
Dynamic Airspace Sectorization using Controller
Task Load

Ingrid Gerdes, Annette Temme, Michael Schultz
Institute of Flight Guidance

DLR Braunschweig
Germany

ingrid.gerdes@dlr.de, annette.temme@dlr.de, michael.schultz@dlr.de

Abstract— Within this paper a new approach for a dynamic
airspace sectorization based on controller task load is presented.
We combine fuzzy clustering, Voronoi diagrams and
evolutionary algorithms to create an adaptive and time
dependent sectorization regarding to a harmonized controller
task load. Our optimization strategy considers a predefined set of
evaluation parameters and interim sectorizations are
implemented for a smooth transition between the evolutionary
adaptations of the sector structure. Furthermore, we developed a
method to adapt Voronoi diagrams to a non-convex border. A
short overview about the used methods is given and several tests
of different evaluation functions are performed. The last part of
this paper concentrates on the creation and evaluation of the
interim sectorizations.

Keywords-dynamic airspace secotors; controller task load; fuzzy
clustering;Voronoi diagram; evolutionary algorithms

I. INTRODUCTION

Today the construction of airspace sectors is mainly done
manually, which results in systematical deficiencies during the
(dynamic) day of operations. Sector adaptation is often
restricted to the division or merging of existing sectors
considering the actual traffic flow. But no automatic
adjustment of the basic layout takes place (e.g. sector borders).
Nevertheless, an adaptive, more flexible sectorization would
result in a more efficient use of the airspace [1], especially in
case of significant weather phenomena, temporally restricted
areas (e.g. volcanic ash) or operational deficiencies (e.g.
controller strike).

Since the sectorless airspace management is a revolutionary
concept mainly addresses the upper airspace [2]our research
focus on an automatic, adaptive and time dependent
sectorization with respect to a harmonized task load of the
controller. Especially, our time dependent sectorization of the
airspace is able to immanently consider the east-/westbound
traffic patterns or the movement/development of weather
phenomena which influence the task load distribution of
airspace sectors significantly. Furthermore, new technologies
like automated separation assurance and 4D trajectory
operations influence the feasibilities for an automatic and
dynamic sector design [3].

Several authors have developed ideas for an automatic
creation of airspace sectors. One early approach has been
developed by Delahaye et.al. [4] in 1998 with a focus on
Evolutionary Algorithms. Other approaches used graph theory,
Voronoi diagrams, integer programming, or clustering of flight
tracks. For a detailed overview of recent work, we refer to [5]
and [6]. Zelinski et al. [7] provide an interesting comparison of
8 different methods. Many of these ideas are of more
theoretical nature and not all are directly applicable to an
realistic nonconvex airspace problem (see figure 1.). With a
clear focus on research projects coping with dynamic traffic
flows influenced by weather phenomena or movement of
volcanic ash clouds [8][9], we developed the AutoSec
(Automatic Sectorization) idea. This approach allows the
creation of an efficient airspace structure with respect to a
number of evaluation factors like harmonized task load /
variation or appropriate sector size (e.g. performance
benchmarking [10]). Furthermore, the concept will enable
sector adaptation in a time-dependent way by dynamically
adapting the positon and shape of the sectors regarding to the
actual necessities and restrictions (e.g. capacity, task load,
controller availability, or stability / resilience). AutoSec is an
essential and superior approach to combine unstructured /
sectorless airspace and today’s rigid structures to achieve both
a balanced and more efficient use of the airspace.

The target of our contribution is prove the concept of the
AutoSec approach, integrating ideas from “Fuzzy Clustering”
as initial allocation of flights, “Voronoi Diagrams” to structure
the airspace into sectors, and “Evolutionary Algorithms” to
optimize the sectorization process. For a better understanding
the three methods mentioned above are presented and
explained in brief in the following section before presenting the
general approach used by AutoSec.

II. FUNDAMENTAL THEORY

A. Voronoi Diagrams
A Voronoi diagram [11] is a fundamental approach to

structure an area into several sections with a required center
point (cf. figure 1.).

8-10 November 2016
Hosted by Technical University of Delft, the Netherlands

mailto:ingrid.gerdes@dlr.de
mailto:annette.temme@dlr.de
mailto:michael.schultz@dlr.de

Figure 1. Hungarian airspace with actual sectors (Border in blue). Source:
DDR2-Data of Eurocontrol.

Edges are created in the middle between two neighboring
center points and vertices are those points which are associated
with three different center points. An area containing all points
with the same center point is called “face”. Examples for
applications of Voronoi diagrams are the positioning of post
offices in cities or the balanced allocation of people to electoral
districts. For our approach the Fortune algorithm is used to
construct a Voronoi diagram out of a set of predefined center
points [11]. The decision for this type of algorithm was made
because it is very fast, widely spread in the literature and easy
to understand. Nevertheless, there are many other algorithms
like Incremental Construction, Divide & Conquer or even
constructing the Delaunay Triangulation as dual of a Voronoi
diagram [13].

B. Evolutionary Algorithms
The typical principles of evolutionary algorithms follow

biological evolutionary theory (cp. [14] or [15]). In nature, a
group of individuals mix their genetic material, especially the
information coded in chromosomes, to get better chances to
survive in a hostile environment by a higher degree of
adaptation. For an evolutionary algorithm, a population of
solutions for an artificial problem is coded as sequence
(chromosome) of parameters (genes) describing the problem
solution.

