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Abstract— Within this paper a new approach for a dynamic 
airspace sectorization based on controller task load is presented. 
We combine fuzzy clustering, Voronoi diagrams and 
evolutionary algorithms to create an adaptive and time 
dependent sectorization regarding to a harmonized controller 
task load. Our optimization strategy considers a predefined set of 
evaluation parameters and interim sectorizations are 
implemented for a smooth transition between the evolutionary 
adaptations of the sector structure. Furthermore, we developed a 
method to adapt Voronoi diagrams to a non-convex border. A 
short overview about the used methods is given and several tests 
of different evaluation functions are performed. The last part of 
this paper concentrates on the creation and evaluation of the 
interim sectorizations. 

Keywords-dynamic airspace secotors; controller task load; fuzzy 
clustering;Voronoi diagram; evolutionary algorithms 

I. INTRODUCTION 

Today the construction of airspace sectors is mainly done
manually, which results in systematical deficiencies during the 
(dynamic) day of operations. Sector adaptation is often 
restricted to the division or merging of existing sectors 
considering the actual traffic flow. But no automatic 
adjustment of the basic layout takes place (e.g. sector borders). 
Nevertheless, an adaptive, more flexible sectorization would 
result in a more efficient use of the airspace [1], especially in 
case of significant weather phenomena, temporally restricted 
areas (e.g. volcanic ash) or operational deficiencies (e.g. 
controller strike).  

Since the sectorless airspace management is a revolutionary 
concept mainly addresses the upper airspace [2]our research 
focus on an automatic, adaptive and time dependent 
sectorization with respect to a harmonized task load of the 
controller. Especially, our time dependent sectorization of the 
airspace is able to immanently consider the east-/westbound 
traffic patterns or the movement/development of weather 
phenomena which influence the task load distribution of 
airspace sectors significantly. Furthermore, new technologies 
like automated separation assurance and 4D trajectory 
operations influence the feasibilities for an automatic and 
dynamic sector design [3]. 

Several authors have developed ideas for an automatic 
creation of airspace sectors. One early approach has been 
developed by Delahaye et.al. [4] in 1998 with a focus on 
Evolutionary Algorithms. Other approaches used graph theory, 
Voronoi diagrams, integer programming, or clustering of flight 
tracks. For a detailed overview of recent work, we refer to [5] 
and [6]. Zelinski et al. [7] provide an interesting comparison of 
8 different methods. Many of these ideas are of more 
theoretical nature and not all are directly applicable to an 
realistic nonconvex airspace problem (see figure 1. ). With a 
clear focus on research projects coping with dynamic traffic 
flows influenced by weather phenomena or movement of 
volcanic ash clouds [8][9], we developed the AutoSec 
(Automatic Sectorization) idea. This approach allows the 
creation of an efficient airspace structure with respect to a 
number of evaluation factors like harmonized task load / 
variation or appropriate sector size (e.g. performance 
benchmarking [10]). Furthermore, the concept will enable 
sector adaptation in a time-dependent way by dynamically 
adapting the positon and shape of the sectors regarding to the 
actual necessities and restrictions (e.g. capacity, task load, 
controller availability, or stability / resilience). AutoSec is an 
essential and superior approach to combine unstructured / 
sectorless airspace and today’s rigid structures to achieve both 
a balanced and more efficient use of the airspace. 

The target of our contribution is prove the concept of the 
AutoSec approach, integrating ideas from “Fuzzy Clustering” 
as initial allocation of flights, “Voronoi Diagrams” to structure 
the airspace into sectors, and “Evolutionary Algorithms” to 
optimize the sectorization process. For a better understanding 
the three methods mentioned above are presented and 
explained in brief in the following section before presenting the 
general approach used by AutoSec. 

II. FUNDAMENTAL THEORY

A. Voronoi Diagrams
A Voronoi diagram [11] is a fundamental approach to

structure an area into several sections with a required center 
point (cf. figure 1. ). 

8-10 November 2016
Hosted by Technical University of Delft, the Netherlands 

mailto:ingrid.gerdes@dlr.de
mailto:annette.temme@dlr.de
mailto:michael.schultz@dlr.de


Figure 1.  Hungarian airspace with actual sectors (Border in blue). Source: 
DDR2-Data of Eurocontrol. 

Edges are created in the middle between two neighboring 
center points and vertices are those points which are associated 
with three different center points. An area containing all points 
with the same center point is called “face”. Examples for 
applications of Voronoi diagrams are the positioning of post 
offices in cities or the balanced allocation of people to electoral 
districts. For our approach the Fortune algorithm is used to 
construct a Voronoi diagram out of a set of predefined center 
points [11]. The decision for this type of algorithm was made 
because it is very fast, widely spread in the literature and easy 
to understand. Nevertheless, there are many other algorithms 
like Incremental Construction, Divide & Conquer or even 
constructing the Delaunay Triangulation as dual of a Voronoi 
diagram [13]. 

