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Abstract—Efficient planning of runway utilization is one of the
main challenges in Air Traffic Management (ATM). In a previous
paper, we developed a specific optimization approach for the
pre-tactical planning phase that reduces complexity by omitting
unnecessary information. Further, we investigated the impact of
disturbances on our solutions, since in reality uncertainty and
inaccuracy almost always lead to deviations from actual plans. In
this paper, we now present approaches to incorporate uncertainty
directly in our model in order to achieve a stabilization with
respect to changes in the data. Namely, we use techniques from
robust optimization and stochastic optimization. Further, we
analyze real-world data from a large German airport to obtain
realistic delay distributions, which turn out to be two-parametric
Γ-distributions. We describe a simulation environment and test
our new solution methods against standard algorithms (e.g.,
First-Come-First-Serve). The encouraging results show that our
approaches significantly reduce the number of necessary replan-
nings.

I. INTRODUCTION

ATM systems are driven by economic interests of the
participating stakeholders and, therefore, are performance
oriented. As possibilities of enlarging airport capacities
are limited, one has to enhance the utilization of existing
capacities to meet the continuous growth of traffic demand.
The runway system is the main element that combines airside
and groundside of the ATM System. Therefore, it is crucial
for the performance of the whole ATM System that the
traffic on a runway is planned efficiently. Such planning is
one of the main challenges in ATM. Uncertainty, inaccuracy
and non-determinism almost always lead to deviations from
the actual plan or schedule. A typical strategy to deal with
these changes is a regular re-computation or update of the
schedule. These adjustments are performed in hindsight, i.e.
after the actual change in the data occurred. The challenge is
to incorporate uncertainty into the initial computation of the
plans so that these plans are robust with respect to changes
in the data, leading to a better utilization of resources, more
stable plans and a more efficient support for ATM controllers
and stakeholders. Incorporating uncertainty into the ATM
planning procedures further makes the total ATM System

more resilient, because the impact of disturbances and the
propagation of this impact through the system is reduced.

In the present paper, we investigate the problem of opti-
mizing runway utilization under uncertainty. We incorporate
uncertainties into the initial plan in order to retain its feasibility
despite changes in the data. We focus on the pre-tactical
planning phase, i.e. we assume the actual planning time to
be several hours, or at least 30 minutes, prior to actual
arrival/departure times. In our contribution to the SESAR
Innovation Days 2014 [6], we developed an appropriate mixed
integer program (MIP) for this particular planning phase. The
basic idea was that in pre-tactical planning we can reduce the
complexity of the problem by not determining exact arrival
times for each aircraft, but assign aircraft to time windows of
a given size. Afterwards, the impact of disturbances on the
deterministic solutions was investigated. The results showed
that it is crucial to enrich the optimization approach by
protection against uncertainties, in order to produce less nec-
essary replanning. In the current paper, we thus incorporate
uncertainties directly into the model by using techniques from
robust and stochastic optimization. These techniques are then
tested within a simulation environment.

The remainder of this paper is organized as follows: In
Section II, we briefly describe the pre-tactical runway opti-
mization model which we developed in [6]. Afterwards, we
present our robust and stochastic optimization approaches to
incorporate uncertainties into this model in Section III. To test
our solution methods in a more realistic setting, we analyze
real-world delay data from a large German airport in Section
IV (extending the descriptions in [6]), where we also describe
our simulation environment and discuss the obtained validation
results for our new optimization approaches, tested against
standard algorithms. Finally, we conclude in Section V.

II. THE MODELING

For a detailed description of our nominal optimization
model, see [6]. We model the pre-tactical planning phase by
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(12:00 - 12:05)

w2

(12:05 - 12:10)

w3

(12:10 - 12:15)

Fig. 1. Assignment graph. Red edges show a possible assignment: aircraft
a1 and a2 are assigned to time window w1, a3 and a4 are assigned to w2.

assigning time windows to aircraft. We consider single-mode
runways with only arriving aircraft. In our modeling approach
we claim that each aircraft has to receive exactly one time
window as each aircraft has to be scheduled. On the other
hand, the number of aircraft that can be assigned to one
time window depends on its size and the weight classes of
the aircraft. The underlying idea is that, contrary to tactical
planning, we don’t need to determine arrival times to the
minute yet, because we are several hours (or at least 30
minutes) prior to the first scheduled time. Thus, the exact
arrival sequences within the time windows can be decided
later.

For each aircraft, we consider several corresponding times:
• Scheduled time of arrival (ST): a fix time that yields a

benchmark to identify delay and earliness of the aircraft.
This may be the time the passenger finds on his flight
ticket.

