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Abstract—Air Traffic Management is subject to many un-
certainties. These uncertainties drastically reduce overall pre-
dictability and force the introduction of margins having a
negative impact on the capacity of the system.

Moreover, as of today, uncertainties are not explicitly ac-
counted for and human operator judgement and experience is
relied upon to assess the “quality” of the estimations provided
by the support tools.

One way to make it explicit is to convey uncertainty through
probability distributions. Building on this approach, the paper
describes how to derive probabilistic traffic models from his-
torical data. These models are used as input to the algorithm
developed by Gonze et al. [1] in order to compute occupancy
count distributions. The application of the approach to one sector
of EUROCONTROL’s MUAC airspace is presented to show how
uncertainty is captured by the proposed models.

I. INTRODUCTION

Air Traffic Management incurs complex operations involv-
ing numerous actors and processes carrying many unknowns
and uncertainties. Today, these uncertainties (e.g. exact take-
off time, route changes...) are only taken into account in
the system in very limited ways and expert experience and
judgement are relied upon to cater for them, often leading to
bigger margins or conservative capacity estimates.

One way to make uncertainty explicit is to use probability
distributions. Early 2016, the SESAR 2020 Exploratory Re-
search project COPTRA has been started. COPTRA’s main
objective is to research ways to explicitly account for uncer-
tainty in trajectory and traffic predictions using probabilistic
trajectories and traffic situations.

Predicting occupancy counts is central to ATC planning and
Demand-Capacity Balancing: the predicted values are used to
chose the right airspace sectorisation or decide on necessary
regulations. Today, however, the uncertainties on the inputs
of counting process (like the take-off time) make the count
predictions highly volatile. Following COPTRA’s objective to
make these uncertainties explicit and manageable, this paper
describes an approach to attach uncertainty figures to sector
entry and crossing times using historical data. Probabilistic
sector sequences built from these figures are then used to
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compute occupancy count distributions using the algorithm
detailed in [1].

In Section II, traffic uncertainty is further discussed and de-
tailed. Section III describes how COPTRA proposes to model
probabilistic trajectories and to combine them to compute
occupancy count distributions. The way this trajectory model
is used to represent traffic demand uncertainty is presented in
Section IV. In Section V, the approach is applied to MUAC’s
EDYYB5KL sector. Results and on-going work are presented
in Section VI.

II. TRAFFIC UNCERTAINTY

Many sources of uncertainty exist in ATM leading to non-
optimal preventive actions (increased margins or buffers). In
[2], Irvine details the Capacity buffer theory which states
that sector capacity is set to control the probability of oc-
cupancy counts exceeding the peak acceptable level. The
theory establishes a direct link between count uncertainty and
sector capacity. This stresses for the need to better manage
uncertainty and to find ways to make uncertainty explicit.

One major source of uncertainty affects the actual take-off
(or more precisely, in the frame of this study, the off-block)
time of the fight. Off-block and take-off can be delayed for
numerous reasons. Delay data is extensively collected and
documented (see e.g. EUROCONTROL’s Central Office for
Delay Analysis [3]).

When predicting sector occupancy counts, uncertainty also
comes from the differences between the flight planning infor-
mation (used to predict sector occupancy) and the way the
flights are eventually flown. Figure 1 and 2 show, for a full
day of the MUAC Brussels airspace, respectively the planned
traffic and the actual traffic. Sources of these differences
include the actions taken by ATC to deconflict traffic, weather
or turbulence avoidance, emergency or flight diversions...

III. COMBINING PROBABLE TRAJECTORIES

A. Probabilistic Trajectory Model

In order to cope with the uncertainties just outlined, COP-
TRA developed a probabilistic trajectory model able to take
into account:
• Flight plan or route uncertainty: filed flight plans have

to follow rules (like route network and route opening
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Fig. 1. Filed traffic (13/10/2016 — MUAC Brussels airspace)

Fig. 2. Actual traffic (13/10/2016 — MUAC Brussels airspace)

schemes) which are potentially relaxed or changed dur-
ing execution (e.g. “[Fly] direct” instructions given by
controllers).