B. Evolutionary Algorithms
The typical principles of evolutionary algorithms follow

biological evolutionary theory (cp. [14] or [15]). In nature, a 
group of individuals mix their genetic material, especially the 
information coded in chromosomes, to get better chances to 
survive in a hostile environment by a higher degree of 
adaptation. For an evolutionary algorithm, a population of 
solutions for an artificial problem is coded as sequence 
(chromosome) of parameters (genes) describing the problem 
solution.  

These fundamental principles are transferred to the 
optimization of a technical/operational environment. Using a 
set of available solutions, specific components/parameters are 
mixed and possible mutated to generate a new set of solutions. 
The assessment of these new solutions regarding their fitness to 
the underlying utility function results in a hierarchy where the 
most appropriate solutions are used to be the parental 
generation for the next generation of solutions. 

C. Fuzzy Clustering
The aim of clustering techniques in general is to find a

partition of a given dataset. In a fuzzy partition, a datum is not 
necessarily assigned to a unique class or cluster. Instead, 
membership degrees are associated with each datum and each 
cluster. These membership degrees give information about the 
ambiguity of the classification. Fuzzy clustering techniques can 
adapt to noisy data and not well separated classes. The fuzzy 
clustering techniques used for our approach are based on 

optimizing an objective function. The clustering solution 
consists of cluster centers, i.e. the center of gravity of a cluster 
w.r.t. a distance function, and membership degrees. For an
overview on fuzzy clustering and its applications, see e.g.
[16][17].

D. Air Traffic Management
The sectorization of the airspace considers requirements of

ATC (safety, capacity, and efficiency), users (unhindered 
access) and environment (restricted areas over cities, 
residential areas, etc.) [18]. Particularly, ATC demands for a 
sufficient airspace design to accommodate routes, holdings, or 
generate aircraft sequences. ATC sectorization is primary 
triggered by territorial aspects (air sovereignty) and secondarily 
triggered by operational demands like handling of mixed 
traffic, balanced work load, or procedure design. 

In order to respond to the needs and future challenges of the 
air traffic (seamless European airspace), the European 
Commission initiates the Functional Airspace Block (FAB) 
design to implement multinational management to increase the 
airspace efficiency. Our dynamic airspace sectorization could 
be an enabling technology to consolidate airspaces by reducing 
coordination efforts, adaption of procedures, or balanced use of 
resources. 

III. RESTRICTIONS AND GENERAL APPROACH

The usage of Voronoi diagrams as well as of evolutionary
algorithms alone is not perfect for the application to the 
sectorization problem because both methods have 
shortcomings when it comes to a realistic nonconvex airspace. 

For the Voronoi diagram it is especially the lack of 
flexibility which is caused by the fixed position of the center 
points, which are the only parameters responsible for the 
resulting partition of the airspace. Therefore, the structure of 
the partition depends strongly on number and position of the 
center points used. Furthermore, Voronoi diagrams are usually 
restricted to convex border forms to ensure that each 
connection of two points of the plane is always inside the 
border. Because the form of an airspace sector often depends 
on the form of the underlying country borders or regions, a 
convex border polygon is generally not available (see figure 1. 
). On the other hand, an evolutionary algorithm needs some 
substantial information about a suitable sector structure 
concerning the number and principle form of sectors. 

To overcome the shortcomings of the identified limitations 
described above, we developed a combined approach which 
consists of four steps: 

1. Partitioning of flight data according to predefined
time intervals for the calculation of cluster centers
using fuzzy clustering methods [17].

2. Calculation of Voronoi diagrams based on the
cluster centers for each time interval created in
step 1 as initial solution for step 3 (section II A).
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3. Adaption of the resulting diagram to a general
border form.

4. Application of the Evolutionary Algorithm to the
adapted Voronoi diagrams.

The current focus of AutoSec lays on a co-operation with 
the airspace module from the fast-time simulation environment 
AirTOp [12], to calculate the controller task load and to create 
time and flow dependent sector structures. AirTOp is able to 
simulate the flights for special scenarios, e.g. in case of 
avoiding volcanic ash and to give the changed flight 
trajectories as output to AutoSec, which than can be used for 
the creation of an appropriate sector structure. 

Thus AutoSec currently is and will be a major element of 
the DLR research projects aiming at airspace efficiency 
considering ecological, economical and operational aspects. 
This paper will focus on step 3 and 4, which will be explained 
within the next section. 

