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Abstract— This study aims to first develop a successful taskload 

model which is able to relate the controller’s interaction with the 

radar screen to the dynamical changes in air traffic patterns. 

Secondly, the study aims to examine whether i4D equipage, as a 

specific notion of automation, contributes to an improvement in 

quantification of controller’s taskload model. Thirdly, in a more 

specific approach the study intends to analyze to what extent 

controllers may or may not benefit from predictable situations at 

dense traffic conditions when exposed to higher automated 

airspace environment. The model is applied on 18 data sets 

featuring different i4D-equipage levels. It compares controllers’ 

taskload for three different scenarios between an en-route and a 

terminal sector. 

Keywords; Human-automation interaction; Air Traffic 

Controller (ATCO) taskload; airspace complexity; dynamic 

density 

I. INTRODUCTION

During the past 50 years, the results of mathematical 

models have shown that controllers’ workload is being driven 

by the complexity involved in the airspace environment. Part of 

this complexity is prompted by the dynamical behavior of 

traffic patterns.  From the results of models describing 

controller’s taskload, it is observed that predictability decreases 

the complexity [6, 11]. The general idea behind this study is to 

analyze how a specific notion of predictability influences the 

controller’s taskload. The specific notion in the present study is 

an automation which enables the aircraft to meet the time 

constraint set on defined waypoints by the controller in dense 

traffic conditions. This procedure, based on which the aircraft 

3D trajectory is constrained by an additional time factor, is 

known as 4D trajectory management or initial 4D (i4D).  

Today, not all aircraft are equipped with i4D. According to 

SESAR i4D demonstration plan, those aircraft equipped with 

i4D have the advantage of managing their speed profile to 

achieve the Controlled Time of Arrival (CTA) constraint 

imposed by the controller. Aircraft not equipped with i4D need 

to be vectored by the controller more frequently to avoid safety 

concerns. From controller’s point of view, management of a 

mixed-i4D-equipped environment could be a challenge as the 

normal aircraft needs to be directed based on the constraints 

imposed by the i4D-equipped aircraft. On one hand, we know 

that i4D makes the flight path of an aircraft more predictable 

for the controller which helps them guide it with less effort. On 

the other hand, it is observed in the data used for the present 

study research that in a mixed-i4D-equipped environment the 

controller cancels the CTA they have previously imposed on an 

aircraft. Such observations raised two interesting questions:  

1. Do the controllers actually benefit from a mixed-

i4D equipped environment, having less taskload?

2. Could different levels of i4D equipage affect

controllers’ taskload to various extents?

In response to the above research questions, this study intends 

to first investigate the airspace complexity and then model 

controllers’ taskload in a way that it correlates with the 

complexity of the airspace. Once the successful taskload model 

has been developed, effects of different automation levels will 

be analyzed. 

In the next section, we will provide a background of the 

subject. In Section III, the experiment design as the basis for 

data used in this work is explained. Then in order to have a 

grasp of the controllers’ interaction with the airspace, their 

activities on the radar screen have been visualized in Section 

IV. Next in Section V a novel calculation approach is followed

and the airspace dynamic density has been quantified using a

set of known complexity factors. In Section VI, the approach

toward modeling ATCO taskload is introduced. Then in

Section VII, the results are presented and ATCO responses to

different predictability conditions are analyzed. At last in

Section VIII, the main ideas are discussed and possible future

work is suggested.

II. BACKGROUND

 Complexity within air traffic control (ATC) environment 

has been defined in [1] as “a measure of the difficulty that a 

particular traffic situation will present to an air traffic 

controller”. In the same work of [1], workload is explained as 

“a function of three elements; firstly, the geometrical nature of 

the air traffic, secondly, the operational procedures and 

practices used to handle the traffic and thirdly, the 
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characteristics and behavior of individual controllers 

(experience, orderliness etc.) …”. The third element of this 

explanation contains the cognitive workload which by far is 

proven to be the most difficult task for the mathematicians to 

formulate [11]. The second element of explanation of [1] of 

workload, is the basis for measuring controllers’ taskload 

which is the focus of analysis of this work. 