These fundamental principles are transferred to the
optimization of a technical/operational environment. Using a
set of available solutions, specific components/parameters are
mixed and possible mutated to generate a new set of solutions.
The assessment of these new solutions regarding their fitness to
the underlying utility function results in a hierarchy where the
most appropriate solutions are used to be the parental
generation for the next generation of solutions.

C. Fuzzy Clustering
The aim of clustering techniques in general is to find a

partition of a given dataset. In a fuzzy partition, a datum is not
necessarily assigned to a unique class or cluster. Instead,
membership degrees are associated with each datum and each
cluster. These membership degrees give information about the
ambiguity of the classification. Fuzzy clustering techniques can
adapt to noisy data and not well separated classes. The fuzzy
clustering techniques used for our approach are based on

optimizing an objective function. The clustering solution
consists of cluster centers, i.e. the center of gravity of a cluster
w.r.t. a distance function, and membership degrees. For an
overview on fuzzy clustering and its applications, see e.g.
[16][17].

D. Air Traffic Management
The sectorization of the airspace considers requirements of

ATC (safety, capacity, and efficiency), users (unhindered
access) and environment (restricted areas over cities,
residential areas, etc.) [18]. Particularly, ATC demands for a
sufficient airspace design to accommodate routes, holdings, or
generate aircraft sequences. ATC sectorization is primary
triggered by territorial aspects (air sovereignty) and secondarily
triggered by operational demands like handling of mixed
traffic, balanced work load, or procedure design.

In order to respond to the needs and future challenges of the
air traffic (seamless European airspace), the European
Commission initiates the Functional Airspace Block (FAB)
design to implement multinational management to increase the
airspace efficiency. Our dynamic airspace sectorization could
be an enabling technology to consolidate airspaces by reducing
coordination efforts, adaption of procedures, or balanced use of
resources.

III. RESTRICTIONS AND GENERAL APPROACH

The usage of Voronoi diagrams as well as of evolutionary
algorithms alone is not perfect for the application to the
sectorization problem because both methods have
shortcomings when it comes to a realistic nonconvex airspace.

For the Voronoi diagram it is especially the lack of
flexibility which is caused by the fixed position of the center
points, which are the only parameters responsible for the
resulting partition of the airspace. Therefore, the structure of
the partition depends strongly on number and position of the
center points used. Furthermore, Voronoi diagrams are usually
restricted to convex border forms to ensure that each
connection of two points of the plane is always inside the
border. Because the form of an airspace sector often depends
on the form of the underlying country borders or regions, a
convex border polygon is generally not available (see figure 1.
). On the other hand, an evolutionary algorithm needs some
substantial information about a suitable sector structure
concerning the number and principle form of sectors.

To overcome the shortcomings of the identified limitations
described above, we developed a combined approach which
consists of four steps:

1. Partitioning of flight data according to predefined
time intervals for the calculation of cluster centers
using fuzzy clustering methods [17].

2. Calculation of Voronoi diagrams based on the
cluster centers for each time interval created in
step 1 as initial solution for step 3 (section II A).

2

8-10 November 2016
Hosted by Technical University of Delft, the Netherlands

3. Adaption of the resulting diagram to a general
border form.

4. Application of the Evolutionary Algorithm to the
adapted Voronoi diagrams.

The current focus of AutoSec lays on a co-operation with
the airspace module from the fast-time simulation environment
AirTOp [12], to calculate the controller task load and to create
time and flow dependent sector structures. AirTOp is able to
simulate the flights for special scenarios, e.g. in case of
avoiding volcanic ash and to give the changed flight
trajectories as output to AutoSec, which than can be used for
the creation of an appropriate sector structure.

Thus AutoSec currently is and will be a major element of
the DLR research projects aiming at airspace efficiency
considering ecological, economical and operational aspects.
This paper will focus on step 3 and 4, which will be explained
within the next section.

IV. IMPLEMENTATION

A. Data Structure
To store data of a Voronoi diagram an appropriate data

structure called Doubly Connected Edge List (DCEL, [11]) is
used. A DCEL consists of three lists (vertices, half-edges,
faces) where the elements of every list are connected in several
ways. For the edge list, each (undirected) edge is divided into a
set of two half-edges (directed) with opposite directions called
twins (see Figure 2.). Furthermore, the information about the
previous and the next half edge when moving counter-
clockwise though the half-edges of the corresponding face, the
origin vertex, and a pointer to the corresponding face are stored
with every half-edge additionally. Faces are finally defined by
the center point and a pointer to a single half-edge belonging to
this face. So, every half-edge is linked to the corresponding
face and each face is defined by only one corresponding half-
edge.

B. Introduction of unrestricted border forms (Line-Segment-
Intersection)
Another problem to be solved is the integration of a

nonconvex border line for an airspace region. Because the
selected Voronoi algorithm is restricted to a convex border
polygon, the closest rectangle including it is used as border.

The next steps for the creation of a sectorization
considering an authentic order polygon are:

1. Transform the border polygon into another DCEL.
2. Calculate coordinates for all breakpoints between the

half edges of both DCELs and sort the breakpoint list
with increasing y-coordinate values.

