20:00 and 21:00 (CET) and their
connections are highlighted in red. Node size is proportional to the average
departure delay during the considered hour.

disruption problems, so the parameters of the model should
be selected in such a way that correctly reproduces this value.
Therefore, for each day it is possible to find a best-fit value
of α by minimizing the difference between empirical and
simulated peak cluster size.

Once that is done, a more thorough analysis can be per-
formed on the results of the simulations. From the quali-
tative point of view, we expect that if the model performs
well, it should be able to reproduce the temporal evolution
of the largest cluster’s size and the total cumulative delay.
Quantitatively, on the other hand, it is important being able
to predict whether a particular flight will be delayed or an
airport will be congested. Due to the stochastic nature of the
model, delayed flights and congested airports may change from
one model realization to the other. In an ideal context, the
empirical situation would correspond to one of these model
runs. We need to find, therefore, an alternative pragmatic way
of assessing the quality of the model predictions.

For the flights, this is done using delay probabilities across
model runs by means of the following procedure:
• At the end of each simulation run, find the Nd flights

with the highest total reactionary delay, where Nd is the
number of reactionary delayed flights in the empirical
data.

• The Nd flights which appear most often in the list of
delayed flights across model runs are those most likely
to incur into reactionary delays and they are compared
with their empirical counterparts. The rest of the flights
are considered to be non-delayed.

It is important to note that flights with primary delay in the
input schedule are excluded from the above analysis, since they
will always be delayed after every realization. The procedure
for the airports is analogous, but the ranking is based on how
many time the airports appear in the simulated largest cluster
during the hour in which the cluster’s size reaches its peak,
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Fig. 2. Comparison between empirical data and simulation for the 20 Jun
2013 dataset: size of the largest congested cluster (a) and total cumulative
delay (b) as a function of time.

and the number of airports predicted as delayed is equal to the
number of airports in the empirical cluster at peak time. Once
these steps are done, we test the predictions of the model using
the standard definitions of accuracy and precision for binary
classification problems, i.e.

Accuracy =
TP + TN

S
, (1)

Precision =
TP

TP + FN
, (2)

where TP is the number of true positives (correctly pre-
dicted as delayed/congested), TN the number of true nega-
tives (correctly predicted as non-delayed/non-congested), FN
the number of false negatives (incorrectly predicted as non-
delayed/non-congested), and S the sample size. The accuracy
alone cannot, in our particular case, account for the predictive
power of the model, since in the datasets we used the number
of positives typically is much smaller than the number of
negatives. The use of the accuracy alone requires a more
balanced configuration.
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Fig. 3. Absolute difference between average largest cluster size in the
simulations and empirical value vs. connectivity parameter α.

As a benchmark on the quality of the model predictions, we
will compare the results with those of a fully stochastic null
model. For this model, the set of flights under consideration
marked as ”delayed” or ”non delayed” are selected at random
out of all the positives and negatives in the empirical data. This
procedure mimics a completely uninformed guess on which
flights may be delayed or not

IV. RESULTS

A. Using CODA data

The model is data-driven and so it needs the daily flight
schedules and the primary delayed flights as inputs. The
reactionary delays are then used for the validation. The first
dataset that was had for validation corresponds to the ECAC
network performance on June 20, 2013, and was obtained from
the Central Office for Delay Analysis (CODA) of Eurocontrol.
This data correspond to a day characterized by relatively high
congestion in the absence (as far as we have been able to
determine) of major, disruptive external events such as general-
ized bad weather conditions, strikes or technical problems. The
dataset contains information on 19969 flights, of which only
those internal to the ECAC area were considered. In a limited
number of cases, aircraft rotations presenting “holes” (i.e.
flights originated at a different airport than the one where the
previous flight ended) were found and discarded. The schedule
used as input for the simulations thus includes 15531 flights.
Of these, 6549 have primary delays which serve as initial
conditions, and are therefore excluded from the validation
procedure, which is applied to the remaining 8982 flights. Fig.
2 shows the temporal evolution of size of the largest congested
cluster and total cumulative delay for the real system and the
simulated one. The value of α used, determined according to
the procedure described in II-A, is −0.02, and the goodness
of fit vs α is shown in Fig 3. In this case we are using
Θ = 26.7 minutes, i.e. the average delay per delayed flight
over 2013 according to the 2013 CODA report [15]. In both
cases, there is good qualitative agreement between empirical
data and simulation. Specifically, we note that the position

TABLE I
CONFUSION MATRICES FOR THE JUN 20, 2013 DATASET

Flights Airports

True Positives False Positives True Positives False Positives
991 765 28 21

False Negatives True Negatives False Negatives True Negatives
765 6461 21 352

TABLE II
ACCURACY AND PRECISION FOR THE JUN 20, 2013 DATASET

Flights Airports
Our Model Null Model Our Model Null Model

Accuracy 82.9% 68.5% 90.0% 79.5%

Precision 56.3% 19.5% 57.1% 12.3%

of the cluster peak is correctly identified, and the relative
difference between empirical and simulated total delay is of
the order of 10−3.