To model ATCO taskload, the previous works of [2, 3, 4] have 

been studied. In 1978, Schmidt put forth the idea that the 

subjective difficulty of a task to accomplish is highly correlated 

to the time required to do the task [2]. As a result, “the 

magnitude of the load” could be obtained by measuring the 

total time spent on performing a task. In the same work, he 

further discusses the limitations involved with measuring the 

time required for performing each task since sometimes the 

time available to accomplish a task is more or less than the 

time required to do so. The other limitation he addresses lies in 

the fact that controller’s boredom could affect the task 

performing duration which makes it difficult to measure the 

time required for performing tasks. That is because the 

relationship between type of the task and the boredom 

associated with it is very difficult to quantify. However, he 

suggests that the time spent for communicating with the pilot 

still could be considered as a measure even though it is only a 

portion of total time required for performing tasks. In line with 

this concept [3] used the modern Controller Pilot Data Link 

Communication (CPDLC) data entries and controller-pilot 

radio communications to measure the taskload [3]. In [4] a 

macroscopic approach to the workload model is followed and 

taskload is calculated by splitting the tasks into four different 

types. They further estimated the required time for 

accomplishing each task type by making an average over the 

performed tasks by different controllers in en-route area. The 

current work mainly relies on the latter work of [4] to quantify 

taskload mainly because they covered all different tasks that we 

study. 

All of the dynamic density related works have shown that the 

ATC complexity directly affects ATCO taskload and is the 

basis of controller subjective workload. To quantify dynamic 

density, the present work has relied on [5, 6, 7, 8, 9, 3]. In [6], 

new mathematical formulas have been developed for a set of 

complexity factors which were observed to have a very 

dynamic and unpredictable behavior (such as ground speed 

variance, conflict sensitivity and conflict insensitivity). In [8], a 

more precise form of formulas of [6] is proposed and by 

developing a neural network the relationship between 

complexity factors and the sectors configurations is found. 

They have further shown which of the complexity factors 

significantly relate to the workload. In [9], three different 

automation levels are considered and the effects of a specific 

type of automation on controller’s workload in higher densities 

are evaluated. In their experiment, the automation has helped 

the controllers with detecting the conflict in the first level, 

automatically detecting the conflict in the second level and 

proposing conflict resolutions in the third level. They have 

further evaluated the relationship between complexity factors 

and the controllers’ self-assessment ratings using a linear 

regression analysis.  To calculate the air traffic complexity, we 

have mainly relied on the work [3, 8]. Similar to all previous 

works in the literature, a linear regression analysis has been 

made between the complexity factors and the taskload model. 

Compared to the previous related work in the literature [2, 3, 4, 

13], three different approaches are followed. Controllers’ clicks 

on the radar screen have been considered as a measure for 

quantifying taskload. A novel methodology in calculating the 

airspace complexity factors is developed. Controllers’ taskload 

is analyzed for different i4D-equipped scenarios and the results 

for an en-route and a terminal sector are discussed. It is worth 

mentioning that human factors and controllers’ characteristics 

(age, experience etc.) are not considered through the research 

and will be the scope of a future work. 

III. EXPERIMENT DESIGN

In this study, the data for 18 sets of experiments have been 

analyzed. These experiments are designed and implemented 

by a team of experts from Air Navigation Services of Sweden 

(LFV), NORACON, THALES, SESAR JU etc. Each 

experiment has run for up to 120 minutes and controllers’ 

activities on the radar screen (e.g. mouse clicks etc.) were 

recorded. In each scenario six licensed air traffic controllers 

controlled six different sectors covering Stockholm’s airport 

airspace, four of which are en-route sectors. The other two 

sectors are Terminal Maneuvering Area (TMA) sectors which 

can be differentiated by east and west direction. Figure 1 

shows the airspace studied in the experiment specifying 

borders for the six sectors (sector 3, sector 4, sector 1, sector 

9, sector TMA-W and sector TMA-E).  

Figure 1. Simplified ATC sectors of Stockholm Airspace1. 