3. Copy both DCEL’s into a common DCEL (overlay).
4. Move through the breakpoint list and reconstruct the

affected half edges and vertices (create new half
edges and vertices, assign new previous, next and

twin) and create a new face list for the overlay
DCEL.

5. Remove all vertices, half edges, and faces which are
outside the border polygon.

6. Substitute the border half edges of the outer sectors
by a set of two half edges connecting the breakpoints
(see mutation operator of Evolutionary Algorithm).

This approach is based on a “line-segment-intersection”
method [11]. It is possible that a sector is divided and that a
center point is not included in a new sector. Therefore, the
center of gravity is calculated as new center point for each
sector.

Figure 3. shows border polygon and Voronoi diagram after
the last step. The border is for illustration only and shows,
which parts have to be inserted in the sectors of the
Evolutionary Algorithm before the task load of the complete
sectors can be evaluated.

C. Task Load Calculation
Since the connection of AutoSec and AirTOp is one

important target for the development of AutoSec, the controller
task load is calculated similar to the methods we already
implemented in the AirTOp environemnt. For AirTOp a system
of tasks / subtasks were defined and time values for the
duration of each task and the frequency (if necessary) were
advised.

Figure 2. Example for the segmentation of a face into a system of half-edges
and twins (marked with*). E11* is twin, e15 is the previous and e12 the next

half-edge of e11.

Figure 3. Voronoi (black) and Border-DCEL (green) after step six .

3

8-10 November 2016
Hosted by Technical University of Delft, the Netherlands

For the type of controller tasks and the estimation of time
values a comprehensive study was carried out at the DLR [20].

The definitions, subdivision of controller tasks and times
used by several companies like the German ANSP provider
DFS or EUROCONTROL were taken into account. As a result
a system of 55 tasks for radar, planning, arrival, airport, tower,
and apron controllers were defined with a total of 129 subtasks.
TABLE I. shows an example with some tasks for a radar
controller. As shown in this table the handling of possible
conflicts is an important and time consuming task (see column
“Time” in TABLE I.). Therefore, the identification of conflicts
is very important for each controller task load calculation and a
conflict detection algorithm has to be applied (implemented
similar to [21]). Afterwards, all task load values for all aircraft
inside the sector borders are summarized to a key value.

For the calculation of the sector task load, the flight time of an
aircraft in each sector has to be calculated (recurring
monitoring every 120 seconds) as well as entry and exit times,
speeds and the position of the entry and exit points for
appointing previous and next Area Control Centers (ACC).

D. Structure of the Evolutionary Algorithm of AutoSec
For AutoSec the vertices of the Voronoi-diagram created

before are used as genes and a sequence of these vertices with a
pre-defined order forms a chromosome. For crossover two
chromosomes are selected and there is a small chance for each
gene of the chromosomes to be exchanged between them
(Uniform Crossover, [14]). For the mutation operator there is
again a small probability for each gene to undergo mutation.
For most vertices this means a random variation of the x- and
y-coordinate, but for vertices situated on the border polygon of
the observed airspace this is much more complicated. Each
point of the border polygon has to stay a border point after
mutation, so this restricts the mutation possibilities severely.
Furthermore, it is not possible to include the points of the
border polygon as additional Voronoi vertices because this
would lead to a situation where some vertices cannot be
mutated at all. This problem was solved by introducing two
adaptations to the algorithm structure and the mutation
operator.

The first one is the replacement of the part of the border
polygon of the associated face between the two border
breakpoints by an auxiliary edge, connecting these breakpoints
directly (see Figure 4. Figure 3.). These breakpoints are added
as Voronoi vertices. Now, the number of vertices for each face
stays always the same.

The next necessary adaptation considers the border as a line
and allocates a percent value from 0 to 100 to the position of
each border vertex depending on the distance to the first vertex
and the length of this line. With this adaptation the mutation of
a border vertex can be handled as the random selection of a
percentage between the percentage values of the preceding and
the successive border vertices. If necessary, the real course of
the border can be easily inserted using the percentage values of
the border Vertices. Nevertheless, it is necessary to prevent the
creation of inner points and self-intersecting lines by special
procedures. This holds for normal vertices when applying
mutation and crossover operators as well.

The most important function for each Evolutionary
Algorithm is the evaluation function. With the focus on
uniformly distributed task load the following factors are taken
into account:

• Sum of task load over all sectors [s]
• Standard deviation (SD) of task load between

sectors (task load SD) [s]
• Standard deviation of interior angles in

comparison to the average angle [°]
• Number of flight intervals (partition of flight

routes by sectors) over all sectors
Especially the factor “standard deviation of interior angles”

(interior angles SD) was introduced to ensure sector structures
without acute angles. For the selection of chromosomes for the
next generation a fixed number of best and different
chromosomes are selected instantly before choosing the
remaining chromosomes randomly.

Several authors have stated that a convexity constraint should
be applied to the created sectors to ensure that an aircraft visits
every sector only once (cf. [4][19]). They also demanded a
constraint limiting the inter sector flow.