• Earliest time of arrival (ET): depends on operational
conditions (and on the impact of disturbances).

• Latest time of arrival (LT): latest time the aircraft can
land without holdings. It depends on the earliest time
ET and on the actual planning time (or start time,
respectively, if the aircraft is still on the ground).

• Maximal latest time of arrival (maxLT): a hard condition
for landing which is calculated with respect to physical,
operational and other relevant conditions (for instance,
amount of fuel, prioritization, etc.).

Those times further determine the corresponding time win-
dows STW , ETW , LTW and maxLTW for each aircraft. Each
aircraft can be assigned to all time windows between ETW and
maxLTW . To model the problem mathematically, we consider
a bipartite assignment graph G = (A ∪W,E) consisting of a
vertex set A of aircraft and a vertex set W of time windows of
a given size in a given time period (ordered chronologically).
An edge (i, j) ∈ E corresponds to a possible assignment
of aircraft i to time window j. In Figure 1 we see a small
example of a bipartite graph with a possible assignment of
aircraft a1, . . . , a4 ∈ A to time windows w1, w2, w3 ∈W .

Our objective is the minimization of delay and earliness,
respectively. Delay is penalized quadratically for reasons of
fairness (e.g., a solution in which one aircraft has a delay
of six time windows is worse than a solution in which two
aircraft have a delay of three time windows each). Earliness
is penalized linearly. If the assigned time window is after
the LTW (i.e. between LT and maxLT), we add an extra
penalization term.

TABLE I
MINIMUM SEPARATION TIMES (IN SECONDS)

Predecessor \ Successor Heavy Medium Light
Heavy 100 125 150

Medium 75 75 125

Light 75 75 75

The constraints in our MIP consist of general assignment
constraints and the modeling of minimal time distance re-
quirement. Those minimum separation times between two
consecutive aircraft depend on their corresponding weight
classes. Hereof, we consider three different aircraft categories
(Light, Medium and Heavy) and use Table I ([9]).

III. INCORPORATING UNCERTAINTIES

In this section, we want to incorporate uncertainty into
the model to receive a robustification of our solution plan.
In general, robustification means to ensure that deviations in
the input data do not have a large impact on the solution.
Considering the optimal solution of the nominal problem, i.e.
the problem where uncertainties are ignored, small deviations
in the input data could have the effect that the nominal
optimum becomes infeasible for the disturbed problem, i.e.
the problem where the input data suffers from deviations.
Computational results that showed a significant impact of
disturbances on our nominal solutions can be found in [6].

In mathematics, there exist different approaches to handle
uncertainty in optimization. In stochastic optimization (e.g.
[10]) the goal is to describe the uncertainty by probability dis-
tributions. Knowing these distributions, one can then optimize
the expected values. A second approach to the problem of
modelling uncertainty is located in robust optimization (e.g.
[2], [3]), where the goal is to immunize against predefined
worst-case scenarios. In contrast to stochastic optimization,
the probability distributions of the uncertainties do not need to
be known. However, one has to predefine uncertainty sets that
determine the values of the uncertain parameters against which
the optimization problem has to be protected. The task is to
find robust feasible solutions, i.e. solutions that are feasible for
all parameter values in the uncertainty set. Among all robust
feasible solutions, the robust optimal solutions are those with
the best guaranteed objective function values.

1) Robust Optimization Approach: In the setting for our
model described in section II (and precisely in [6]), the
uncertain parameters are the ET windows ETW and, dependent
on those, LTW and maxLTW . Hence, we have to predefine an
uncertainty set for each aircraft. Therefore, we have to chose
deviations of the earliest time we want to be protected against.
For each aircraft this yields an interval of possible earliest
times and thus a set of possible ETW ’s. These ETW ’s also
determine the possible LTW ’s.

Now, we actually solve our optimization model from section
II. But in the robust approach we assume an assignment graph
that only contains edges corresponding to assignments which
are feasible for every realization of our chosen uncertainty
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ai

w1 w2 w3 w4 w5

· · ·

w6 w7 w8 w9 w10︸ ︷︷ ︸
possible ETW ’s for ai

︸ ︷︷ ︸
possible maxLTW ’s for ai

Fig. 2. Possible assignments for an aircraft ai in the robust model

ai

w1 w2 w3 w4 w5

· · ·

w6 w7 w8 w9 w10︸ ︷︷ ︸
possible ETW ’s for ai

︸ ︷︷ ︸
possible maxLTW ’s for ai

expected ETW expected maxLTW

Fig. 3. Possible assignments for an aircraft ai in the stochastic model

set. An example of feasible assignments for an aircraft in
the robust model is illustrated in Figure 2. As mentioned, the
robust model assumes the worst-case, i.e. the extreme cases
for earliest time (w4) and maximal latest time (w7) in the
predefined uncertainty set are taken into account, whereas the
other time windows which lay within the uncertainty set for
both times (w2, w3, w8, w9) are forbidden.

