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In this paper we present a system that supports airlines to take 

timely actions to mitigate the impact of runway capacity 

shortfalls and unforeseen long taxi times on airline performance, 

and to optimize fuel on board for airborne holding and taxiing. 

The system makes use of a machine learning technique to provide 

a 30-hour probabilistic forecast. The system has been validated to 

ascertain its predictive power and to determine the impact on 

decision making. The probabilistic forecast matches with the 

realized use fractions to within 7%. An experiment in using the 

display indicates that decisions to cancel flights are made earlier 

which allows more time to re-route passengers, and better 

targeting of advices to take extra fuel on board to allow for 

airborne holding.  

Decision Making, Decision Support, Machine Learning, 

Runway Use, Runway Capacity, Forecasting,  

I. INTRODUCTION 

Airlines suffer financial and reputational damage when 

passengers miss their connecting flight due to airline non-

performance [1].  Therefore, timely actions are key for airlines 

when airline performance is at risk. 

Runway capacity shortfalls and selection of runways that 

lead to unforeseen long taxi times have a detrimental effect on 

airline performance. Weather is a determining factor in runway 

selection and runway capacity. However, uncertainty of the 

weather forecast complicates forecasting of the runways that 

will be used and the capacity which they provide. Additionally, 

runway selection varies from day to day under influence of 

factors that cannot easily be captured or modelled for inclusion 

in a runway forecast. 

Amsterdam Airport Schiphol (AAS) has six runways that 

are used in more than eighty different combinations. During 

off-peak hours two runways are used: one for of take-offs and 

one for landings. During inbound and outbound peaks three 

runways are used. The third runway is used for either take-offs 

or landings. During the day, Schiphol alternates between 

inbound and outbound peaks, resulting in a minimum of 14 

runway configuration changes per day. Between an inbound or 

outbound peak, four runways may be used simultaneously for a 

short period of time (double peak). Finally, runways are used in 

a noise preferential order [2]. 

The variety of runway combinations, high amount of 

changes, and complexity of the runway selection criteria limit 

the ability of airlines to accurately predict airport capacity and 

taxi times. Various runway use forecasting systems have 

therefore been developed [3,4,5]. In this paper a novel 

approach is taken by application of machine learning to derive 

a predictive model and method of presentation of the results to 

support decision making. 

This paper presents a system that provides a probabilistic 

forecast of runway use and capacity for the next 30-hours in 20 

minute intervals. The system uses a machine-learning 

technique to forecast runway use based on weather 

observations and prior observed runway selection. Monte Carlo 

simulations are applied with varying weather conditions that 

are derived from a probabilistic meteorological forecast. This 

approach provides a probabilistic forecast of runway use and 

capacity that accounts for both the uncertainty in the weather 

and uncertainty in runway selection. The forecast is made 

available to end users using an online dashboard. 

The remainder of this paper is organized as follows: 

Section II introduces the machine learning approach to runway 

and capacity forecasting. Section III discuss the process to 

generate the forecast. Section IV discusses how the probability 

forecast is presented to the end users. In Section V the results 

of the analysis to determine the predictive power of the system 

are presented. In Section VI discussed the impact on the 

decision making process. Sections VII and VIII contain the 

discussion and conclusion. 

II. MACHINE LEARNING APPROACH TO RUNWAY 

FORECASTING 

A. Machine Learning

Runway selection at AAS is based on required arrival

capacity, required departure capacity, crosswind and tailwind 

limits, minimum cloud base, runway visual range, and noise 

preferential runway use. Explicit modelling the runway 
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combination selection process based on these inputs would lead 

to a highly complex model.  

Machine learning is defined by Mitchell in Ref. [6] as 

follows: “A computer program is said to learn from experience 

E with respect to some class of tasks T and performance 

measure P, if its performance at tasks in T, as measured by P, 

improves with experience E.”. Using machine learning 

techniques, a runway forecast can be made without explicit 

modeling of the runway selection.  

Meteorological observations (Meteorological Aerodrome 

Reports, METAR) and runway use data are used to train a 

predictive model. During the training phase model parameters 

are set by a learning algorithm. Training ends when the model 

parameter changes drop below a preset threshold value. After 

the model is trained, the model is ready for use. Figure 1 gives 

an overview of the proposed approach. 

B. Multinomial Logistic Regression

In our machine learning approach, we define runway

forecasting as a supervised learning regression problem. We 

use multinomial logistic regression to predict the probabilities 

of all possible runway combinations that can be used. 