TABLE I. EXAMPLE FOR SOME CLASSIFICATION TYPES AND TASK LOAD TIMES FOR CONTROLLER ACTIONS WITHIN A RADAR SECTOR (MO: MONITORING,
RT: RADIO TELEPHONY, CO: COORDINATION, CL: CLEARANCES, CS: CONFLICT SEARCH, CR: CONFLICT RESOLUTION)

Controller Main Type Sub Type Task-Name Time [s] Repeat every x Seconds Group
Radar Sector_Entry CHANGE_SECTOR_IN_CRU

ISE_FROM_SAME_ACC
Initial Call 11 - RT

 Initial Monitoring 14 - MO
 Receipt Flight Strip 3 - CO
 CHANGE_SECTOR_IN

_CRUISE_FROM_DIFF_ACC
Initial Call 15 - RT

 Initial Monitoring 14 - MO
 Receipt Flight Strip 3 - CO
 Conflict CONFLICT_TYPE_1 Conflict Detection 17 - CS
 Conflict Resolution 60 - CR
 Recurring-

Monitoring
RECURRING_MONITORING Monitoring 5 120 MO

4

8-10 November 2016
Hosted by Technical University of Delft, the Netherlands

Figure 4. Left: Possible mutation area for the red border breakpoint between

0 and 15 percent of the border polygon. Auxiliary edges are shown in red,
allowed area as green vector, the forbidden part of the border as dotted orange

vector. Right: Result of an incorrect border mutation.

These constraints are included indirectly by the evaluation
factors “interior angle SD” and “number of flight intervals” but
not as mandatory. As far as the convexity constraint is
concerned todays sectors are not necessarily convex (see
Figure 1.).

V. PARAMETER AND FUNCTION OPTIMIZATION
For an appropriate selection of crossover and mutation

probabilities and the structure of the evaluation function,
several tests with different parameter sets have been carried
out. These tests were divided into three groups, the first for the
parameters, the second for the determination of the elements of
the evaluation function and the third for the calculation of
weights representing the trade-off between the different
elements of the evaluation function. For the first two tests the
same experimental setup was used. It consisted of a set of an
artificial airspace section with the size of 200 x 200 Nautical
Miles, 13 randomly selected center points distributed in this
area and 50 randomly created flights. For the evolutionary
algorithm a population size of 40 chromosomes of length 13
(number of Voronoi vertices) per generation and a number of 6
best / different chromosomes for immediate selection was used.
Furthermore, the number of generations to be simulated was set
to 1000.

A. Optimization of Parameters
The parameter tests with 8 different sets for mutation

(ranging from 0.05 to 0.2) and crossover probabilities (ranging
from 0.05 to 0.25) led to a mutation value of 0.05 and a much
higher crossover probability of 0.2. The second value is much
higher because the structure of the chromosomes in the
population tends to share several gene values, especially for
good solutions. Therefore, the crossover operator exchanges
very often the same values between the selected chromosomes.
But this does not hold for the mutation operator which modifies
every gene it is applied to.

B. Evaluation function
To select the best combination of evaluation parameters for

the evaluation function, two combinations where compiled and
compared. The first approach is called “basic evaluation

function”. It includes only the task load SD and the interior
angle SD and therefore reflects the aim of distributing the task
load uniformly over all sectors. The second version
additionally includes two other factors. The first is the
difference between the sum of task loads over all sectors for the
actual run and the lowest task load value over all sectors found
so far and the second the same for the number of flight
intervals (“extended evaluation function”). The subtraction of
the lowest values found is necessary to avoid very high values
for task load sum and flight interval number with increasing
flight numbers, which then would suppress the influence of
interior angle SD and task load SD. The results for this
comparison are shown in TABLE II. together with the
evaluation value for the Voronoi diagram which is used as
basic chromosome for the creation of the start population for
every evolutionary algorithm.

Surprisingly, the task load value for the basic version
exceeds even the value of the non-optimized Voronoi diagram
dramatically, but the task load SD is very low. A closer look at
the resulting sector structure has revealed that because the task
load itself was not part of the evaluation function it was
increased for those sectors with low task load values for the
sake of a reduced task load SD. This was done by creating
acute angles which were able to catch flights more often and
therefore increased the portion of task load for entering and
leaving sectors. This can be seen in column “Interior Angles
SD” and “# Flight Intervals”.

Because it cannot be the target of an optimization tool for
controller task load to increase the task load itself neglecting
the form of the sectors and the average task load the basic
version of the evaluation function will not be used further. So,
we can conclude that an evaluation function for an automatic
sectorization should not only include parameters for the
observed problem (e.g. distribution of task load) but as well
some factors which stimulate the creation of sector forms
favored by controllers.

The comparison between different evaluation functions has
shown that there is especially a strong dependency between
task load value and task load standard deviation. Tests with
different virtual flight schedules with varying flight numbers
revealed the necessity to introduce weights to balance the
influence of both factors and to redesign the calculation of the
evaluation value for each element of the evaluation function.
Several different weights were developed by judgement and
evaluated with a high number of simulation trials. Four of these
variants representing typical cases are explained in more detail
in this section.