2) Stochastic Optimization Approach: We follow a single-
stage stochastic optimization approach in which we optimize
over all assignments which are ”expected to be possible”
dependent on the underlying probability distribution. There-
fore, we consider the expected values for ET and maxLT for
each aircraft, or the corresponding time windows, respectively.
Afterwards, we optimize the obtained ”expected scenario”,
i.e. we solve our mathematical model described above with
edges in the assignment graph that correspond to the feasible
assignments in this scenario. In Figure 3 we show an example
of feasible assignments in the expected scenario for one
aircraft.

A well-known combination of robust and stochastic
methods is to determine the uncertainty set in the robust
approach using stochastic values. The idea is that the
uncertain parameter does not deviate from its expected value
by more than k times of its standard deviation. This can help
to decide which boundaries should be chosen for the time
window uncertainty sets. Note that k = 0 yields the described
stochastic approach.

So far, in this paper we have described a mathematical
approach for optimizing runway utilization in the pre-tactical
planning phase. Further we have enhanced our developed
optimization model by incorporating uncertainties in different
ways (robust and stochastic). In the following section, we now
analyze real-world disturbances from our database from a large
German airport. Afterwards, we describe a simulation envi-

ronment and test our developed approaches against standard
algorithm with those realistic disturbances.

IV. VALIDATION EXPERIMENTS

Understanding and modeling the statistics, dynamics, and
propagation of air-traffic arrival and departure delays is a
prerequisite of any attempt to optimize the punctuality of
schedules and airport capacity, and minimizing necessary
buffer times for required robustness of performance (e.g. [12],
[13]). That is why for validating the new scheduling models
by means of Monte Carlo simulations we start with the design
of an appropriate stochastic delay model.

A. Stochastic Delay Model

For initial validation of the new stochastic and robust
optimization algorithms for aircraft sequencing in the pre-
tactical phase we investigate a simple stochastic arrival and
departure delay model that is tested by means of empirical
delay data from a large German airport. Recently, Caccavale
et al. [4] presented a model for simulating inbound traffic
over a congested hub termed ”pre-scheduled random arrivals”
(PSRA) where they defined the actual arrival time tATA

i := ti
by a close to Poisson process with mean inter-arrival times
1/λ of clients in a queueing line:

ti =
i

λ
+ εi, i = 1, . . . , n ∈ Z (1)

The model is represented by a continuous probability den-
sity function (PDF) fε(t) of the random arrival time variable
ε with finite standard deviation σ and zero mean, without loss
of generality. 1/λ = expected inter-arrival time between two
consecutive aircraft, 1/λ = µ = 〈∆tATA

i 〉 = 〈tATA
i −tATA

i−1〉, with
actual arrival times tATA

i = actual in-block time AIBT, in what
follows. Guadagni et al. [7] prove that this process converges
to the memoryless one-parametric Poisson process for large
σ. This approach overcomes the often used assumption of un-
correlated arrivals as precondition of the Poisson process, i.e.
exponentially distributed inter-arrival times ∆tATA

i . Empirical
histograms of delay data exhibit a pronounced non-symmetry
(e.g. [12]) that was modeled by Wu [14] by means of the
two-parametric Beta-probability density function (limited to
the open (0, 1) interval). For our purpose the family of two-
parametric Gamma (Γ)-PDF’s (limited to R+, with shape and
scaling parameters a, b) appears more appropriate as analytical
model, because it contains the exponential distribution of the
Poisson process as a special case ([5]).

A realistic model of arrival delays, in addition to the asym-
metry has to include a significant amount of early arrivals,
i.e. delay tD < 0. Furthermore, besides the statistics of the
sequence of all different arrivals ai (different flights) during
single days of operation (single day statistics) also single flight
(=airline) statistics (e.g. all arrivals j of the same flight aij
over a time interval of e.g. half a year) have to be modeled
([1]). The delay statistics naturally exhibits daily, weekly, and
seasonal periodicities and trends, i.e. nonstationary behavior.
Consequently any realistic model has to be a combination
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of deterministic and random components ([1], [12]) which
is one reason for the inappropriateness of the Poisson model
that represents maximum randomness. For taking into account
early arrivals (tD<0) each histogram data set has to be trans-
ferred into R+ by subtracting the minimum delay (minimum
earliness tDmin) before data fitting with the Γ-model. The Γ-
PDF as a generalization of the Poisson process of inter-arrival
times (t) may be parametrized by the shape parameter a and
the mean τ .