Multinomial logistic regression is well described and readily 

available in tools and libraries like Hadoop and Weka [7,8,9]. 

Therefore, our discussion is limited to its application in 

forecasting runway use. 

The runway combination is considered a nominal 

dependent variable. The number of categories is limited (i.e. 

82 unique runway combinations), there is no ordering in any 

meaningful order and all categories are known. 

C. Model Features

To predict runway use, the model uses the features (or

inputs) listed in Table I. The features include the determining 

factors for runway use: wind, visibility, the daylight condition, 

and the number of runways in use. 

Table 1. Model Features 

Features Unit / Categories 

Visibility condition 

Good / Marginal / Low Visibility 

Procedure phase A to C 

Uniform Daylight Period Yes / No 

Wind speed kts 

Wind direction kts 

Gust kts 

Variation wind direction >60˚ Yes / No 

Number of runways in use 1+1, 1+2,2+1,2+2* 

*Landing + Take-Off 

D. Runway Capacity

The capacity of individual runways depends on the

separation criteria, actual fleet mix, and headwind. ATC 

declares an hourly capacity per runway combination that has 

been based on these parameters. The capacity is given per 

runway as function of the combination in use, visibility, and 

daylight conditions. To determine the runway capacity, the 

model derives the capacity from the forecasted runway 

combination using this declared capacity.  

III. PROBABILISTIC RUNWAY AND CAPACITY FORECAST

As discussed in Section II the runway use model predicts 

the probabilities of all possible runway combinations based on 

the expected meteorological condition and the number of 

runways in use. To generate a probabilistic forecast that also 

includes the uncertainty in the weather, Monte Carlo 

simulations are performed with varying meteorological 

conditions. The meteorological conditions are derived from 

the Schiphol Probability Forecast (SKV, Dutch: Schiphol 

Kansverwachting). Figure 1. Schematic overview of training  

and prediction processes. 

Figure 2. Example of Schiphol Probability Forecast, 

Source: Ref [10]. 
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A. Schiphol Probability Forecast 

The SKV is published by the Royal Netherlands 

Meteorological Institute (KNMI) every hour [10]. The SKV 

has a prediction horizon of up to 30 hours and a temporal 

resolution of 1 hour. Figure 2 shows an example of the SKV. 

The SKV is also available in a machine readable format. The 

SKV includes, among others, the probability of reduced 

visibility conditions, the wind direction and wind speed, gust, 

and standard deviations of wind direction and speed. 

 

B. Monte Carlo Simulations 

Figure 3 gives a schematic overview of the Monte Carlo 

simulations that are executed using the model to generate the 

forecast. The forecast is generated per 20-minute period 

starting on the hour. 20-minute periods are used to align with 

the planning of off-peaks, inbound peaks, and outbound peaks. 

Simulations start each time a new SKV is received. 

 

At the start of every run, a meteorological condition is 

drawn randomly from the SKV. A probability forecast is 

determined for off-, inbound, outbound, and double peak 

runway use. The forecasts from all runs are aggregated to the 

runway probability forecast that thus accounts for both the 

uncertainty in runway selection and the uncertainty in weather. 

 

 

 

IV. USER INTERFACE 

The probability forecast is published online on a dashboard. 

The interface has been designed in close operation with its end 

users at KLM’s OCC. Figure 4 gives an impression of the 

interface.  

The system shows an overview of the expected capacity 

and traffic in the next 30 hours at a glance, but also enables the 

user to zoom in on the expected runway use, capacity, 

meteorological conditions, and traffic within a 20-minute 

period. Furthermore, the interface gives the user the possibility 

to quickly assess what-if scenarios based on hypothetical 

conditions. 

The interface consists of several blocks that are discussed 

in the remainder of this section. 

A. Capacity – Demand Graph 

The graph at the top of the interface shows the capacity per 

20-minute for departures (blue) and arrivals (orange) with a 

probability of 50% or more. The grey bars show the scheduled 

number of departures and arrivals on the runway. Both capacity 

and traffic per 20-minute are visualized as movements per 

hour. Traffic exceeding predicted capacity by a large margin is 

an indication that runway capacity may be insufficient to 

handle traffic without delays. 

During the day, both the traffic and runway capacity 

alternate between inbound and outbound peaks. For the runway 

capacity, the system uses the peak periods set by Air Traffic 

Control (ATC) in their seasonal planning. If, during an inbound 

or outbound peak, a runway combination with two runways for 

arrivals or departure is not feasible, the system falls back to a 

runway combination with one runway for arrivals and one for 

departures. 