The sector geometry used in the study is the simplified version 

of the real sectorized airspace. The scenarios were simulated 

at different times of the day with the controllers being 

responsible for different sectors in different scenarios. The 

1 Figure is drawn using http://daim.lfv.se/echarts/ 
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percentage of the aircraft equipped with i4D varied among 

different scenarios. Table I shows how many of scenarios 

were executed with each equipage level. 

 
TABLE I. DISTRIBUTION OF DIFFERENT I4D-EQUIPAGE LEVELS 

AMONG SCENARIOS. 

Number of Scenarios i4D Equipage Level 

7 0% (zero automation level) 

8 50%(medium automation level) 

3 80% (high automation level) 

 

As can be seen in Table I, in 7 scenarios none of the aircraft 

were equipped with i4D (zero level of automation) while in 8 

of them 50% of the aircraft (medium level of automation) and 

in 3 of them, 80% of the aircraft (high level of automation) 

were equipped with i4D. For convenience each scenario is 

coded with “SCN-(number)-(automation level)” throughout 

this paper. Only in one scenario (SCN-9-50%) the wind 

effects were considered. To increase unpredictability of the 

situation for the controller, in one scenario (SCN-16-50%) the 

simulation was designed such that the aircraft appeared on the 

screen with a little time difference.  

IV. VISUALIZATION OF ATCO INTERACTION WITH THE 

AIRSPACE ENVIRONMENT 

Due to the nature of air traffic events having relatively fast 

dynamic changes, various visual representations of the 

environment were possible. The goal was to reach to a 

representation out of which the highest possible amount of 

information about controllers’ interaction could be extracted. 

Therefore, an algorithm for creating a heat map plot was 

written in MATLAB to visualize the density of all clicks made 

on the screen.  

Figure 2 illustrates the comparison between the density of 

clicks among four different scenarios with zero and high 

automation equipage level. In SCN-8-0% and SCN-12-80% 

(Figure 2c and 2b), the same controllers were responsible for 

both sector 3 and TMA-W. But among SCN-5-0% and SCN-

15-80% (Figure 2a and 2d), only sector 3 was controlled by 

the same controller. One can see ATCO mouse interaction 

with the airspace in sector 3 is in a high contrast with that of 

other sectors.  

In some areas, the controllers clicked for more than 50 times 

during the whole scenario. Some of these areas are very close 

to the sector’s borders which could be interpreted as the clicks 

made for handing over an aircraft to the other controller. 

However, there are also some dense areas which are far from 

both sector borders and final approach threshold. In SCN-5-

0% and SCN-8-0%, the density of clicks is higher in some 

areas than in SCN-12-80% and SCN-15-80%. In Figures 2a 

and 2c, in some areas the number of clicks has reached 120 

where in Figures 2b and 2d, it does not exceed a maximum of 

60. Even in those scenarios where the same controller was 

responsible for sector 3 (Figure 2a and 2d) and (Figure 2b and 

2c), dissimilarities are very noticeable. Based on such results, 

in Section VI the density of controllers’ clicks has been 

considered as a measure for modeling controllers’ taskload 

and the model’s effectiveness is evaluated.  

 
a. SCN-5-0% 

 
b. SCN-12-80% 

 
c. SCN-8-0% 

 
d. SCN-15-80% 

Figure 2. Comparison between controllers’ clicks density in four scenarios 

with 0%(a and c) and 80%(b and d) i4D-equipage levels. 

V. CALCULATION OF AIRSPACE DYNAMICS 

This section discusses how the complexity of traffic in a 

volume of airspace is measured by means of a set of known 

parameters. The results of the calculations made in this section 

will be further used in a model to describe controllers’ 

subjective workload. 

In this study, eight complexity factors of [3] have been 

selected and formulas available in the literature have been 

used for calculating each factor. For some factors, a formula 

has been developed based on the definition provided for the 

corresponding factor in the literature. The developed formulas 

are explained in [10]. 

Based on the results of Figure 2, it is presumed that i4D 

equipage level contributes to explaining taskload. Therefore, 

we expect to observe an improvement in the taskload model, 

once i4D equipage level of the aircraft is considered. 