• Flight execution uncertainty: even with the flight route
fixed, many inputs to the trajectory prediction process are
not fully known or remain uncertain (weather, aircraft
performance...) and lead to uncertainty on the flown
trajectory.

A flight is then represented by a series of routes each having
a given probability. A probable route is made of a series
of points whose attribute values (longitude, latitude, altitude,
time...) are expressed as probability distributions.

For the problem at hand, i.e. computing occupancy count
distributions, the probable routes have been simplified to
probable sector sequences: The probable route becomes a
list of sectors crossed by the flights along with a probability
distributions of the entry and exit times. In this model, the
entry and exit time distributions are approximated by Gaussian

distributions.
A probabilistic trajectory Tf for flight f can then be

described formally as follows:

Tf =

(
p∗(f,i),

(
es(f,i,j), µ

e
(f,i,j), σ

e
(f,i,j), µ

l
(f,i,j), σ

l
(f,i,j)

)
j

)
i

with i ranging from 1 to nf for the different sector sequences
and j ranging from 1 to m(f,i) on the sectors making the ith

sequence. f identifies the flight, es(...) is the identifier of the
crossed sector, µe

(...) and σe
(...) are the parameters of the entry

time distribution while µl
(...) and σl

(...) parametrize the exit
time distribution.

B. Computing occupancy count distributions

In [1], Gonze et al. describe a polynomial time algorithm
to compute occupancy count distributions from probabilistic
sector sequences following the model just described. An
outline of the algorithm is given here. The reader is referred
to [1] for details.

Given a set of probabilistic trajectories, the algorithm pro-
ceeds in two steps:
• For each flight trajectory, sampling time and sector, the

probability p(f,s,t) of the flight being in the sector at the
given time is computed.

• From these probabilities, the occupancy count distribu-
tions Θ(s,t) are computed for each sector and sampling
time.

These two steps are now detailed:
1) “In sector” probability: The probability that flight f is

in sector s at time t, when following trajectory i is

p(f,s,i,t) = P [te(f,s,i) ≤ t]− P [tl(f,s,i) ≤ t]

where te(f,s,i) is the flight entry time in sector s when following
the ith trajectory. Similarly tl(f,s,i) is the exit time. In other
words p(f,s,i,t) is the probability that, at t, f has entered the
sector but not left it yet.

As flight f may follow trajectory i with probability p∗(f,i),
the probability having f in s at t, no matter which trajectory
it follows is:

p(f,s,t) =

nf∑
i=1

p∗(f,i) p(f,s,i,t).

2) Occupancy count distributions: The occupancy count
distribution,

Θ(s,t) : N→ [0, 1] : k → Θ(s,t)(k)

gives the probability of having n ∈ N flights in sector s at
time t. It is the convolution of binomial distributions giving
the probability of having flight f in sector s at time t with
probability p(f,s,t). By standard methods computing Θ(s,t) has
an exponential computational cost.

However, by ordering the flights (fj with j ∈ 1...m) and
defining q(i,j) as the probability that, amongst the j first flights,
there are i flights in sector s at time t, we have

Θ(s,t)(k) = q(k,m).
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q(i,j) can then be defined using the following recurrence
relation (for fixed s and t)

q(i,j) = q(i,j−1) (1− p(fj ,s,t))

+ q(i−1,j−1) p(fj ,s,t)

which says that the probability of having i flights amongst the
j first ones is the sum of
• The probability of having i flights in the sector amongst

the j − 1 first flights and not having flight j in it, and,
• The probability of having i − 1 flights in the sector and

having flight j in it.
Using this recurrence relation and applying dynamic pro-

gramming techniques, the Θ(s,t) distribution is computed in
polynomial time.