 The graph works like a map. By clicking on the graph, the 

user selects a 20-minute period and the information highlighted 

or shown in the other blocks changes accordingly. 

B. Capacity Table 

The block on the left below the capacity vs. demand graph 

gives a summary of the meteorological condition, the peak 

period as planned by ATC in their seasonal planning, and the 

capacity per peak period. The user can select a line in the table 

after which the same 20-minute period is highlighted in the 

capacity graph and other blocks are updated accordingly to 

show information for the selected 20-minute period. 

C. Runway Combination Forecast 

The block on the right, below the graph shows the runway 

combination forecast for the 20-period selected by the user. 

The forecast is given for the peak period set by ATC and the 

most likely visibility condition. The runway combinations are 

sort by probability in descending order. Runway combinations 

with a probability lower than 5% are not shown to the user. 

The capacity is given per runway in movements per hour. 

The user can select another peak period type or visibility 

condition to see the which runway combinations might be used 

in those conditions. This selection does not affect any of the 

other blocks. 

D. Meteo Forecast 

The block in the bottom right corner shows the 

meteorological forecast valid for the 20-minute period selected 

in the capacity vs. demand graph. The information is derived 

from the SKV that was used to generate the forecast.  

 

Figure 3. Monte Carlo Simulations run per 20 minute interval. 
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V. PREDICTIVE POWER 

The predictive power of the system has been validated by 

comparing the forecasts to actual runway use. For this purpose, 

the model was trained using 2013 runway use and METAR 

data.  Subsequently, forecasts were made using 2014 data and 

compared to the actual realization. 

The predictive power of the SKV and runway use model 

together determine the overall predictive power of the system. 

The predictive power of the SKV is known [10]. First, the 

predictive power of the runway use model was determined. 

Meteorological observations (METAR) were used to forecast 

the runway use. Second, the overall predictive power of the 

system was determined. The 2014 archive of the SKV was 

used to forecast runway use. 

A. Predictive Power of Runway Use Model 

Figure 5 shows the probability and percentage of time a 

runway combination was actually used. 

  

The graph shows a strong correlation between probability 

that a runway combination is used and the percentage that a 

runway combination is actually used. For example, under 

those conditions the model forecasts 80% chance a runway 

combination will be used, the runway combination is used 

78% of the time. 

 

Table 2 gives the percentage of time that a runway 

combination was actually used when the model forecast a 70% 

chance the runway combination would be used. 

 

Table 2. Percentage of time runway combination with a 70% probability 

actually used per peak period and visibility condition. 

Peak period Good Visibility Marginal Visibility 

Off-peak 72% 64% 

Inbound Peak 64% 56% 

Outbound Peak 67% 87% 

Double Peak 70% NA 

Night 70% 72% 

 

Figure 4. User Interface. 

Figure 5. Probability vs. Percentage used. 

4

 

 

 
 
 
 
 
 
 
 
 
 

 

8-10 November 2016 
Hosted by Technical University of Delft, the Netherlands 

 

 

 



B. Highest Probability in Forecast 

The highest probability per forecast is a measure for the 

predictive power and the added value of the system in the 

decision-making process. For example, if the maximum 

probability is 30%, it is likely that the forecast contains 

multiple runway combinations. This would complicate 

decision making and limit the added value of the system. 

 

Figure 6 shows the distribution of the highest probability 

per forecast. In good visibility, the highest probability is 80% 

or more in 52% of the forecasts. In general, the highest 

probability is 40% or less in just 10% of the forecasts. 

 

The highest probability in a forecast strongly depends on 

the wind direction as shown in  Figure 7. If the wind is coming 

from the East or West, the highest probability in the forecast is 

significantly lower than for winds from the North or South. 

This may be explained by the fact that Schiphol has 3 North-

South runways which leads to a sensitivity for variation of the 

headwind components due to winds from the East or West.   

C. Predictive Power of the Forecast 

Figure 8 shows the percentage of forecasts the runway 

combination with highest probability (position 1) was used, the 

percentage the runway combination used was the runway 

combination with highest or second highest probability 

(positions 1 & 2) and the percentage of forecasts the runway 

combination was included in the forecast (probability > 5%). 

In 76% of the forecasts made one hour in advance the 

runway combination used had the highest probability in the 

forecast. This percentage gradually drops to 69% for forecasts 

made 27 hours in advance. In 90% of the forecasts made up to 

13 hours in advance, the runway combination used had the 

highest or second highest probability. 90% or more of the 

forecasts included the runway combination that forecasted with 

a probability of more than 5%. 