Therefore, in addition to the eight complexity factors 

presented in [3], a factor known as i4D equipage has been 

considered as a representation of the automation level the 

aircraft is equipped with. These 9 complexity factors are listed 

in Table II.  

Each complexity factor is calculated for every 30-seconds 

time step of each scenario. Since the aircraft congestion is not 

distributed homogenously in the sector, a typical well-known 

approach suggests a calculation method which splits the sector 

into equal sized grids [13]. With such approach, the 

movements of aircraft located near cell boundaries relative to 

other aircraft are not being considered which is called “the 

boundary effect”. To reduce boundary effect a number of 

iterative grid shifts need to be done and the factors need to be 

recalculated. In this research, in order to avoid boundary 

effect, a completely different approach has been followed. 
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Instead of splitting, an algorithm is developed which finds the 

platoons of aircraft over the whole and spots them. 

 
TABLE II.COMPLEXITY FACTORS CONSIDERED IN THE STUDY. 

Parameters Reference 

Variance of Ground 

Speed 
[8] 

Number of Aircraft [5] 

Separation Index 

Horizontal (SIH) 
[5] 

Number of Descending 

Aircraft 
[5] 

Conflict Sensitivity [8 , 6] 

Conflict Insensitivity [8 , 6] 

Vertical Separation [10] 

Horizontal Separation [10] 

i4D Equipage [10] 

 

Due to non-homogenous dynamic behaviour of aircraft 

platoons, there will be different number of aircraft groups 

gathered into clusters with different dimensions. The 

algorithm searches for the pairs of aircraft that are closer to 

each other than a certain value (5 nautical miles has been 

considered in this work). 

Then, if two aircraft are closer to a third one, all three will be 

put in the same cluster. Similarly, if there are four aircraft 

pairs, all having a common neighbor, a cluster of five aircraft 

will be formed. Figure 3 illustrates how such clustering is 

performed. 

 
Figure 3. A representation of clustering method used in this work. The size of 

clusters is specified by the dynamics of aircraft movements relative to each 

other. 

In fact in this approach, it is not the modeler who decides 

about the dimension of cells. It is the dynamics of aircraft 

relative status (speed, heading, distance etc.) that defines the 

clusters’ dimensions. In only three of nine complexity factors 

the dynamics of aircraft relative status is of concern. 

Therefore, this calculation method is only used in the 

calculation of variance of ground speed, conflict sensitivity 

and conflict insensitivity. A detailed explanation for 

calculating each complexity factor is presented in [10]. 

VI. MODELING CONTROLLER’S TASKLOAD 

In this work, ATCO taskload has been modeled relying 

mainly on [3]. Four models have been developed and examined 

according to the two models developed in [3]. Table III, 

signifies the key differences between all the six models. 

TABLE III. KEY DIFFERENCES BETWEEN THE FOUR MODELS OF 

OUR STUDY (1-a, 2-a, 1-b AND 2-b) AND THE TWO OF [3] (MODEL A 

AND MODEL B). 

Non-

weighted 

clicks 

Weighted 

clicks 

CPDLC 

data 

entries 

CPDLC + radio 

communications 

8
 F

a
ct

o
rs

 
Model 

1-a 

Model 

2-a 

Model 

A 

Model  

B 
9
 F

a
ct

o
rs

 

Model 

1-b 

Model 

2-b 

  

 

1. Model 1-a: Non-weighted density of controllers’ 

clicks has been considered as a measure for 

taskload and 8 factors are used to calculate 

dynamic density. It is assumed that all clicks were 

associated with the same amount of ATCO load 

and i4D equipage does not contribute to airspace 

complexity. 

2. Model 1-b: Non-weighted density of controllers’ 

clicks has been considered as a measure for 

taskload and 9 factors are used to calculate 

dynamic density. It is assumed that all clicks were 

associated with the same amount of ATCO load 

and i4D equipage does contribute to airspace 

complexity. 

3. Model 2-a: Weighted density of controllers’ clicks 

has been considered as a measure for taskload and 

8 factors are used to calculate dynamic density. It 

is assumed that different types of clicks were 

associated with different amount of ATCO load 

and i4D equipage does not contribute to airspace 

complexity. 