f(t; τ, a) =
(a
τ

)a ta−1

Γ(a)
e−

at
τ (2)

with normalized time scale t/τ , scaling parameter b defined
via τ = a · b, and the 2nd and 3rd (central) moments
µ2 = variance = σ2 = τ2

a = a · b2, µ3 = 2ab3 = 2σ2b = 2τ3

a2 ,
with skewness γ = µ3

σ3 = 2√
a

, and coefficient of variation
cv = σ

τ = 1√
a

independent of τ . A residual linear correlation
cv ∼ τ of empirical PDF’s would result in an inverse
power law a(b)-anticorrelation. For a = 1, (2) reduces to
the Poisson process of maximum randomness, i.e. exponential
t-distribution. For a < 1, (2) models a process with larger
variance than the random process due to clustering, i.e. non-
independent clustered events. For large a > 1, with the Γ-PDF
approaches a (τ, σ)-Normal distribution.

The Γ-model may be related to the PSRA model by splitting
the average inter-arrival time µ = 1

λ into the deterministic
(schedule) part µSTA and the stochastic delay contribution µ =
µD + µSTA, µD = τ + tDmin (usually tDmin < 0):

tDi = µD + εi = τ + tDmin + εi (3)

where εi collects the random contributions from µ2 and
µ3. The analysis of empirical arrival and departure delay
histograms in the following section IV-B together with Monte
Carlo (MC) computer experiments with the different optimizer
models in section IV-C in fact indicate Γ-models to provide
reasonable approximations for the arrival and departure delay
statistics as one usable metric for the optimizer performance
differences, with characteristic deviations from Γ-PDF due to
the optimization (see Figure 7).

B. Analysis of Empirical Arrival- and Departure Delays and
Derivation of Disturbance Statistics

In this section we model the empirical arrival and departure
delays of flights aij (i = 1, . . . ,m) with a stochastic Γ-process
according to (2) and (3), with delays = random deviations from
scheduled arrival times (STA, flight plan), and we derive an
empirical disturbance statistics for use with the MC-computer
experiments. As proposed by Abdel-Aty et al. [1] we analyze
and model daily delays observed within the time series of all
flights aij (i = 1, . . . ,m > 200) during full days of operation,
as well as delay data from a selection of single flights aj over a
couple of months (with j = 1, . . . , n ≥ 150 monitored arrivals
or departures).

Figure 4 shows an example of arrival delay probabilities
f(ATA(=AIBT)−STA) for a single full day. We also analysed

Fig. 4. Example of empirical arrival-delay histogram (AIBT−STA−tDmin
(earliness: tDmin = −24 min)) from the data base at a large German airport
(shifted into R+) with Γ-PDF fits yielding a, b estimates. Full-day (17 hours)
traffic with 205 evaluated arrivals.

a sample of 33 flights (different callsigns) with ≥ 150 arrivals
each per half year (out of 1384 within 7 - 12/2013). The χ2-
tests of the maximum likelihood (ML) Γ-fits to the empirical
delay histograms differ significantly between single days as
well as between single flights. This is no surprise, of course,
due to the neglection of any deterministic effect (correlations
between flight arrival times or delays depending on traffic
density, previous flight delay, etc.).

The figure legend provides the fit results for the parameter
estimates a, b with Γ-mean τ (same value for empirical his-
togram and ML-estimate), a-b correlation coefficient, and χ2-
test of Γ-hypothesis (0-hypothesis rejection for p < 5%). The
fit example in this case in fact formally should be rejected at
the p = 5% level, basically due to the deviations around zero
delay (AIBT−STA−tDmin = 24 min). Besides the neglection
of the above mentioned deterministic effects, this deviation
around tD = 0 can be explained by active ATC interventions
to minimize delays (replaced by the algorithmic scheduling
optimization in the following section IV-C). Nevertheless
we obtained many examples without 0-hypothesis rejection,
i.e. p(χ2) > 5%. The average fit parameter estimates for
the 33 single flights ai are (±1 stddev): 〈a〉 = 3.5(1.3),
〈b〉 = 8.7(3.4), 〈τ〉 = 27.5(7) min, with average minimum
earliness 〈tDmin〉 = −23.9(8.8) min (transformation into R+

by tDmin(ai) for each single fit), yielding an average arrival
delay of 〈µD〉Arr := 〈τ〉−〈tDmin〉 ≈ 3.6(11) min, with stderror
of mean ε = 2 min.