VI. IMPACT ON DECISION MAKING 

To assess the impact of the system on the decision making 

a comparison was made between the decisions made with and 

without the system based on actual disturbances. 

A. Method 

KLM selected five days with (potential) adverse weather 

conditions that had a negative impact on the performance of 

the airline. On these days (scenarios), fuel advices were issued 

and/or flights were canceled. 

 

In an experiment the decision-making process for each of 

the five scenarios was simulated. The scenarios started at 7:00 

the day before and ended at 7:00 on the day itself. Similar to 

Figure 6. Highest probability per forecast 

Figure 7. Distribution of highest probability in a forecast vs. wind direction 

Figure 8. Position of runway combination used in forecast 
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the actual operation, there are four decision points: 7:00 the 

day before (D-1), 15:00 D-1, 23:00 D-1, and 7:00 on the day 

itself. At every decision point, the participant was asked if he 

or she would like to take any action to mitigate the impact of 

the weather on the flight operation, based on the forecast made 

by the system and information from the sector briefing.  

 

 

The decisions taken during the experiment runs have been 

compared to the actual decisions that were taken. At the end of 

the experiment the participants were asked to give feedback on 

the system and the experiment. 

 

B. Participants 

One flow controller and two flight dispatch supervisors 

participated in the experiment. The participants had no prior 

experience with the system. For operational reasons and time 

constraints it was not feasible to invite more participants. 

  

C. Training and Instructions 

Prior to the experiment, the participants received a written 

experiment description. At the start of the experiment an 

introduction to the system was given using a presentation. 

Subsequently, the experiment procedure and the roles of the 

participant and experiment leader were explained. At every 

decision point the experiment leader provided the latest 

meteorological forecast and information from the latest sector 

briefing. 

 

The participants were asked to do the following at every 

decision point: 

1. Observe the information provided and describe the 

situation; 

2. Explain the conclusions from the information provided; 

3. Formulate any decisions are actions they would take; 

4. Indicate if they would like to move on the next decision 

point (8 hours) or reassess the situation within a couple of 

hours. 

 

One training scenario was used to get acquainted with the 

system and experiment procedure. 

D. Scenarios 

The following five days were selected: 

 
Table 3. Scenario Descriptions 

Day Description 

1 Southwesterly storm passing over 

2 Stormy with winds from an unfavorable direction 

3 Snowfall expected, eventually no snowfall on the airport 

4 Cold front passing over, combined with strong winds 

5 
Cold front passing over, combined with very strong winds, 

gusts up to 50 kts 

 

It took between three and four hours per participant to 

complete the experiment. The days were presented in a 

different order to compensate for learning and boredom 

effects. 

 

E. Impact on Decision Making 

In Table 4 a comparison is made between actual decision 

made on day 4 and the decision made during the experiment. 

On day 4, a fuel advice had been issued for European flights at 

23:00 on the previous day. On the day itself flights had been 

canceled. Two of the three participants, with the support of the 

system, took the decision to cancel flights on the day before in 

the afternoon followed by fuel advices. All participants issued 

a fuel advice to the European (EUR) flights, and two also 

issued such advice to intercontinental (ICA) flights. One 

participant only issued fuel advices. A similar comparison has 

been made for the 4 four other days. Most of the time the 

‘type’ of decision made in the experiment with the use of the 

system matched the decision actually taken without the 

system. 

 
Table 4. Decisions compared for scenario 4. 

Decision 

Point 
Actual 

Participant 

1 2 3  

7:00 D-1 NONE NONE NONE NONE 

15:00 D-1 NONE FUEL - ICA CANCEL CANCEL 

23:00 D-1 FUEL - EUR NONE FUEL - EUR FUEL - ICA 

7:00 CANCEL FUEL - EUR NONE FUEL - EUR 

 

However, the comparison indicates that the system does 

affect the moment the decision is taken. Tables 5 and 6 give an 

overview of the number of participant who decided to cancel 

flights or issue a fuel advice and how many times a decision 

was made at an earlier, the same, or later decision point.  
 

Table 5. Decisions to cancel flights compared 

Day Actual Experiment Earlier Same  Later 

1 Yes 1/3 0 0 1 

2 Yes 3/3 0 2 1 

3 Yes 3/3 3 0 0 

4 Yes 2/3 2 0 0 

5 No 2/3 NA NA NA 

Sum 5 2 2 
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Table 6. Decisions to issue fuel advices compared 

Day Actual Experiment Earlier Same  Later 

1 Yes 3/3 2 1 0 

2 Yes 3/3 0 0 3 

3 Yes 3/3 0 0 3 

4 Yes 3/3 1 2 0 

5 Yes 2/3 0 0 2 

Sum 3 3 8 

 

From Table 5 it follows that 5 decisions to cancel flights 

were taken at an earlier decisions point and two at the same or 

a later decision point. Contrary to cancelations, Table 6 shows 

that 8 of the 14 fuel advices were issued later and 3 were 

issued earlier or at the same time. 