TABLE II. COMPARISON OF THE MAIN PARAMETER FOR LIMITED AND
COMPLETE EVALUATION FUNCTION

Type [s] Task
Load

[s] Task
Load SD

[°] Interior
Angles SD

Flight
Intervals

Voronoi 16476 457 27.5 194
Basic Evaluation 18330 8 46.5 229
Ext. Evaluation 14939 352 25.9 165

5

8-10 November 2016
Hosted by Technical University of Delft, the Netherlands

The first step was the usage of the fraction of actual
evaluation value and the best found value instead of subtracting
the last from the first. So, the new evaluation value simply
reflects the quality of the actual solution in comparison to the
best found and is independent from the number of flights.
Altogether more than 10 new versions of the evaluation
function with different weights were developed and tested,
where 4 were selected for more sophisticated simulation trials
with a flight plan with 688 flights over a complete day and 80
chromosomes with 12 selected to remain unchanged for the
Evolutionary Algorithm. Each simulation with these
parameters needed a time of approximately 8:30 minutes using
a standard pc.

TABLE III. shows the weights for the remaining four
versions. The first two have fixed factors. The third features a
task load weight which varies with the number of generations
and includes the actual generation number of the evolutionary
algorithm (genNr), the planned maximum number of
generations (maxGen) and the fraction of task load and task
load SD (RelationF) for the first generation. The third version
allows an easier creation of solutions with good results for the
task load SD at the beginning and an increasing pressure for
good solutions for the task load for later generations. This
ensures a more controlled creation of solutions which always
take both factors into account.

For the last version a weight for the task load SD was
introduced incorporating the other weights and again actual and
maximum number of generations. Furthermore, not only the
weights were changed but the type of selecting chromosomes
for the next generation as well. Instead of using the evaluation
values directly a ranking of evaluation values was used as basis
for the calculation of the selection probability. The results for
the test simulations are presented in TABLE IV. The columns
show the results for the different parts of the evaluation
function. Furthermore, the values of the evaluation function for
the non-optimized Voronoi diagram are given in the first row
as baseline result.

The results for Version one show an overweight for the task
load SD, but reducing the weight for this element as done for
version two turns the results to the other extreme. So, fixed
values always tend to prefer either task load or task load SD.
Therefore, version 3 including the relation between both factors
was developed. The results for the mean values (M) in TABLE
IV. are better than the baseline values for every element of the
evaluation function but the SD of the interior angles. The
results for task load and task load SD can be seen as a

compromise between both elements. Unfortunately, the values
for the standard deviations are quite high, indicating
unreliability in the quality of the solution. To cope with this,
version 4 was developed were the selection process is
decoupled from the actual evaluation value. Instead of using a
selection in dependence of the evaluation value a ranking was
introduced for each factor. The sum of the ranking positions for
all factors is than used for the calculation of the selection
probability.

Again the results for task load and task load SD are a
compromise between the possible values for both factors, but
the interior angles and the flight intervals are as well lower than
the baseline results. Furthermore, the standard deviation of all
factors is considerably lower than for nearly all other versions.
For the decision which version should be used for future
simulations the fraction of every mean value to the
corresponding baseline values were calculated and summarized
for each version. The results are shown in the last column and
lead to version 4 as the best evaluation function.

VI. INTEGRATION OF DYNAMIC TIME-COMPONENT
The target of AutoSec is the dynamic and automatic

creation of airspace sectorizations with a focus on an
appropriate partitioning of traffic data into time intervals.
Furthermore, a smooth transition from one sectorization to the
next should be created to prevent flights from leaving one
sector, entering the next and then jump back to the first because
the new sectorization makes this necessary. For this transition
the so-called interim-diagrams are introduced which are
inserted between the Voronoi diagrams (sectorizations).

So the general course of action for the creation of interim
diagrams is as follows:

1. Calculation of Voronoi diagrams for each set of center
points.

2. Mapping of Vertices between successive Voronoi
Diagrams.

3. Splitting of the time intervals into smaller even-
numbered sub-intervals.

4. Application of the Evolutionary Algorithm with the
normal evaluation function to each Voronoi diagram.

5. Calculation of the corresponding number of interim
diagrams taking the mapped vertices of the optimized
Voronoi diagrams into account.

TABLE III. VARIANTS OF EIGHT FACTOR CALCULATION FOR THE EVALUATION FUNCTION

Version Task Load (wtl) Task Load SD Interior Angles SD (wa) # Flight intervals (wfi)
Version 1 1 1 1 1

Version 2 1 0.1 1 1

Version 3:
Relation

(1 + genNr*2 / maxGen) * RelationF / 6 1 0.5 0.5

Version 4:
Ranking

1 (1+wtl+wa+wfi) - genNr * 1.5 / maxGen 0.5 0.5

6

8-10 November 2016
Hosted by Technical University of Delft, the Netherlands

TABLE IV. RESULTS FOR THE DIFFERENT TRADE-OFF TEST VERSIONS (M: MEAN, SD: STANDARD DEVIATION).

 Task Load [s] Task Load SD [s] Iterior Angles SD [°] # Flight Intervals % Difference
to Baseline

 M SD M SD M SD M SD

Baseline 166029 4172 30.5 2240
Version 1 173482 5191 363 221 35.8 4.4 2381 98 321
Version 2 149548 1892 5109 689 16.3 0.4 1929 36 337
Version 3 159016 2934 605 237 31.8 1.8 2106 54 315
Version 4 157839 1185 819 150 28.5 0.9 2082 22 300

6. Application of the Evolutionary Algorithm with an
extended Evaluation function to each interim diagram.

The most important aspects will be described in more detail
in the next sections.