4. Model 2-b: Weighted density of controllers’ clicks 

has been considered as a measure for taskload and 
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9 factors are used to calculate dynamic density. It 

is assumed that different types of clicks were 

associated with different amount of ATCO load 

and i4D equipage does contribute to airspace 

complexity. 

In all models, a linear regression function has been considered 

to relate the complexity of airspace measured by complexity 

factors to a parameter describing taskload. The intention was to 

find a good taskload model by examining to which extent the 

measured complexity in the airspace correlates with 

controller’s taskload. In each model, a set of parameters have 

been used to shape the independent variable X and the 

dependent variable Y. The main difference between the model 

of [3] and the ones developed in the current work lies in the 

definition of Y. In [3] controller pilot data link communication 

(CPDLC) has been first considered as workload measure. Then 

the workload model has been improved by adding the 

controller-pilot voice communications to CPDLC activities 

(Model A). Then, in the next step radio calls durations 

(frequency occupancy time in 2-minutes time step) and average 

duration of single calls were calculated and added to CPDLC 

activities and were considered altogether as the improved 

taskload model (Model B).  

As can be seen in Table III, in models 1-a and 2-a the same 8 

complexity factors as the ones presented in [3] has been 

considered as X, but two different measures has been used to 

configure taskload.  Similarly, in models (1-b and 2-b) the 

same complexity factors plus i4D equipage (9 factors) are 

considered as X, but again two different measures has been 

used for shaping taskload. In models 1-a and 1-b, different 

types of clicks are assumed to have the same load applied on 

the controller. But in models 2-a and 2-b, tasks are 

differentiated and different weights are given to different tasks.  

In fact, the goal of developing models 1-b and 2-b was to 

examine whether automation equipage level could better 

explain the controllers’ taskload while the goal of developing 

models 1-a and 2-a was to improve taskload model by 

differentiation between various type of tasks. In models 1-a and 

2-a, clicks have been differentiated based on their type and 

different weights have been assigned to different types of 

clicks. For example, in SCN-1-50%, there are 56 different 

tasks. All tasks are classified into four different types based on 

[4]; background tasks, control tasks, transitioning tasks and 

recurring tasks. The task classification in each scenario has 

been performed manually according to the information 

provided in the log data. 

In all scenarios for each 30-seconds time step, the taskload is 

calculated using the formula presented in [4]. 

                          

where 

                                                     

                                                   

                                                         

                                                    

                                              

At the end, a dimensionless value is obtained for the taskload 

for each sector at each time step. Then a linear regression was 

made between complexity factors and the taskload values using 

the general form of the formula bellow: 

                       

Because there are different X and Y functions considered in 

each model, different values for   are expected in each model. 

Therefore, models are compared to each other on the basis of 

regression analysis factor   . 

VII. RESULTS AND ANALYSIS 

The complexity factors were calculated on 18 set of 

simulations, each taking 90-120 minutes. Each complexity 

factor as well as the number of clicks and taskload have been 

calculated over each 30-seconds time step. As a result, a total 

number of 2077 data points were available for the regression 

analysis for each sector. Since not enough clicks were made 

on all sectors in all scenarios, the results for only sector 3 and 

TMA-W are analyzed. Table IV and Table V compare    

between the four taskload models of this work with the two of 

[3] for sector 3 and TMA-W respectively.  

TABLE IV. STATISTICAL COMPARISON BETWEEN FOUR MODELS 

OF THIS WORK IMPLEMENTED ON SECTOR 3 AND THE TWO OF [3]. 

Models A  B  1-a 1-b 2-a  2-b 

   0.13 0.16 0.19 0.22 0.62 0.63 

 
TABLE V. STATISTICAL COMPARISON BETWEEN FOUR MODELS 

OF THIS WORK IMPLEMENTED ON TMA-W AND THE TWO OF [3]. 

Models A  B  1-a 1-b 2-a 2-b 

   0.13 0.16 0.12 0.12 0.84 0.82 

 

As it is seen from Table IV,    in the model of [3] has 

improved by 3% while in this work, by going one step forward 

from clicks to taskload, around 40% improvement in    is 

achieved. By comparing the R-square between the taskload 

model 2-a with 2-b, it is seen that i4D equipage does not very 

much affect complexity of en-route airspace. 