For the simulations in section IV-C we will use departure
delays (ATD−STD) as the only disturbance during the flight.
This is motivated by the fact that according to Eurocontrol
statistics (see Performance Review Report [11]) departure
delays represent the main source of arrival delays. Figure
5 depicts an example departure delay histogram with Γ-fit
to empirical data of one from 46 single flights with ≥ 150
departures. They were obtained out of 1579 analysable flights
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Fig. 5. Example of empirical departure delay histogram (time shifted to
R+ by −6 min earliness) with maximum likelihood Γ-PDF fit for all 176
departures of a single flight number over 6 months. χ2-test is significant at
5% level. Parameter estimates of fit in the legend.

ai from altogether 32604 departures during a 6-months time
span.

The corresponding average departure delay parameters of
f(ATD(=AOBT)−STD) for all 46 flights are 〈a〉 = 2.5(0.8),
〈b〉 = 8(3.4), 〈τ〉 = 18.2(5.4) min, 〈tDmin〉 = −10.9(4.1) min,
yielding an average departure delay 〈µD〉Dpt := 〈τ〉+〈tDmin〉 ≈
7.3(6.6) min. Comparing this value with the average of the 33
mean arrival delays yields the departure delays about 4 min
larger. This difference compares well with statistics reported
in [11]. Also the larger variation of the mean arrival delays
σ(µD)Arr ≈ 7.0 min as compared to the mean departure delay
variation σ(µD)Dpt ≈ 5 min compares well with PRR-results,
although this is partly explained by the different sample size
33/46. Because no sufficient empirical data from departure de-
lays from the origin airports of the flight were available we use
the departure delays of the destination airport as representative
departure disturbance value for the MC-simulations with the
different scheduling optimization algorithms and models.

Derived from an empirical data set as used for Figure 4, the
tuple (take-off time TOT, ET, STA, latest and absolute latest
times LT, LTmax)i from a well-defined series of 209 flights
of a full single-day of traffic (17 h time span) was used as
input for the MC-simulations of the standard traffic scenario
(S1). Because the corresponding average traffic density of ca.
12 flights/h was low compared to the published capacity of 27
arrivals/h (plus 27 departures/h) we created in addition a dense
scenario (S2) for testing the optimizers. The whole traffic of
209 A/C of the empirical standard scenario in this case is
compressed to a reduced time span (8 h from originally 17
h, starting at 6:00) yielding a traffic density of 26 arrivals / h
near the capacity limit. This was realized in such a way that
all flights with arrival times < t0 + 8 h remain unchanged
and the rest up t0 + 17 h is put in between these flights with
correspondingly shifted (ET, STA, LT, LTmax)−times.

Furthermore each flight ai is characterized by its individual

weight class that determines its minimum separation distance
from the previous flight ai−1 according to Table I (section
II). Because the original scenario contained only 8 H-class
A/C we increased the number (and traffic complexity) to 24
by changing those M-class with long flight distance (> 1500
km) into H-class. The modified empirical scenario (S6.2, S7.2)
contained 24 (11.5%) H-class A/C, 14 (6.7%) L-class, and 171
(81.8%) M-class A/C.

C. Monte Carlo Simulations

1) General Aspects: For calculating and updating the in-
dividual target times TT for each flight ai of the full day
schedule (with ET ≤ TT ≤ LT < LTmax), the computer
experiments used a simplified time-based trajectory model
defined by the individual earliest and latest times of arrival
(ET, LT, LTmax). For the pre-tactical phase before departure
ET = constant, LT = LTmax. After the departure ET converges
to TT with increments ∼ ∆tSim(TT−ET)/(TT−tSim), and the
interval (LT−ET) as function of simulation time tSim decreases
linearly according to (ET− tSim)/2, with some modifications
during final approach < 30 min before arrival which however,
are not of interest within the present work (TT−tSim > 30
min, (TT−ET) < ca. 5 min).

Target Time TT for each simulation time step ∆tSim (= 4
min) is the optimization result with regard to minimizing
for the whole daily arrival sequence the deviations from the
individual schedules STA(ai), or alternatively from ET(ai)
(see Discussion section IV-D), based on the specific objective
or cost function (see above). An update of optimized ai-
sequences is calculated for each ∆tSim, and the daily sequence
will undergo changes as long as new flights are starting
from their respective departure airports, with the individual
departure delay drawn from the same average Γ-PDF (a =
2.5, b = 8, τ = 18.2 min; see previous section) and shifted
back to the delay scale µD. Typically, for 17 hours of daily
operation of our empirical dataset we have ca. 260 simulation
steps per MC-run. Runtime depends on the traffic density, time
of operation and sequencing algorithm (optimizer), and varies
between (typically) 1 s (first-come first-serve rule (FCFS) =
no optimization), 15 s for the three MIP models (discrete
assignment windows = 10 min), and 200 s for Take Select
8-2. With 200 MC-runs per experiment we typically have up
to several hours of simulation time, depending on the specific
optimizer model and scenario. The simulations run on a high
performance PC with 2xIntel 64 Bit E5645 12 core processors
(24 cores with hyperthreading ”on”), 2.4 GHz, 24 GB RAM.