The data also suggests that, with the system, the fuel 

advices are more targeted to short haul and long haul flights 

arriving within a specific time frame. One of the participants 

explicitly mentioned this during the experiment. 

 

F. User Feedback and Observations 

The participants provided feedback during the experiment 

and were also asked to provide feedback at the end of the 

experiment using a questionnaire. 

 

The participants indicated that a capacity shortfall in the top 

graph works like a trigger to look at in more detail at those 

periods of the day. Nowadays, they focus primarily on the first 

inbound peak and last outbound peak of the day. Two 

participants expect that the system will support them in paying 

more attention to other peak periods in the middle of the day. 

 

A recurring comment made by the participants was the 

effort required to get insight in expected weather changes 

(e.g., backing and veering winds). This requires too many 

mouse clicks. Two out of three participants missed 

information about the cross and tailwind per runway and the 

impact of wind on capacity. 

 

One of the observations made during the experiment was 

the limited use of capacity table. This was confirmed by the 

participants and a log of the number of mouse clicks in the 

table. The participants indicated that the table could be 

removed from the interface as the other blocks in the interface 

already contain the information given in the table but in a 

manner that was easier to understand. 

 

VII. DISCUSSION 

In this research we developed a system that provides a 

probabilistic runway capacity and runway use forecast. The 

predictive power of the model was validated extensively using 

two years of data. The probabilities and frequencies deviate no 

more than 7 percentage points. The runway combination with 

the highest probability in forecasts made 27 hours in advance 

was used 69% of the time. The runway combination with 

highest or second highest probability in forecasts made 27 

hours in advance was used 85% of the time. 

 

While these forecasts do not exactly predict the runway 

configuration, the forecasts can support decision makers in 

adjusting their operation. The probabilistic information may 

not only support changes to operation based on a predicted 

disruption but also applying appropriate buffers for the 

likelihood that the disruption may occur.  

 

Unfortunately, the number of people who could participate 

in the experiment to determine the impact on decision making 

was limited. At this moment, no statistically significant 

conclusions can be drawn. Still, the results give a good 

indication of the impact of the tool on the decision making 

process. The system primarily affects the moment decisions 

are taken in a desired way. Decisions to cancel flights are 

taken earlier, leaving more time to inform and re-route 

passengers. Decisions to issues fuel advices are taken later and 

more targeted to short haul or long haul flights arriving in a 

specific time frame. Hence, overall less extra fuel is taken on 

board. 

 

The system enables more informed decision making with 

respect to runway use and runway capacity that can have a 

detrimental effect on airline performance. However, the 

information the system provides may also be beneficial to 

other stakeholders such as the airport, ATC, ground handlers 

or even people living in the vicinity of the airport. One 

example is runway maintenance planning. The forecast can 

also be used to compute the probability a runway will be used 

the next day. If the probability is low, maintenance is unlikely 

to interfere with the operation. The runway combination is of 

less importance. User specific dashboards may be added to the 

system to cater for the information needs of every stakeholder. 

 

The approach was developed and tested at Amsterdam 

Airport Schiphol, but may also be applied at other airports. 

Especially, airlines operating at an airport with a multiple 

runway system may benefit from the system. To take full 

benefit of the system a probabilistic weather forecast like the 

SKV is required. 

VIII. CONCLUSIONS 

A decision support system was developed to mitigate the 

impact of runway capacity shortfalls on airline performance 

by providing a 30-hour probabilistic forecast of runway use 

and runway capacity. Machine learning was used to derive a 

predictive model to generate probabilistic runway use 

forecasts. Combining the probabilistic runway use forecast 

with a probabilistic meteorological forecast results in a 

probabilistic forecast that accounts for both the uncertainty in 

the weather forecast and runway selection. Probabilities 

forecast have strong correlation with the percentage of time a 

runway is actually used. 
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Results indicate that decisions to cancel flights are taken 

earlier, leaving more time to inform and re-route passengers. 

Decisions to issues fuel advices are taken later and are more 

targeted to short haul or long haul flights arriving within a 

specific timeframe. 
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