As can be seen from Table V, an improvement from clicks to 

taskload model has resulted in more than 70% increase in 

correlation factor. By comparing the R-square between the 

taskload model 2-a of sector 3 with 2-a of TMA-W, one can 

conclude that the taskload model better correlates with airspace 

complexity in terminal airspace than in en-route airspace. Both 

Table IV and V show that i4D equipage does not contribute to 

a better correlation between airspace complexity and ATCO 

taskload in both en-route and terminal airspace.  
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The results of a detailed correlation analysis on the complexity 

factors presented in [10] have shown that among the selected 8 

complexity factors, number of aircraft and number of SIH 

violations have the highest correlation coefficients (78% and 

61% respectively) with the taskload. Number of SIH violations 

is an index which shows the degree of horizontal proximity of 

aircraft population in a sector. In order to analyze the effects of 

automation on controllers’ taskload in congested conditions, 

the graphs for number of SIH violations and taskload are 

plotted. A comparison between number of SIH violations at 

different instances gives us a feeling of the degree of 

congestion while a comparison between taskload values tells us 

about how controllers reaction to such conditions varied among 

different scenarios. Figures 4 and 5 depict dynamics of SIH 

violations and taskload for sector 3 and TMA-W respectively. 

The results are obtained by implementing model 2-a on SCN-

11-0%, SCN-3-50% and SCN-12-80%. In scenarios SCN-3-

50% and SCN-12-80, the same controller controlled sector 3. 

However, different controllers were responsible for TMA-W in 

the three scenarios.  

 
a. Number of SIH violations in SCN-11-0%(blue), SCN-3-50%(green) and 

SCN-12-80%(red); The value represents how many aircraft were 

horizontally close to each other than a specific value (4 times than horizontal 

separation minima). 

 
b. Controllers’ taskload in in SCN-11-0%(blue), SCN-3-50%(green) and 

SCN-12-80%(red) 

 
Figure 4. Comparison between SIH violations and controllers’ taskload among 

three different i4d-equipped scenarios in sector 3. 

 
a. Number of SIH violations in SCN-11-0%(blue), SCN-3-50%(green) 

and SCN-12-80%(red) 

 

 
b. Controllers’ taskload in SCN-11-0%(blue), SCN-3-50%(green) and 

SCN-12-80%(red) 

 
Figure 5. Comparison between SIH violations and controllers’ taskload among 

three different i4D-equipped scenarios in TMA-W. 

As can be seen from Figure 4 and 5, although similar patterns 

are observed in SIH violations, the pattern for controllers’ 

taskload differs a lot among automation scenarios. Figure 4 

tells us that even in SCN-3-50% and SCN12-80% where the 

same controller controlled sector 3, the taskload values differs 

for similar traffic conditions. For example, Figure 4a shows 

that around time step 70, the congestion is about to grow to the 

same degree for both SCN-3-50% and SCN-12-80%. At the 

same time step, the taskload for SCN-3-50% has risen up to a 

value higher than that of SCN-12-80%. This indicates that at a 

specific moment of congestion growth, the same controller 

experienced less pressure in the scenario where more aircraft 

were equipped with i4D.  

By comparing the taskload between en-route and terminal 

sector, it is observed that controller responsible for en-route 

sector on average tolerated higher taskload than the controller 

responsible for TMA-W.  

By comparing Figure 5a with Figure 5b, one can see around 

time steps 115 and 180, even though SIH violation reaches to a 

peak with almost the same value for all scenarios, the taskload 

in SCN-12-80% is much less than in the other two scenarios. 

This suggests that during denser traffic conditions in TMA 
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area, the controller had trusted the automation more. This has 

resulted in ATCO letting more aircraft get closer to each other 

and therefore utilizing more terminal capacity while tolerating 

less pressure.  

A key point to consider is that in the data there were no three 

different i4D-equipped scenarios with similar controllers for 

the two sectors.  