A. Mapping of Vertices / Faces
The structure of Voronoi diagrams depends on the number

and position of the center points. When using time-dependent
sets of center points, the resulting Voronoi diagrams can be
very different in the number of faces as well as in position and
number of vertices. The target is to insert interim diagrams
between successive pairs of Voronoi diagrams which should
reflect the structure of the involved Voronoi diagrams.
Therefore, it is necessary to identify faces and vertices, which
exist in successive Voronoi diagrams Vi and Vi+1, which can be
connected to each other. They can be used afterwards to
calculate vertices for the interim diagrams between the
connected vertices of Vi and Vi+1 The connected vertex in a
successive Voronoi diagram Vi+1 is called Map, in the
preceding diagram Vi preMap. If successive Voronoi diagrams
have different vertex numbers, as many connected vertices as
possible are identified. The remaining vertices stay unchanged
for the interim diagrams.

In a first step connected faces are identified. For doing so
the following steps are carried out:

1. All faces next to the border of the Voronoi diagrams
are identified (so called border faces).

2. The distances between all center points of Voronoi
diagram Vi to the center points of Voronoi diagram
Vi+1 are calculated.

3. Every face of the first diagram is connected to the face
with the lowest distance between the center points of
the second diagram (duplicate mappings possible).

4. Run through the face list for duplicate connections
and connect those of the same type (border / inner
face) preferential. Connect the other face to the next
best until no more changes occur.

With the faces identified it is much easier to identify the

vertices as well. So, the algorithm for connecting vertices will
work as follows:

1. Map those vertices which are nearly similar.
2. Identify border vertices by comparing the related

faces.

3. Calculation of the number of unmapped vertices per
face.

4. Continue until no mapped face with only one
unmapped vertex exists anymore.

a. Direct mapping of the remaining nodes for
all faces where only one vertex is unmapped
and both connected faces feature the same
number of vertices.

b. Recalculation of the number of unmapped
vertices for all faces.

5. Run through all faces in the sequence according to the
number of unmapped vertices (lowest first):

a. Mapping of the remaining vertices in
dependence to the distance to the unmapped
vertices in the mapped face.

b. If the number of vertices for the mapped
faces is different, remove duplicate
mappings.

c. Recalculation of the number of unmapped
vertices for all faces.

For step 2 it is known that a border vertex can have only
one half-edge which does not belong to the border. With this
half-edge it is possible to identify the adjacent faces and
therefore the mapped faces and the connected vertex as well
(see Figure 1.).

B. Creation of Interim Diagrams
As mentioned before the biggest problem for the creation of

interim diagrams is the perhaps completely different structure
of successive surrounding optimized Voronoi diagrams.

To cope with this problem the number (nr) of interim
diagrams inserted between two Voronoi diagrams should be
even, so it can be divided into two equal numbered groups. The
first group gets structure and data from the first optimized
Voronoi diagram, the second group from the second diagram.

Figure 5. Identification of mapped border vertices V1 and V’1 using faces.

7

8-10 November 2016
Hosted by Technical University of Delft, the Netherlands

In the next step, the coordinates of all mapped vertices are
recalculated proportional to the distance between the vertex of
the first Voronoi diagram and its mapping.

Let Vj [i] be the vertex j of diagram V[i], i∈{0,..,nr+1},
V[0] the first and V[nr+1] the second of the successive
surrounding optimized Voronoi diagram, Vj map[0]=Vk [nr+1]
the mapped vertex k of the second Voronoi diagram for vertex
j, then holds the following formula for the coordinates for
i∈{0,..,nr/2-1} :

An equivalent formula based on the data of the second
Voronoi diagram is used for the calculation of the coordinates
of the second group of interim diagrams Vi, i∈{nr⁄2,…,nr}.
Figure 1. shows a graphical interpretation of this equation.

C. Application of Evolutionary Algorithm
For the optimization process with the evolutionary

algorithm the Voronoi diagrams are optimized first. Afterwards
the coordinates of the vertices of the interim diagrams are
calculated in dependence of the new coordinates of the mapped
vertices of the optimized Voronoi diagrams. Because the
interim diagrams should guarantee a smooth transition between
the optimized Voronoi diagrams it is not possible to optimize
them independently. At least the vertices have to stay close to
their original values. Therefore, a special limitation formula for
the mutation of vertex coordinates was added to the former
mentioned evaluation function. In case of equal Map and
preMap the difference to the original Vertex is calculated and
set in relation to a predefined threshold value, where values
above the threshold are penalized by doubling the distance.

In case of different map and preMap an ellipsoid between
Map and preMap is used to define an allowed area (see Figure
7.). Every ellipsoid is described by a defining distance and two
focus points F1 and F2. The border of the ellipsoid consists of
all points where the sum of the distances from this point to the
focus points F1 and F2 is equal to the defining distance.

Figure 6. Example for the transition from one Voronoi diagram (red) to the
next (blue) with nr = 2 interim diagrams in dependence of the time interval ti.