2) Baseline Simulations: In order to establish a baseline,
the MC-simulations as a first step were performed without
considering a-priori knowledge of disturbance. The three cor-
responding baseline simulations used the First-Come-First-
Serve rule (FCFS), a standard optimizer (Take Select 8-2 ([8]),
requiring a monotonous version of the objective function with
zero cost for early arrivals), and the nominal model (developed
in [6]) based on the same Mixed Integer (Gurobi) discrete
optimizer that was also employed with the new stochastic and
robust models.
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Fig. 6. Example histogram and Γ-PDF fit of baseline MC-simulations with
FCFS method (time shifted to R+ by tDmin = 25.4 min). Single MC-run =
single day of operation (8 hours, 209 arrivals) depicting statistics of the dense
arrival sequence (scenario S7.2). p > 5% and low covariance anticorrelation
ρ(a, b) suggest acceptance of Γ-fit.

Figure 6 depicts an MC-simulation (MC057: S7.2) with the
FCFS rule (i.e. no optimization) as an example for a single
day (= single run) delay statistics for all 209 flights of 8 hrs
of operations. The figure shows the delay histogram with Γ-
PDF fit that may be compared with the empirical PDF of
Figure 4. For most runs the Γ-PDF fits to the delay histograms
exhibit good χ2-test results (no rejection of 0-hypothesis at
95% confidence level).

A corresponding result is obtained for the single flights ai-
analysis with 200 repeated arrivals each. Table II summarizes
the baseline results of the continuous time MC-simulations.
The 〈average〉 parameters of the 209 individual histograms
(µ, σ) with Γ-PDF fits for each single flight exhibit results
similar to the single days case. The latter numbers (averages
〈·〉 of fit-parameters (a, b; τ , σ = τ/

√
a), with mean standard

deviations (·), times in minutes) for the 200 MC-runs in each
case are contained in Table II.

As expected, the results of FCFS and TS8-2 already show
that with higher traffic load the use of an optimization
algorithm becomes more advantageous both with regard to
the number of re-schedulings and absolute mean delay. The
general agreement on average of mean delays (µ from Γ-PDF
fit), as obtained from single day and single flight delays proves
the consistency of the analysis of the 200·209 ≈ 40000 entries
MC-data tables although, for the TS8-2 optimizer, the single
flight analysis (in contrast to the inter-run variation of single
day evaluation) exhibits significant inter-individual scattering.
We also observe a tendency towards more symmetric PDF’s
(larger shape parameter a, and delay τ = ab, smaller skewness
2/
√
a) with increasing traffic density.

Because preliminary tests with the discrete (Gurobi) MIP-
optimizer ([6]) as well as initial MC-simulations showed
mainly the higher traffic load (scenario S7.2) to provide
sufficient computational demand for evaluating performance
differences with the different models, we did put the focus
on this condition. The nominal model using the MIP (Gurobi)
optimizer provides a third baseline for comparison with the

Fig. 7. Example single MC087-run histogram (time shifted to R+ by tDmin =
25 min) and Γ-PDF fit of baseline MC-simulations with scheduling using the
nominal model with additional intra-window sequencing, depicting statistics
of the dense arrival sequence (Scenario S7.2). Γ-PDF fit not significant p <
5%.

stochastic and robust model results below. According to the
preliminary tests we selected a w = 10 min window for
discretizing the full time span (ca. 8 h) of the dense scenario
S7.2. Clearly this discretization does not provide sufficient
time resolution for generating a delay PDF and testing the
Γ-model. Also the average delays can only provide a value
biased to earliness because the early-edges of the windows
represented the arrival times for flights (ai) assigned to the
respective windows.

For the purpose of comparing the delay distribution with
the two previous continuous baseline scheduling approaches
we depict in Figure 7 one MC-run (out of 200 from MC087)
where we use the intra-window scheduling (according to
separation matrix) for calculating a quasi continuous sequence.

Although the Γ-PDF fit is not significant, the nominal
time-window based scheduling achieves results with additional
intra-window separation which is comparable to the empirical
data. In many other of the 200 runs the histograms reflect the
discrete 10 min window sequencing by empty 10 min intervals
within the distribution. The strong deviation between 20 - 30
min (tD−tDmin = 25 min corresponds to delay = 0) is observed
for all runs. It reflects the action of the optimizer trying to
minimize delays around tD = AIBT−STA = 0.