Tables I and II summarize the predictions of the model
for this dataset at the single flight and single airport levels,
with both accuracy and precision significantly higher than the
null model. It is worth noting that, since there are many more
non-delayed flights than reactionarily-delayed ones, a trivial
model predicting no delay propagation at all would result in
an accuracy of 80.4%, higher than the null model and close to
the model being discussed, but its precision would be exactly
0%.

B. Extending the results, Flightradar24 data

A single day of data may be enough for a preliminary
assessment of the capabilities of a model, but clearly a more
extensive validation is needed. If the correct parameters have
to be determined by fitting the data, there is no way of
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Fig. 4. Distribution of daily largest cluster sizes for the Flightradar24 dataset.
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determining whether a particular schedule with a particular
set of initial conditions will develop high congestion or not.
The solution is to calibrate the model over a large set of
days, finding a set of parameters which provide an overall best
fit. This is the same strategy that has been employed on the
US system in [9]. We could not access further CODA data
on nominal conditions so in order to move ahead, we have
been collecting data from Flightradar24 for several months:
the analysis presented here covers a time period of 140 days,
starting in March 3, 2015. Flightradar24 [22] is a well-known
website, employing a crowd-sourcing strategy to collect and
publish information emitted by aircraft via transponders. Due
to the service’s purposes and implementation, the data that can
be collected from it are not as reliable as those coming from
official sources, so additional cleaning is needed, and must be
collected in real time.

The first issue to deal with is the fact that actual departures
and arrivals recorded in this database are the actual take-
off and landing times, so they have to be corrected by the
taxi times, otherwise trying to determine the delays by taking
the difference between actual and scheduled departure times
would lead to an overestimation. The taxi times per flight
cannot be accessed, so we solved the problem pragmatically
by subtracting the average taxi-out (taxi-in) time at origin
(destination) airport to the actual departure (arrival) time of
each flight.

The problem with ”broken” rotations in the CODA data
mentioned in section IV-A is also present in Flightradar24
data, but in this case discarding the rotations with missing
flights would be problematic, since they are more than in the
CODA data. The number of “holes”, however, is relatively
small (no more than a few hundreds per day), so we fixed them
by introducing “ghost” flights in their place in the rotations.
The purpose of these is simply to propagate delay (if any) to
the successive part of the rotation, so they are not taken into
account in the analysis of the results.

Finally, since no information about the cause of delays is
present in the data, a way of identifying flights with primary
delay is needed. First, we define for each flight that is not the
first in a rotation the quantity

ρi>0 =
diD − di−1A

diD + di−1A

, (3)

where the index i denotes the flight’s position within its
rotation, diD is its departure delay and di−1A is the arrival delay
of the previous leg. The idea is that a negative value of ρi
means the aircraft has used the turnaround time to recovered
delay between flights, while if ρi is positive it has gained
additional delay. Then, for each day, we sort all the delayed
flights by their ρ in descending order, with the ones which
are the first ones in their rotations on top, and the delays of
the first XNFlights flights (with X to be determined later) are
considered to be primary.

We motivate this choice by noting that these large, anoma-
lous increases in delay are better candidates to be primary
since in the case of very large reactionary delays the airlines

TABLE III
PREDICTION OF CONGESTED DAYS IN THE FLIGHTRADAR24 DATASET:

CONFUSION MATRIX (A) AND ACCURACY AND PRECISION (B)

True Positives False Positives

61 11

False Negatives True Negatives

9 59

(a)

Our Model Null Model

Accuracy 85.7% 50.0%

Precision 82.7% 50.0%

(b)

would react by, for example, cutting the connection. The
question is then how to determine X . In the CODA dataset,
78% of the flights have primary delay, but a flight could
have a small amount of primary delay and a large amount
of reactionary, and for the Flightradar24 database we have no
way of separating the total delay by cause, so a value close
X = 0.78 would lead to introducing an excessive amount of
initial delay into the system. We chose the value X = 0.6
after taking the following considerations into account:
• In the CODA database, 60% of the delayed flights have

primary delay larger than 150% of their reactionary delay,
i.e. their delay is predominantly primary.