IV. IMPLEMENTATION

A. Data Structure
To store data of a Voronoi diagram an appropriate data

structure called Doubly Connected Edge List (DCEL, [11]) is 
used. A DCEL consists of three lists (vertices, half-edges, 
faces) where the elements of every list are connected in several 
ways. For the edge list, each (undirected) edge is divided into a 
set of two half-edges (directed) with opposite directions called 
twins (see Figure 2. ). Furthermore, the information about the 
previous and the next half edge when moving counter-
clockwise though the half-edges of the corresponding face, the 
origin vertex, and a pointer to the corresponding face are stored 
with every half-edge additionally. Faces are finally defined by 
the center point and a pointer to a single half-edge belonging to 
this face. So, every half-edge is linked to the corresponding 
face and each face is defined by only one corresponding half-
edge. 

B. Introduction of unrestricted border forms (Line-Segment-
Intersection)
Another problem to be solved is the integration of a

nonconvex border line for an airspace region. Because the 
selected Voronoi algorithm is restricted to a convex border 
polygon, the closest rectangle including it is used as border.  

The next steps for the creation of a sectorization 
considering an authentic order polygon are: 

1. Transform the border polygon into another DCEL.
2. Calculate coordinates for all breakpoints between the

half edges of both DCELs and sort the breakpoint list
with increasing y-coordinate values.

3. Copy both DCEL’s into a common DCEL (overlay).
4. Move through the breakpoint list and reconstruct the

affected half edges and vertices (create new half
edges and vertices, assign new previous, next and

twin) and create a new face list for the overlay 
DCEL. 

5. Remove all vertices, half edges, and faces which are
outside the border polygon.

6. Substitute the border half edges of the outer sectors
by a set of two half edges connecting the breakpoints
(see mutation operator of Evolutionary Algorithm).

This approach is based on a “line-segment-intersection” 
method [11]. It is possible that a sector is divided and that a 
center point is not included in a new sector. Therefore, the 
center of gravity is calculated as new center point for each 
sector. 

Figure 3. shows border polygon and Voronoi diagram after 
the last step. The border is for illustration only and shows, 
which parts have to be inserted in the sectors of the 
Evolutionary Algorithm before the task load of the complete 
sectors can be evaluated.  

C. Task Load Calculation
Since the connection of AutoSec and AirTOp is one

important target for the development of AutoSec, the controller 
task load is calculated similar to the methods we already 
implemented in the AirTOp environemnt. For AirTOp a system 
of tasks / subtasks were defined and time values for the 
duration of each task and the frequency (if necessary) were 
advised.  

Figure 2.  Example for the segmentation of a face into a system of half-edges 
and twins (marked with*). E11* is twin, e15 is the previous and e12 the next 

half-edge of e11. 

Figure 3.  Voronoi (black) and Border-DCEL (green) after step six . 

3

8-10 November 2016
Hosted by Technical University of Delft, the Netherlands 



For the type of controller tasks and the estimation of time 
values a comprehensive study was carried out at the DLR [20].  

The definitions, subdivision of controller tasks and times 
used by several companies like the German ANSP provider 
DFS or EUROCONTROL were taken into account. As a result 
a system of 55 tasks for radar, planning, arrival, airport, tower, 
and apron controllers were defined with a total of 129 subtasks. 
TABLE I. shows an example with some tasks for a radar 
controller. As shown in this table the handling of possible 
conflicts is an important and time consuming task (see column 
“Time” in TABLE I. ). Therefore, the identification of conflicts 
is very important for each controller task load calculation and a 
conflict detection algorithm has to be applied (implemented 
similar to [21]). Afterwards, all task load values for all aircraft 
inside the sector borders are summarized to a key value. 

For the calculation of the sector task load, the flight time of an 
aircraft in each sector has to be calculated (recurring 
monitoring every 120 seconds) as well as entry and exit times, 
speeds and the position of the entry and exit points for 
appointing previous and next Area Control Centers (ACC). 

D. Structure of the Evolutionary Algorithm of AutoSec 
For AutoSec the vertices of the Voronoi-diagram created 

before are used as genes and a sequence of these vertices with a 
pre-defined order forms a chromosome. For crossover two 
chromosomes are selected and there is a small chance for each 
gene of the chromosomes to be exchanged between them 
(Uniform Crossover, [14]). For the mutation operator there is 
again a small probability for each gene to undergo mutation. 
For most vertices this means a random variation of the x- and 
y-coordinate, but for vertices situated on the border polygon of 
the observed airspace this is much more complicated. Each 
point of the border polygon has to stay a border point after 
mutation, so this restricts the mutation possibilities severely. 
Furthermore, it is not possible to include the points of the 
border polygon as additional Voronoi vertices because this 
would lead to a situation where some vertices cannot be 
mutated at all. This problem was solved by introducing two 
adaptations to the algorithm structure and the mutation 
operator.  