Figure 6 compares controller’s taskload between sector 3 and 

TMA-W among three scenarios with 50% of aircraft equipped 

with i4D. SCN-13-50% is a typical scenario while SCN-16-

50% is a scenario in which the aircraft had appeared on 

controller’s screen a little later or sooner than it was planned. 

SCN-9-50% is a scenario in which wind effects on the aircraft 

were considered in traffic simulations. The aim of analyzing 

the results of Figure 6 is to evaluate how other unpredictable 

factors such as environmental events contribute to controller’s 

taskload.  

 
a. Sector 3 

 
b. Sector TMA-W 

 
Figure 6. Taskload comparison among three unpredictable conditions with the 

same automation equipage level; SCN-13-50%(blue) is a typical scenario, in 

SCN-16-50%(green) aircraft appeared on the screen sooner or later than the 

controller expected and in SCN-9-50%(red) wind effects were considered. 

As can be seen in Figure 6, a considerably large contrast exists 

between the amounts of taskload the controllers withstood in 

each scenario. The more unpredictable the situation had 

become, the greater and more frequent amount of taskload the 

controllers confronted. 

VIII. DISCUSSION AND CONCLUSION 

This work analyzed the effects of unpredictability on 

controllers’ response to handling congested traffic conditions. 

The work also focused on discovering whether different levels 

of a specific type of automation influences ATCO taskload. 

For a set of data, a new calculation approach used to quantify 

a group of eight complexity factors. The results were analyzed 

for different scenarios enjoying three different automation 

levels for one en-route and one terminal sector. Four different 

workload models were developed and to evaluate the success 

rate of the models a regression analysis was performed. By 

comparing the results, it was found that i4D-equipage does not 

show a strong correlation with complexity. It was observed 

that for two scenarios with similar en-route traffic patterns 

controlled by the same controller, in the scenario featuring 

high automation level, controller underwent less taskload 

compared to scenarios with medium level. While such 

conclusion well explains the effects of i4D equipage on 

taskload it cannot be simply expanded to all automated 

conditions. In addition, due to the nature of data many 

important factors such as cognitive load and human factors 

characteristics are not considered in the model developed in 

the current study. Thus, the conclusion cannot be generalized 

to all traffic conditions. Moreover, the effects of 

environmental factors such as weather conditions on the air 

traffic patterns are also not considered in the model.   

After evaluating the performance of each developed model on 

each sector, it is concluded that the taskload model explains 

airspace complexity far better than clicks model. The taskload 

model developed in this work (model 2-a), showed around 

50% and 40% higher success rate in explaining en-route 

airspace complexity than that of [3] and clicks model (model 

1-a). The same model showed around 70% higher success rate 

in explaining terminal complexity than that of [3] and clicks 

model. As a result, given the complexity of airspace, the 

taskload model developed in the present study can explain the 

ATCO’s taskload in terminal sectors far better than that in en-

route sectors.  

A. Future work    

As it was mentioned, the ATCO interaction with the 

airspace could be more reliably explained if cognitive load 

were also considered. Despite the difficulty, the literature on 

human factors have shown that a predictive model for 

cognitive complexity can be developed based on the known 

aspects of human cognitive functioning which are attention, 

decision making, memory and perception [11]. In line with the 

work of [12], one way to reflect a part of cognitive load is to 

analyze ATCO’s eye gazing movements to obtain an 

estimation of monitoring load. Figure 7.b and Figure 7.a 

compares ATCO’s eye gazing durations with clicks interaction 

in SCN-9-50%. As can be seen, there are some areas where 

ATCO has clicked more frequently and has looked for long 

while there are also some areas where they have looked at for 

long but only a few clicks have been made. 
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a. Clicks density 

 
b. Eye gazing duration (in seconds) 

Figure 7. Heat map for density of controller’s clicks (top) and controller’s eye 

gazing duration (bottom) for SCN-9-50%. 

This approach toward visualization of the data would be very 

helpful in obtaining a more precise estimation of the time it 

takes for the controller to perform different types of tasks (e.g. 

monitoring tasks vs. execution tasks). With such technique, 

estimating duration of different ATCO tasks as well as 

quantifying cognitive load will be the focus of a future work.  
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