3) Stochastic and Robust Optimization: The results ob-
tained with the nominal model may be directly compared with
those of the new models which optimize the arrival sequences
by taking into account statistical a-priori knowledge. This
was expressed as a shift of the ET, LT, LTmax values as
derived from the known delay statistics, represented by the
empirical first two central moments (µ = τ+tDmin, σ = τ/

√
a):

ET:= ET +µ + kσ, LTmax:= LTmax +µ − kσ, with k = 0
for single step stochastic, k = 1 for the robust model, and
(µ, σ) := (µD, σD) = (7.3, 11.9) minutes (see above). In
Table III we compare for the dense traffic scenario S7.2 and
window w = 10 min the averages of shape parameters, delays
〈µ(std)〉 and number of re-schedulings 〈rs#(std)〉 for the
single step stochastic (MC088) and robust models (MC089)
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TABLE II
CONTINUOUS TIME BASELINE SIMULATIONS WITH PARAMETER AVERAGES OVER 200 RUNS (=SINGLE DAYS) EACH

Model (Scenario) 〈RT (std)〉/s 〈a〉 〈τ(std)〉/min 〈tDmin〉 〈µD〉 〈rs#(std)〉
FCFS (6.2) 2.2 (1.8) 1.7 (0.2) 23 (1) -30 (0.5) -7.0 (1) 2.2 (0.9)

FCFS (7.2) 1.1 (0.4) 2.5 (0.4) 34 (20) -30 (2) 5.3 (5) 12.7 (5.6)

TS8-2 (6.2) 40 (2) 2.4 (0.3) 24 (2) -29 (1) -5.0 (5) 2.5 (1.1)

TS8-2 (7.2) 203 (63) 3.5 (0.6) 29 (4) -25 (2) 3.5 (6) 8.1 (3.2)

and the three baseline models.
The number of re-schedulings of all three MIP-models

decreased significantly relative to the TS8-2 optimizer while
FCFS (no optimization) exhibits the highest value. In fact,
the robust model protection of optimized TT against depar-
ture time disturbance through shifted boundaries of ±1σ for
ET/LTmax, respectively, stabilizes the sequencing significantly
more than nominal and stochastic. Namely, we have only half
as many re-schedulings using the robust model compared with
the nominal one. Hence, we achieve a substantial stabilization
of our plans, which is exactly the promise of robust optimiza-
tion. However, obviously even the robust model produces (very
small) rs#-values, which is due to the chosen disturbance
scenario. Thus, by considering higher disturbance values the
advantage of the robust approach regarding stabilization would
become even more notable. Naturally, this advantage is paid
for by larger delay. However, in the robust version, the increase
in delay amounts to the width of one time window w only. In
our time window assignment approach, this is the smallest
possible increase. The shape parameters of the robustified
models exhibit near Poisson or even clustered characteristics
a < 1 (mean stderr < 5%) in contrast to baseline (Figure 6).

D. Discussion

The main goal of the present research was the inclusion of
a-priori knowledge on disturbance statistics in the pre-tactical
arrival sequence optimization through new stochastic and
robust models and the validation of the increased scheduling
stability. Practically relevant results were obtained by means of
empirical arrival and departure delay statistics and a stochastic
delay model for fitting the results of Monte Carlo (MC)
computer experiments with 209 flights over 17 and 8 hours
time span (low and high traffic scenarios S6.2, S7.2), and
200 repetitions each. The results are based on continuous time
simulations (FCFS, TS8-2 optimizer) as baseline and on dis-
crete optimization with 10 min TT-window using nominal (as
additional baseline) and new stochastic and robust models. For
each of the 200 repeated runs during an experiment random
departure time delays tD(ai) were drawn and added to the
planned earliest and (max) latest times (ET(ai), LTmax(ai)).

Of course, FCFS without optimization provided the shortest
runtime (< 2 s) but rather instable planning. However, more
importantly the runtimes of the new MIP-models are also
very low, namely 16 - 18 s / MC-run (note, that one MC-
run contains around 150 simulation steps). These runtimes
were significantly smaller than the continuous time TS8-2
baseline (> 200 s). Further, in the considered disturbance

scenarios, the robust optimization approach needs almost no
re-scheduling. Thus, it is by far the most stable approach, prior
to the stochastic approach. This shows that it is indeed possible
to stabilize pre-tactical planning by including knowledge about
the uncertainties already in the modelling phase. The reasons
are a better protection of the planning process against distur-
bance through reducing the effective ET < LTmax range to
ET +µ+σ < LTmax +µ−σ for each ai of the sequence. The
consequence of reduced overlap of disturbed effective arrival
time intervals is obtained at the cost of the additional +σ
shift of each interval (LTmax−ET)i which in turn generates a
corresponding delay-increase for MC089. In fact, the increase
in delay amounts to the width of one time window only.