The first one is the replacement of the part of the border 
polygon of the associated face between the two border 
breakpoints by an auxiliary edge, connecting these breakpoints 
directly (see Figure 4. Figure 3. ). These breakpoints are added 
as Voronoi vertices. Now, the number of vertices for each face 
stays always the same. 

The next necessary adaptation considers the border as a line 
and allocates a percent value from 0 to 100 to the position of 
each border vertex depending on the distance to the first vertex 
and the length of this line. With this adaptation the mutation of 
a border vertex can be handled as the random selection of a 
percentage between the percentage values of the preceding and 
the successive border vertices. If necessary, the real course of 
the border can be easily inserted using the percentage values of 
the border Vertices. Nevertheless, it is necessary to prevent the 
creation of inner points and self-intersecting lines by special 
procedures. This holds for normal vertices when applying 
mutation and crossover operators as well. 

The most important function for each Evolutionary 
Algorithm is the evaluation function. With the focus on 
uniformly distributed task load the following factors are taken 
into account: 

• Sum of task load over all sectors [s] 
• Standard deviation (SD) of task load between 

sectors (task load SD) [s] 
• Standard deviation of interior angles in 

comparison to the average angle [°] 
• Number of flight intervals (partition of flight 

routes by sectors) over all sectors 
Especially the factor “standard deviation of interior angles” 

(interior angles SD) was introduced to ensure sector structures 
without acute angles. For the selection of chromosomes for the 
next generation a fixed number of best and different 
chromosomes are selected instantly before choosing the 
remaining chromosomes randomly. 

Several authors have stated that a convexity constraint should 
be applied to the created sectors to ensure that an aircraft visits 
every sector only once (cf. [4][19]). They also demanded a 
constraint limiting the inter sector flow. 

 

TABLE I.  EXAMPLE FOR SOME CLASSIFICATION TYPES AND TASK LOAD TIMES FOR CONTROLLER ACTIONS WITHIN A RADAR SECTOR (MO: MONITORING, 
RT: RADIO TELEPHONY, CO: COORDINATION, CL: CLEARANCES, CS: CONFLICT SEARCH, CR: CONFLICT RESOLUTION) 

Controller  Main Type Sub Type Task-Name Time [s] Repeat every x Seconds Group 
Radar Sector_Entry CHANGE_SECTOR_IN_CRU

ISE_FROM_SAME_ACC 
Initial Call 11 - RT 

  Initial Monitoring 14 - MO 
  Receipt Flight Strip 3 - CO 
  CHANGE_SECTOR_IN 

_CRUISE_FROM_DIFF_ACC 
Initial Call 15 - RT 

  Initial Monitoring 14 - MO 
  Receipt Flight Strip 3 - CO 
 Conflict CONFLICT_TYPE_1 Conflict Detection 17 - CS 
   Conflict Resolution 60 - CR 
 Recurring-

Monitoring 
RECURRING_MONITORING Monitoring 5 120 MO 
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Figure 4.  Left: Possible mutation area for the red border breakpoint between 

0 and 15 percent of the border polygon. Auxiliary edges are shown in red, 
allowed area as green vector, the forbidden part of the border as dotted orange 

vector. Right: Result of an incorrect border mutation. 

These constraints are included indirectly by the evaluation 
factors “interior angle SD” and “number of flight intervals” but 
not as mandatory. As far as the convexity constraint is 
concerned todays sectors are not necessarily convex (see 
Figure 1. ). 

V. PARAMETER AND FUNCTION OPTIMIZATION 
For an appropriate selection of crossover and mutation 

probabilities and the structure of the evaluation function, 
several tests with different parameter sets have been carried 
out. These tests were divided into three groups, the first for the 
parameters, the second for the determination of the elements of 
the evaluation function and the third for the calculation of 
weights representing the trade-off between the different 
elements of the evaluation function. For the first two tests the 
same experimental setup was used. It consisted of a set of an 
artificial airspace section with the size of 200 x 200 Nautical 
Miles, 13 randomly selected center points distributed in this 
area and 50 randomly created flights. For the evolutionary 
algorithm a population size of 40 chromosomes of length 13 
(number of Voronoi vertices) per generation and a number of 6 
best / different chromosomes for immediate selection was used. 
Furthermore, the number of generations to be simulated was set 
to 1000. 

A. Optimization of Parameters 
The parameter tests with 8 different sets for mutation 

(ranging from 0.05 to 0.2) and crossover probabilities (ranging 
from 0.05 to 0.25) led to a mutation value of 0.05 and a much 
higher crossover probability of 0.2. The second value is much 
higher because the structure of the chromosomes in the 
population tends to share several gene values, especially for 
good solutions. Therefore, the crossover operator exchanges 
very often the same values between the selected chromosomes. 
But this does not hold for the mutation operator which modifies 
every gene it is applied to. 