• By applying this procedure to each day of the Flight-
radar24 data, the ratio between primary delay and total
delay is typically close to 0.58, which is the value
reported by CODA for the year 2013.

Since this procedure is likely to introduce errors in the
determination of delays, we cannot expect to reproduce with
high precision metrics depending on the exact values of the
delays, such as the total cumulative delay or the distribution of
delays. However, we are mostly interested in determining the
probabilities of flights being delayed and airports and whole
days of operations displaying high levels of congestion, and
this dataset is good enough for this purpose. Note, however,
that there was a price to pay in the accuracy and precision of
the method for not knowing the primary delays. In the case
of the accuracy, the drop from the CODA case to the average
value in Flightradar is of approximately 17%.

Like with the CODA dataset, we proceed by comparing
the simulations’ outcomes with empirical data. In this case,
however, after determining the best value of α for each day,
we selected the value α = 0.011 (the median value of the
distribution of fitted αs), simulated again each day in the
dataset with this value, and then calculated the confusion
matrices. In this case we set Θ = 19.23, the average delay per
delayed flight over all the Flightradar24 data, after departure
and arrival times have been corrected as described above.
The results for each day are shown in Fig. 5; accuracy and
precision are comparable with what was obtained with the
CODA dataset. One exception to this are a small number of
days where the precision drops to a very low value. All of
them exhibit a rather small amount of congestion (and are
correctly identified by the model as non-problematic days -
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Fig. 5. Accuracy and precision for the Flightradar dataset.

see below). The problem can come from the uncertainty in
the predictions associated to a day with very few flights with
reactionary delays.

We then defined Ξ = 44.5, the median value of the largest
daily cluster size over all days in the dataset (see Fig. 4 for the
distribution of cluster sizes). If we consider a day as having
high congestion when its largest cluster size ξ is larger than
Ξ, the question arises whether the model is able to predict
the truth value of ξ > Ξ, i.e. whether a schedule will develop
significant system-wide congestion in response to the input
delay. The results of this exercise are shown in table III. As
can be seen, the model is able to predict highly congested days
with high accuracy and precision.

V. ASSESSMENT OF DELAY REDUCTION SCENARIOS

A. Passenger Connections Moderated by Delay

As a first scenario testing, we focus our attention on the
effect of cutting passenger connections after a certain amount
of delay has been accumulated. In real operations, airline
managers will decide to wait for a connecting passenger only
if is deemed economically convenient. This consideration can
include factors such as the ticket class and the next connections
of the passenger (long range connections may take preference).
However, if the delay that waiting induces in subsequent
flights there can be a moment in which the most advantageous
solution is to drop the connection.

Here, we represent this situation by introducing a threshold
in the delay τ allowed beyond which the connection is
disregarded and the propagation of delay cannot continue.
This policy is applied in the simulation to all the airlines
with passenger connections. By tuning τ , one can pass from a
situation in which virtually no passenger is waited to another
in which only very long delays would justify the connection
drop.

The simulations are run with α = −0.02, as discussed
in the previous section, and several values of τ . The results
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Fig. 6. Impact of cutting passenger connections after a certain amount τ of
delay on the congested cluster (a) and total delay (b).
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Fig. 7. Total lost connections and delay as a function of the maximum waiting
time τ .

for the full network are displayed in Figure 6 both for the
total minutes of delay accumulated in the network until a
certain hour and for the average size of the congested cluster.
Lowering τ the connections play a less significant role in
delay propagation and the accumulated delay decreases. More
interestingly, the effect on the congested cluster is non linear
and relatively strong as can be observed if τ goes from one
hour and a half to 45 mins. Further reductions are not so
impacting.

This new policy has, however, a catch: every connection
dropped between flights means one or several passengers left
on the ground and imply cost for the airlines in terms of
rerouting passengers and fines. There is, therefore, a balance
between the cost incurred due to the passengers not connecting
and the savings obtained from the prevented delays. The TREE
model does not include at this stage economic considerations,
but it is possible to calculate the number of connections
dropped and the improvement in the delay as shown in Figure
7. The lower τ is, the more connections are lost. Assigning
economic values to the delay and the connections, it is possible
to find an optimal balance allowing for a maximum saving in
delays while impacting as little as possible to the connections.

B. Aircraft Service Time Depending on Delay

Another scenario that can be tested is recovering delay by
accelerating ground operations, which in our model essentially
means an on-demand reduction of the parameters TD, TC
and TP , accounting for faster aircraft handling (un-boarding,
boarding, fueling and baggage handling) and transfer of crew
members and passengers - possibly moving them, with an extra
cost, directly from one aircraft to the other without passing
through the terminal. This action is also in the hands of the
airport manager, instead of only on those of the airlines as
in the previous case. Although, the acceleration in the ground
operations can imply an extra cost also for the airports.