Figure 7. Definition of an allowed area for vertex Vj(i) with different Map

and preMap.

Now a “vertexCloseness” for each vertex can be defined as
the fraction of the sum of the distances form the new point to
the focus points and the defining distance of the ellipsoid (sum
of distances from preMap to the focus points as well). Again a
new position outside the ellipsoid gets twice the penalty points
as an inside point. Then the sum of the vertexCloseness for
each vertex is used as corresponding evaluation value of a
chromosome.

In addition a weight factor (wvc) for the evaluation
function has to be determined. Because the interim diagrams
depend strongly on the optimized Voronoi diagrams, it is not
possible to compare the result of different simulation runs
directly. For an estimation of the influence of the weight factor
and the vertexCloseness on the optimization, the evaluation
values for each part of the evaluation function of each interim
diagram before the start of the optimization process were used
as reference values.

D. Results
With this definition it is possible to calculate the

improvement created by the optimization process. Together
with the values for the average difference to the original
position of each vertex this allows the selection of the best
weight for the evaluation function. As Test-Scenario the same
flight schedule and optimization parameters were used as for
the weight test described in Section I.

To facilitate the possibility of interim diagrams two
additional sets of center points were created and two interim
diagrams between each pair of Voronoi diagrams were
determined. The results are presented in TABLE V. The higher
the values the better is the quality of this factor of the
evaluation function. As test cases weights of zero, three, five,
and ten were selected by judgement. Zero is used to
demonstrate the general possibilities of an optimization that is
not restricted to stay close to the original values. Nevertheless,
the results for all weights show significant improvements, even
for a factor of ten which rates the vertex closeness higher than
all other factors of the evaluation function.

The noticeable high values for the average position
difference are a result of the definition of the vertexCloseness
factor. For this factor not the real distances but the fraction to
the defining distance of the ellipsoid is used as measure for the
quality of this factor.

8

8-10 November 2016
Hosted by Technical University of Delft, the Netherlands

TABLE V. RESULTS OF THE TEST RUNS FOR CALCULATING THE
INFLUENCE OF THE OPTIMIZATION ON THE INTERIM DIAGRAMS. ALL RESULTS

SHOW THE DIFFERENCE BETWEEN THE EVALUATION OF THE ORIGINAL AND
THE OPTIMIZED INTERIM DIAGRAM.

Weight

Task
Load [s]

Task
Load
SD [s]

Interior
Angles
SD [°]

Flight
Intervals

Avg.
Position
Difference
[NM]

 Interim 1
0 753.3 429.3 -1.4 18.2 21.3
3 736.6 143.8 1.0 19.5 5.2
5 519.5 116.7 0.9 12.4 3.5
10 328.2 91.1 0.1 8.3 2.4
 Interim 2
0 592.4 247.1 1.0 16.2 14.3
3 604.0 84.2 0.3 16.7 4.8
5 497.3 68.3 -0.2 13.0 3.5
10 332.7 58.5 -0.3 8.7 2.4
 Interim 3
0 1394.7 468.5 1.7 33.4 17.8
3 1095.2 106.3 0.2 27.8 5.9
5 563.8 97.6 0.0 14.1 5.3
10 545.3 62.5 -0.7 14.1 4.8
 Interim 4
0 1597.9 486.0 5.6 38.1 16.1
3 1282.1 202.3 4.7 30.8 7.6
5 1110.9 203.9 4.3 27.8 6.7
10 797.5 136.7 3.2 20.3 6.0

In case of a higher distance between Map and preMap this
defining distance can be high which allows a higher
displacement of vertices before getting penalized.

Because the selected weight should provide a possibility to
optimize the interim diagrams as well as to stay close to the
surrounding optimized Voronoi diagrams, a weight of three
was selected for future simulations.

Figure 8. shows exemplarily the sequence of interim
diagrams between the optimized Voronoi diagrams two and
three from one simulation run. For a closer examination a
special sector marked in blue was used to demonstrate the
movement of vertices in case of very different vertex position
in the surrounding optimized Voronoi diagrams.

VII. OUTLOOK
With our approach we can demonstrate the efficient

combination of fuzzy clustering, Voronoi diagrams, and
evolutionary algorithms to enable an appropriate sectorization
of the airspace regarding to the controller task load. This
approach is currently used to evaluate airspace navigation
service provider under both operational and economical
aspects.

At the implementation level we currently focus an
automatic import tool for DDR2 flight data of
EUROCONTROL and integration into the existing tool chain
to enable realistic test scenarios with actual flight data.

Figure 8. Example of a sequence of optimized Voronoi diagram two (upper
left), interim diagrams three (upper right) and four (lower left) and optimized

Voronoi diagram three (lower right) for a weight of three.

Further on, scenarios of DLR projects coping with
sectorization and task load distribution are evaluated with
respect to the benefit of dynamic airspaces. When the
anticipated benefits of this approach have been confirmed in
fast-time simulations, the next steps are workshops with air
traffic controllers to verify a suitable degree of automatic sector
adjustment and following thereon a usability study with
humans-in-the-loop.

ACKNOWLEDGMENT
We would like to thank Mrs. Tanja Luchkova especially for

her support concerning AirTOp and the DDR2 Database of
EUROCONTROL.