B. Evaluation function 
To select the best combination of evaluation parameters for 

the evaluation function, two combinations where compiled and 
compared. The first approach is called “basic evaluation 

function”. It includes only the task load SD and the interior 
angle SD and therefore reflects the aim of distributing the task 
load uniformly over all sectors. The second version 
additionally includes two other factors. The first is the 
difference between the sum of task loads over all sectors for the 
actual run and the lowest task load value over all sectors found 
so far and the second the same for the number of flight 
intervals (“extended evaluation function”). The subtraction of 
the lowest values found is necessary to avoid very high values 
for task load sum and flight interval number with increasing 
flight numbers, which then would suppress the influence of 
interior angle SD and task load SD. The results for this 
comparison are shown in TABLE II. together with the 
evaluation value for the Voronoi diagram which is used as 
basic chromosome for the creation of the start population for 
every evolutionary algorithm. 

Surprisingly, the task load value for the basic version 
exceeds even the value of the non-optimized Voronoi diagram 
dramatically, but the task load SD is very low. A closer look at 
the resulting sector structure has revealed that because the task 
load itself was not part of the evaluation function it was 
increased for those sectors with low task load values for the 
sake of a reduced task load SD. This was done by creating 
acute angles which were able to catch flights more often and 
therefore increased the portion of task load for entering and 
leaving sectors. This can be seen in column “Interior Angles 
SD” and “# Flight Intervals”.  

Because it cannot be the target of an optimization tool for 
controller task load to increase the task load itself neglecting 
the form of the sectors and the average task load the basic 
version of the evaluation function will not be used further. So, 
we can conclude that an evaluation function for an automatic 
sectorization should not only include parameters for the 
observed problem (e.g. distribution of task load) but as well 
some factors which stimulate the creation of sector forms 
favored by controllers.  

The comparison between different evaluation functions has 
shown that there is especially a strong dependency between 
task load value and task load standard deviation. Tests with 
different virtual flight schedules with varying flight numbers 
revealed the necessity to introduce weights to balance the 
influence of both factors and to redesign the calculation of the 
evaluation value for each element of the evaluation function. 
Several different weights were developed by judgement and 
evaluated with a high number of simulation trials. Four of these 
variants representing typical cases are explained in more detail 
in this section. 

TABLE II.  COMPARISON OF THE MAIN PARAMETER FOR LIMITED AND 
COMPLETE EVALUATION FUNCTION 

Type [s] Task 
Load 

[s] Task 
Load SD 

[°] Interior 
Angles SD 

# Flight 
Intervals 

Voronoi 16476 457 27.5 194 
Basic Evaluation  18330 8 46.5 229 
Ext. Evaluation  14939 352 25.9 165 
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The first step was the usage of the fraction of actual 
evaluation value and the best found value instead of subtracting 
the last from the first. So, the new evaluation value simply 
reflects the quality of the actual solution in comparison to the 
best found and is independent from the number of flights. 
Altogether more than 10 new versions of the evaluation 
function with different weights were developed and tested, 
where 4 were selected for more sophisticated simulation trials 
with a flight plan with 688 flights over a complete day and 80 
chromosomes with 12 selected to remain unchanged for the 
Evolutionary Algorithm. Each simulation with these 
parameters needed a time of approximately 8:30 minutes using 
a standard pc. 

TABLE III. shows the weights for the remaining four 
versions. The first two have fixed factors. The third features a 
task load weight which varies with the number of generations 
and includes the actual generation number of the evolutionary 
algorithm (genNr), the planned maximum number of 
generations (maxGen) and the fraction of task load and task 
load SD (RelationF) for the first generation. The third version 
allows an easier creation of solutions with good results for the 
task load SD at the beginning and an increasing pressure for 
good solutions for the task load for later generations. This 
ensures a more controlled creation of solutions which always 
take both factors into account. 

For the last version a weight for the task load SD was 
introduced incorporating the other weights and again actual and 
maximum number of generations. Furthermore, not only the 
weights were changed but the type of selecting chromosomes 
for the next generation as well. Instead of using the evaluation 
values directly a ranking of evaluation values was used as basis 
for the calculation of the selection probability. The results for 
the test simulations are presented in TABLE IV.  The columns 
show the results for the different parts of the evaluation 
function. Furthermore, the values of the evaluation function for 
the non-optimized Voronoi diagram are given in the first row 
as baseline result. 