In this exercise, we introduce a new parameter ∆, the
threshold delay after which faster operations are triggered.
This could be seen as complementary to the previous scenario,
in the sense that this time the system attempts to reduce delay
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Fig. 8. Impact of a 60% reduction of ground operations time for aircraft
arriving at destination with a delay greater than ∆ minutes on the congested
cluster (a) and total delay (b).

by operating on the flights acting as a source of delay, rather
than on those who are going to be delayed.

The reductions considered are to 80% and 60% of the
minimum standard times in the model. Note that the baseline
minimum times - 30 minutes for the aircraft and 45 for crew
and passengers - were chosen after an expert consultation and
are already relatively tight. Here it is worth stressing that these
values are applied to all the aircraft and all the passengers: this
is an oversimplification because different type of aircraft need
longer or shorter service times and the minimum connection
time of passengers depends on the distance between the
particular gates and the presence or not of security controls
in between. The results of the simulations at network scale
with different values of ∆ are displayed in Figure 9 for 80%
reduction and in Figure 8 for 60%. The effect with an 80%
reduction is noticeable in the total accumulated delay and
in the congested cluster size but not strong. When a 60%
reduction is implemented instead, the effect on the network
is clearer.

Finally, Figure 10 shows the evolution of the total delay as a
function of ∆ for both 60% and 80% time reductions. In both
cases, the relation appears to be non-linear. Since reducing
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Fig. 9. Impact of a 80% reduction of ground operations time for aircraft
arriving at destination with a delay greater than ∆ minutes on the congested
cluster (a) and total delay (b).

service times translates into larger costs, it can be reasonably
expected that, by calculating the savings introduced through
this kind of policy is possible to find a value of ∆ for balancing
costs and savings

VI. CONCLUSION

We introduce a model for the propagation of delay in the
ECAC area and validate it against empirical data obtained from
different sources. The observed performance is satisfactory in
all the levels: predictions on the probability of delay of single
flights, congestion in airports and predictions on whether
a schedule will develop large problems or not. The model
performance can conceivably be further improved with the use
of higher-quality input datasets. The mode is easy to adapt to
take into account different policies applied by the network
managers or other stakeholders. The relative simplicity of the
model implies that it is also efficient, which suggests that this
kind of approach can be used to perform experiments on the
system in order to assess the impact of, for instance, airline
delay management strategies or severe weather perturbations.
These questions are being investigated at the time of writing,
and will be the subject of future work.
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Fig. 10. Total cumulative delay at the end of the day at different thresholds
∆ for triggering a reduction of ground operations time.

We introduce a model for the propagation of reactionary
delays in the ECAC area and validate it against empirical data
obtained from different sources. The observed performance is
satisfactory in all the levels: predictions on the probability of
delay of single flights, congestion in airports and predictions
on whether a schedule will develop large problems or not. The
model performance can conceivably be further improved with
the use of higher-quality input datasets. The model is as well
easy to adapt to take into account different policies applied by
the network managers or other stakeholders. In this sense, we
have considered two examples of how the model can be used
as a supporting tool in the policy assessment. Our focus was
on the global impact of individual airline policies, but a more
detailed analysis, e. g. at the single airline level, is definitely
possible. Furthermore, even if we used the real primary delays,
another interesting direction would be assessing the effective-
ness of different policies against artificial configurations of
primary delays, representing hypothetical crisis scenarios. The
stochastic approach taken in modeling passenger connections
naturally implies some level of uncertainty in the results, but
also allows conclusions to be drawn from incomplete data, i.e.
without knowing precisely the itinerary of each passenger.

In particular, we have analyzed two scenarios in which mea-
sures to reduce delay propagation in the network are tested.
The first one consists of dropping passenger connections if
the delay induced in the flights connecting get over a certain
threshold τ . This is a decision that should be in the hands
of the airline managers. The simulations show that a balance
between the number of dropped connections and the delay in
the network can be searched. This is balance should mark the
optimal threshold time for τ . Depending on the particularities
of each airline operations, this point can be in a different value
of τ but this is something easy to implement in the model.

The second case study contemplates a more complex sce-
nario with a reduction on the service time of flights with delay
over a certain value ∆. The service time reduction involves
airline and airport managers and can have a notable cost. We
consider two reduction values 80% and 60%. Only for the
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lowest values, one can see noticeable effects on the delay
reduction in the network. As before an optimal value of ∆
may exist balancing cost and effect. These two are simple
scenarios but they show already the potential of the model as
policy assessment tool.
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