The difference between absolute delay values of baseline
and MIP models is partly due to the fact that schedul-
ing/optimization with TS8-2 and FCFS (continuous TT) was
performed with regard to the TT−ET difference (due to
requirement for monotonous objective function) whereas for
the MIP-models the TT−ST difference and non-monotonous
objective function was used. Consequently the delay levels
of baseline exhibits a systematic deviation towards ET. On
the other hand, also the large TT-window of the MIP-models
generate a bias towards low delays due to the selection of the
early edge of the windows as delay value for all ai within
w. Characteristically, robust and stochastic approaches seem
to yield a Poisson-type (exponential, a ≤ 1) delay PDF with
standard deviation increased according to cv = 1/

√
a.

In order to evaluate the potential of the MIP-models in more
detail the available parameters (k, µ, σ, TT-window w) and
disturbance scenarios have to be modified in further computer
experiments and different robustification variants can be tested.
This also includes more advanced robustness concepts that
reduce the potential conservatism. Such models are currently
under development. As shown in [6], disturbances can have a
significant influence on the nominal model in the sense that a
considerable amount of reschedulings is necessary in order to
make a solution feasible. In the scenarios considered here, the
disturbances are less pronounced such that (in absolute values)
the number of reschedulings is already quite small. For the fu-
ture, it is thus interesting to validate our approaches also in sce-
narios with increased disturbances. It can be expected that the
rs#-reduction by using the robust optimization approach then
will get pronounced even more. Further, for the present initial
validation we used the same empirical average departure-delay
PDF (〈µi〉, 〈σi〉) for all flights ai. Within further validations
the new models are expected to yield improved sequencing
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TABLE III
COMPARISON OF NEW OPTIMIZATION MODELS WITH BASELINE

Model(MC#) 〈RT (std)〉/s 〈a〉 〈µ(std)〉/min 〈rs#(std)〉
FCFS (57) 1.1 (0.4) 2.5 5.3 (5.0) 12.7 (5.6)

TS8-2 (56) 203 (63) 3.5 3.5 (6.0) 8.1 (3.2)

Nominal (87) 15.8 (1.5) 3.2 1.7 (3.9) 0.45 (0.27)

Stochastic (88) 16.7 (1.1) 0.9 3.0 (5.1) 0.38 (0.23)

Robust (89) 18.2 (1.2) 0.3 12.2 (0.6) 0.22 (0.26)

results through individualized disturbance and ET- and LT-
shift values (µi, σi) derived from the single-flight PDF’s.

V. CONCLUSION

In our mathematical model for pre-tactical planning, several
aircraft can be assigned to the same time window which
reduces the complexity of the problem. Details are described
in a previous publication ([6]). We enriched this model by
protection against uncertainties using techniques from robust
and stochastic optimization.

Initial validation of the new models was performed by
means of Monte Carlo (MC) computer experiments. For deriv-
ing a departure delay model to generate realistic disturbances
for the MC simulations we performed a statistical analysis of
real-world data from a large German airport. Furthermore, we
described the simulation environment for these experiments
in order to validate the different optimization approaches.
The data analysis together with the baseline simulations in-
dicate the two-parametric Γ-PDF to be a reasonable approach
for deriving stochastic performance metrics. The scheduling
performance of the new MIP-models with stochastic and
robust protection against disturbance were quantified with
regard to runtime, re-scheduling stability and arrival delay
statistics (shape and mean value). Compared with baseline
scheduling they exhibit the predicted significantly reduced
runtime and re-scheduling, to be paid for by an increase of
delays. However, this delay is at most the width of about one
time window. Furthermore they exhibit more exponential than
skewed-Gaussian like distributions. The stochastic approach
optimizes the expected scenario and, therefore, is more likely
to remain feasible than the nominal approach. It however is
less likely to be feasible than the robust approach. Using the
robust approach, we definitely know that a solution will be
feasible for all scenarios within the pre-determined uncer-
tainty set. Thus, it is the approach with the highest possible
stability. The initial and preliminary validation results need
confirmation by additional computer experiments, which are
ongoing. We will also include and validate more advanced
robustness concepts with reduced conservatism that are already
in development. However, the encouraging results already
show that we succeeded in computing stable plans with a high
probability to remain feasible despite changes in the input data.
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