The results for Version one show an overweight for the task 
load SD, but reducing the weight for this element as done for 
version two turns the results to the other extreme. So, fixed 
values always tend to prefer either task load or task load SD. 
Therefore, version 3 including the relation between both factors 
was developed. The results for the mean values (M) in TABLE 
IV. are better than the baseline values for every element of the 
evaluation function but the SD of the interior angles. The 
results for task load and task load SD can be seen as a 

compromise between both elements. Unfortunately, the values 
for the standard deviations are quite high, indicating 
unreliability in the quality of the solution. To cope with this, 
version 4 was developed were the selection process is 
decoupled from the actual evaluation value. Instead of using a 
selection in dependence of the evaluation value a ranking was 
introduced for each factor. The sum of the ranking positions for 
all factors is than used for the calculation of the selection 
probability. 

Again the results for task load and task load SD are a 
compromise between the possible values for both factors, but 
the interior angles and the flight intervals are as well lower than 
the baseline results. Furthermore, the standard deviation of all 
factors is considerably lower than for nearly all other versions. 
For the decision which version should be used for future 
simulations the fraction of every mean value to the 
corresponding baseline values were calculated and summarized 
for each version. The results are shown in the last column and 
lead to version 4 as the best evaluation function. 

VI. INTEGRATION OF DYNAMIC TIME-COMPONENT 
The target of AutoSec is the dynamic and automatic 

creation of airspace sectorizations with a focus on an 
appropriate partitioning of traffic data into time intervals. 
Furthermore, a smooth transition from one sectorization to the 
next should be created to prevent flights from leaving one 
sector, entering the next and then jump back to the first because 
the new sectorization makes this necessary. For this transition 
the so-called interim-diagrams are introduced which are 
inserted between the Voronoi diagrams (sectorizations). 

So the general course of action for the creation of interim 
diagrams is as follows: 

1. Calculation of Voronoi diagrams for each set of center 
points. 

2. Mapping of Vertices between successive Voronoi 
Diagrams.  

3. Splitting of the time intervals into smaller even-
numbered sub-intervals. 

4. Application of the Evolutionary Algorithm with the 
normal evaluation function to each Voronoi diagram.  

5. Calculation of the corresponding number of interim 
diagrams taking the mapped vertices of the optimized 
Voronoi diagrams into account.  

TABLE III.  VARIANTS OF EIGHT FACTOR CALCULATION FOR THE EVALUATION FUNCTION 

Version Task Load (wtl) Task Load SD  Interior Angles SD (wa) # Flight intervals (wfi) 
Version 1 1 1 1 1 

Version 2 1 0.1 1 1 

Version 3: 
Relation 

(1 + genNr*2 / maxGen) * RelationF / 6  1 0.5 0.5 

Version 4: 
Ranking 

1 (1+wtl+wa+wfi) - genNr * 1.5 / maxGen 0.5 0.5 
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TABLE IV.  RESULTS FOR THE DIFFERENT TRADE-OFF TEST VERSIONS (M: MEAN, SD: STANDARD DEVIATION). 

 Task Load [s] Task Load SD [s] Iterior Angles SD [°] # Flight Intervals % Difference 
to Baseline 

 M SD M SD M SD M SD  

Baseline 166029  4172  30.5  2240   
Version 1 173482 5191 363 221 35.8 4.4 2381 98 321 
Version 2 149548 1892 5109 689 16.3 0.4 1929 36 337 
Version 3 159016 2934 605 237 31.8 1.8 2106 54 315 
Version 4 157839 1185 819 150 28.5 0.9 2082 22 300 

6. Application of the Evolutionary Algorithm with an 
extended Evaluation function to each interim diagram. 

The most important aspects will be described in more detail 
in the next sections. 

A. Mapping of Vertices / Faces 
The structure of Voronoi diagrams depends on the number 

and position of the center points. When using time-dependent 
sets of center points, the resulting Voronoi diagrams can be 
very different in the number of faces as well as in position and 
number of vertices. The target is to insert interim diagrams 
between successive pairs of Voronoi diagrams which should 
reflect the structure of the involved Voronoi diagrams. 
Therefore, it is necessary to identify faces and vertices, which 
exist in successive Voronoi diagrams Vi and Vi+1, which can be 
connected to each other. They can be used afterwards to 
calculate vertices for the interim diagrams between the 
connected vertices of Vi and Vi+1 The connected vertex in a 
successive Voronoi diagram Vi+1 is called Map, in the 
preceding diagram Vi preMap. If successive Voronoi diagrams 
have different vertex numbers, as many connected vertices as 
possible are identified. The remaining vertices stay unchanged 
for the interim diagrams. 

In a first step connected faces are identified. For doing so 
the following steps are carried out: 

1. All faces next to the border of the Voronoi diagrams 
are identified (so called border faces). 

2. The distances between all center points of Voronoi 
diagram Vi to the center points of Voronoi diagram 
Vi+1 are calculated. 