REFERENCES
[1] SESAR Joint Untertaking, Automated support for dynamic sectorisation,

[online] available: www.sesarju.eu/sesar-solutions/network-
collaborative-management-and-dynamiccapacity-balancing/automated-
support [Accessed August 2016]

[2] B. Birkmeier, “Feasibility analysis of sectorless and partially automated
air traffic management”, PhD Thesis, TU Braunschweig, 2015

[3] P. Kopardekar, K. Bilimoria, B. Sridhar, „Initial concepts for dynamic
airspace configuration“, in 7th AIAA Aviation Technology, Integration
and Operations Conference (ATIO), 2007, Belfast, Ireland

[4] D. Delahaye, M. Schoenauer, J.M. Alliot, “Airspace sectoring by
evolutionary algorithms”, in IEEE International Congress on
Evolutionary Computation, 1998 .

[5] H.D.Sherali, J.M. Hill, “Configuration of airspace sectors for balancing
air traffic controller workload”, in Annals. of Operations Research, vol
203, Springer , 2011, pp. 3-31.

9

8-10 November 2016
Hosted by Technical University of Delft, the Netherlands

http://www.sesarju.eu/sesar-solutions/network-collaborative-management-and-dynamiccapacity-balancing/automated-support
http://www.sesarju.eu/sesar-solutions/network-collaborative-management-and-dynamiccapacity-balancing/automated-support
http://www.sesarju.eu/sesar-solutions/network-collaborative-management-and-dynamiccapacity-balancing/automated-support

[6] J. Li, T. Wang, M. Savai, I. Hwang, “Graph-based algorithm for
dynamic airspace configurationd”, in Journal of Guidance, Control and
Dynamics, vol 33, 2010, pp. 3-31.

[7] S. Zelinski, C.F. Lai, “Comparing methods for dynamic airspace
configuration”, in 30th Digital Avionics Systems Conference, 2011.

[8] T. Luchkova et al., “Analysis of Impacts an Eruption of Volcano
Stromboli could have on European Air Traffic”, ATM seminar, 2015

[9] M. Kreuz, T. Luchkova, M. Schultz, “Effect Of Restricted Airspace On
The ATM System”. WCTR Conference 2016, Shanghai, China

[10] T. Standfuß, M. Schultz, “Benchmarking Of Area Control Center In
FABEC Context”. WCTRS, Shanghai 2016

[11] M. de Berg, O. Cheong, M. van Keveld, M. Pvermars, “Computational
Geometry, Algorithms and Applications”, Berlin, Springer, 2008.

[12] AirTOpsoft, “www.airtopsoft.com/”, [Online], available:
http://www.airtopsoft.com/products.html. [Accessed February 2016]

[13] F. Aurenhammer, R. Klein, “Voronoi Diagrams”, [Online], available
http://www.pi6.fernuni-hagen.de/downloads/publ/tr198.pdf [Accessed
October 2016]

[14] Z. Michalewicz, “Genetic Algorithms + Data Structures = Evolution
Programs”, Berlin Heidelberg, Springer, 1996.

[15] I: Gerdes, F. Klawonn, R. Kruse, „Evolutionaere Algorithmen“,
Wiesbaden, 2004

[16] J. V. de Oliveira, W. Pedrycz, “Advances in Fuzzy Clustering and its
Applications”. John Wiley & Sons, 2007.

[17] A. Keller, “Objective Function based Fuzzy Clustering in Air Traffic
Management”. PhD-Thesis, Magdeburg, Otto-von-Guericke University,
2002.

[18] M. Kreuz, M. Schultz, “System Dynamics Approach towards ANSP
Modeling”. AIAA Aviation, 2015

[19] H. Trandac, P. Baptiste, V. Duong, “A constraint-programming
formulation for dynamic airspace sectorization”, in Digital Avionics
Systems Conference, 2002.

[20] M. Meinecke, “Entwicklung und Evaluation von
Lotsenarbeitsbelastungsmodellen in einer Schnellzeitsimulations-
umgebung”, Master Thesis, Braunschweig, DLR, 2014

[21] I. Gerdes, M. Schaper, „Management of time based taxi trajectories
coupling departure and surface management systems“, 11th ATM
Seminar, Lisboa, 2015

10

8-10 November 2016
Hosted by Technical University of Delft, the Netherlands

http://www.airtopsoft.com/products.html
http://www.pi6.fernuni-hagen.de/downloads/publ/tr198.pdf

	I. Introduction
	II. Fundamental Theory
	A. Voronoi Diagrams
	B. Evolutionary Algorithms
	C. Fuzzy Clustering
	D. Air Traffic Management

	III. Restrictions and General Approach
	IV. Implementation
	A. Data Structure
	B. Introduction of unrestricted border forms (Line-Segment-Intersection)
	C. Task Load Calculation
	D. Structure of the Evolutionary Algorithm of AutoSec

	V. Parameter and function Optimization
	A. Optimization of Parameters
	B. Evaluation function

	VI. Integration of dynamic time-component
	A. Mapping of Vertices / Faces
	B. Creation of Interim Diagrams
	C. Application of Evolutionary Algorithm
	D. Results

	VII. Outlook
	Acknowledgment
	References