3. Every face of the first diagram is connected to the face 
with the lowest distance between the center points of 
the second diagram (duplicate mappings possible). 

4. Run through the face list for duplicate connections 
and connect those of the same type (border / inner 
face) preferential. Connect the other face to the next 
best until no more changes occur.  

 
With the faces identified it is much easier to identify the 

vertices as well. So, the algorithm for connecting vertices will 
work as follows: 

1. Map those vertices which are nearly similar.  
2. Identify border vertices by comparing the related 

faces. 

3. Calculation of the number of unmapped vertices per 
face. 

4. Continue until no mapped face with only one 
unmapped vertex exists anymore. 

a. Direct mapping of the remaining nodes for 
all faces where only one vertex is unmapped 
and both connected faces feature the same 
number of vertices. 

b. Recalculation of the number of unmapped 
vertices for all faces. 

5. Run through all faces in the sequence according to the 
number of unmapped vertices (lowest first): 

a. Mapping of the remaining vertices in 
dependence to the distance to the unmapped 
vertices in the mapped face. 

b. If the number of vertices for the mapped 
faces is different, remove duplicate 
mappings. 

c. Recalculation of the number of unmapped 
vertices for all faces. 

For step 2 it is known that a border vertex can have only 
one half-edge which does not belong to the border. With this 
half-edge it is possible to identify the adjacent faces and 
therefore the mapped faces and the connected vertex as well 
(see Figure 1. ).  

B. Creation of Interim Diagrams 
As mentioned before the biggest problem for the creation of 

interim diagrams is the perhaps completely different structure 
of successive surrounding optimized Voronoi diagrams.  

To cope with this problem the number (nr) of interim 
diagrams inserted between two Voronoi diagrams should be 
even, so it can be divided into two equal numbered groups. The 
first group gets structure and data from the first optimized 
Voronoi diagram, the second group from the second diagram.  

 
Figure 5.  Identification of mapped border vertices V1 and V’1 using faces. 
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In the next step, the coordinates of all mapped vertices are 
recalculated proportional to the distance between the vertex of 
the first Voronoi diagram and its mapping. 

Let Vj [i] be the vertex j of diagram V[i], i∈{0,..,nr+1}, 
V[0] the first and V[nr+1] the second of the successive 
surrounding optimized Voronoi diagram, Vj map[0]=Vk [nr+1] 
the mapped vertex k of the second Voronoi diagram for vertex 
j, then holds the following formula for the coordinates for 
i∈{0,..,nr/2-1} : 

 

An equivalent formula based on the data of the second 
Voronoi diagram is used for the calculation of the coordinates 
of the second group of interim diagrams Vi, i∈{nr⁄2,…,nr}. 
Figure 1. shows a graphical interpretation of this equation. 

C. Application of Evolutionary Algorithm 
For the optimization process with the evolutionary 

algorithm the Voronoi diagrams are optimized first. Afterwards 
the coordinates of the vertices of the interim diagrams are 
calculated in dependence of the new coordinates of the mapped 
vertices of the optimized Voronoi diagrams. Because the 
interim diagrams should guarantee a smooth transition between 
the optimized Voronoi diagrams it is not possible to optimize 
them independently. At least the vertices have to stay close to 
their original values. Therefore, a special limitation formula for 
the mutation of vertex coordinates was added to the former 
mentioned evaluation function. In case of equal Map and 
preMap the difference to the original Vertex is calculated and 
set in relation to a predefined threshold value, where values 
above the threshold are penalized by doubling the distance.  

In case of different map and preMap an ellipsoid between 
Map and preMap is used to define an allowed area (see Figure 
7. ). Every ellipsoid is described by a defining distance and two 
focus points F1 and F2. The border of the ellipsoid consists of 
all points where the sum of the distances from this point to the 
focus points F1 and F2 is equal to the defining distance.  

 
Figure 6.   Example for the transition from one Voronoi diagram (red) to the 
next (blue) with nr = 2 interim diagrams in dependence of the time interval ti. 

 
Figure 7.   Definition of an allowed area for vertex Vj(i) with different Map 

and preMap. 

Now a “vertexCloseness” for each vertex can be defined as 
the fraction of the sum of the distances form the new point to 
the focus points and the defining distance of the ellipsoid (sum 
of distances from preMap to the focus points  as well). Again a 
new position outside the ellipsoid gets twice the penalty points 
as an inside point. Then the sum of the vertexCloseness for 
each vertex is used as corresponding evaluation value of a 
chromosome. 

In addition a weight factor (wvc) for the evaluation 
function has to be determined. Because the interim diagrams 
depend strongly on the optimized Voronoi diagrams, it is not 
possible to compare the result of different simulation runs 
directly. For an estimation of the influence of the weight factor 
and the vertexCloseness on the optimization, the evaluation 
values for each part of the evaluation function of each interim 
diagram before the start of the optimization process were used 
as reference values. 

D. Results 
With this definition it is possible to calculate the 

improvement created by the optimization process. Together 
with the values for the average difference to the original 
position of each vertex this allows the selection of the best 
weight for the evaluation function. As Test-Scenario the same 
flight schedule and optimization parameters were used as for 
the weight test described in Section I.  

To facilitate the possibility of interim diagrams two 
additional sets of center points were created and two interim 
diagrams between each pair of Voronoi diagrams were 
determined. The results are presented in TABLE V. The higher 
the values the better is the quality of this factor of the 
evaluation function. As test cases weights of zero, three, five, 
and ten were selected by judgement. Zero is used to 
demonstrate the general possibilities of an optimization that is 
not restricted to stay close to the original values. Nevertheless, 
the results for all weights show significant improvements, even 
for a factor of ten which rates the vertex closeness higher than 
all other factors of the evaluation function.  

The noticeable high values for the average position 
difference are a result of the definition of the vertexCloseness 
factor. For this factor not the real distances but the fraction to 
the defining distance of the ellipsoid is used as measure for the 
quality of this factor. 
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TABLE V.  RESULTS OF THE TEST RUNS FOR CALCULATING THE 
INFLUENCE OF THE OPTIMIZATION ON THE INTERIM DIAGRAMS. ALL RESULTS 

SHOW THE DIFFERENCE BETWEEN THE EVALUATION OF THE ORIGINAL AND 
THE OPTIMIZED INTERIM DIAGRAM. 

Weight 
 

Task 
Load [s] 

Task 
Load 
SD [s] 

Interior 
Angles 
SD [°] 

# Flight 
Intervals 

Avg.  
Position 
Difference 
[NM] 

 Interim 1    
0 753.3 429.3 -1.4 18.2 21.3 
3 736.6 143.8 1.0 19.5 5.2 
5 519.5 116.7 0.9 12.4 3.5 
10 328.2 91.1 0.1 8.3 2.4 
 Interim 2    
0 592.4 247.1 1.0 16.2 14.3 
3 604.0 84.2 0.3 16.7 4.8 
5 497.3 68.3 -0.2 13.0 3.5 
10 332.7 58.5 -0.3 8.7 2.4 
 Interim 3    
0 1394.7 468.5 1.7 33.4 17.8 
3 1095.2 106.3 0.2 27.8 5.9 
5 563.8 97.6 0.0 14.1 5.3 
10 545.3 62.5 -0.7 14.1 4.8 
 Interim 4    
0 1597.9 486.0 5.6 38.1 16.1 
3 1282.1 202.3 4.7 30.8 7.6 
5 1110.9 203.9 4.3 27.8 6.7 
10 797.5 136.7 3.2 20.3 6.0 

 

In case of a higher distance between Map and preMap this 
defining distance can be high which allows a higher 
displacement of vertices before getting penalized. 

Because the selected weight should provide a possibility to 
optimize the interim diagrams as well as to stay close to the 
surrounding optimized Voronoi diagrams, a weight of three 
was selected for future simulations. 

Figure 8. shows exemplarily the sequence of interim 
diagrams between the optimized Voronoi diagrams two and 
three from one simulation run. For a closer examination a 
special sector marked in blue was used to demonstrate the 
movement of vertices in case of very different vertex position 
in the surrounding optimized Voronoi diagrams. 

VII. OUTLOOK 
With our approach we can demonstrate the efficient 

combination of fuzzy clustering, Voronoi diagrams, and 
evolutionary algorithms to enable an appropriate sectorization 
of the airspace regarding to the controller task load. This 
approach is currently used to evaluate airspace navigation 
service provider under both operational and economical 
aspects. 

At the implementation level we currently focus an 
automatic import tool for DDR2 flight data of 
EUROCONTROL and integration into the existing tool chain 
to enable realistic test scenarios with actual flight data.  

 

Figure 8.  Example of a sequence of optimized Voronoi diagram two (upper 
left), interim diagrams three (upper right) and four (lower left) and optimized 

Voronoi diagram three (lower right) for a weight of three.  

Further on, scenarios of DLR projects coping with 
sectorization and task load distribution are evaluated with 
respect to the benefit of dynamic airspaces. When the 
anticipated benefits of this approach have been confirmed in 
fast-time simulations, the next steps are workshops with air 
traffic controllers to verify a suitable degree of automatic sector 
adjustment and following thereon a usability study with 
humans-in-the-loop.  
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