C. Required inputs
To feed the algorithm computing the Θ(s,t) occupancy count

distributions, it is required to determine for each subject flight
(f ):
• The list of probable sector sequences and their respective

probability: nf and p∗(f,i)
• for each sector sequence, the list of m(f,i) sectors crossed

(es(f,i,j)) and the entry and exit time distributions.
As these distributions are assumed Gaussian, they are
fully specified by their means and standard deviations:
µe

(f,i,j), σ
e
(f,i,j), µ

l
(f,i,j), σ

l
(f,i,j).

Hereafter an approach is described that uses historical data
to derive these distribution parameters.

Other ways to compute these inputs are possible and the
COPTRA project also explores how to get them using proba-
bilistic trajectory prediction.

IV. PROBABILISTIC TRAFFIC MODEL

The overall objective of the approach that will now be de-
scribed is to compute the uncertainty attached to a given flight
plan by deriving a series of probable sector sequences and the
corresponding entry and exit time distributions. To that effect a
probabilistic traffic model is first built from historical data. The
model is then used to compute probabilistic sector sequences
that are fed into the algorithm described in subsection III-B
to get the occupancy count distributions Θ(s,t).

The full traffic model is composed of sector sequence, entry
time and crossing time distributions. In this paper, we present
models for entry time and crossing time distributions. Sector
sequence modelling is currently work in progress.

A. Historical data
EUROCONTROL maintains a repository, the Demand Data

Repository or DDR2 [4], accessible to the ATM research
community. Amongst others, the repository stores, in different
formats, all the flights for the last five years.

The model described hereafter was built from the traffic
crossing EUROCONTROL’s MUAC Brussels airspace during
three consecutive AIRAC1 cycles (1607, 1608 and 1609) as

1Significant revisions in Aeronautical Information Publication are made
every 28 days. This period is called AIRAC (Aeronautical Information
Regulation and Control) cycle.

stored in so-called AllFT+ formatted files. However, as the
airspace of interest and the input data are parameters external
to the model building process, models could be built from any
historical dataset for any airspace of interest.

The input dataset contains 244108 unique flights crossing
MUAC’s Brussels airspace (EDYYB). For each flight in this
dataset, the following features are extracted or computed:

Feature Ref.
Departure airport ADEP
Destination airport ADES
Callsign CS
IFPL Identifier IFPLID
Week of the year WOY
Day of the week DOW
Hour of the day HOD
Entering EDYYB from FROM
Leaving EDYYB to TO
Sector ES
Delta off-block time DOBT
Delta entry time DETI
Crossing time XGTI

This feature set is designed to capture most relevant traf-
fic characteristics and to account for both temporal (yearly,
weekly or daily) and spatial (routes or flows) trends. While
the probabilistic trajectory model uses “absolute” entry and
exit times, when building the traffic models, the sector entry
time is computed as the delta from the actual off-block time.
Similarly the time difference between the flight time of entry in
the sector and the time of exit form the sector (sector crossing
time) is used instead of the exit time. These two features allow
to build models which are independent of the actual time at
which the flight took place while permitting, for a subject
flight, to compute entry and exit times distributions from the
predicted or actual off-block time.

From the processed dataset, empirical entry time and cross-
ing time conditional distributions can be derived for each
sector. Figure 3 and Figure 4 show respectively typical entry
time and crossing time distributions for a specific sector. The
entry time distribution is conditioned on the departure airport.
The crossing time distribution is unconditioned: it shows the
crossing time frequencies for all the flights in the data sample.

The distributions illustrated are not Gaussian, as it is the
case for to the vast majority. Modelling entry times or crossing
times with Gaussian distributions would lead to an important
loss of information: For instance, the multi-modality of the
crossing time distribution probably accounts for the different
routes crossing the elementary the elementary sector. Condi-
tioning the distributions (e.g. on the route) might be a way
to “separate” these different distributions. However, it might
quickly lead to very specific models. This is the classical
“bias-variance” trade-off (see e.g. [5]). Moreover, as it will be
seen, adding conditions also increases the size of the model
exponentially.

It was then decided to look for models that could represent
any of these distributions (conditioned and unconditioned)
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Fig. 3. Entry time distribution for traffic from EHAM (MUAC sector
EDYYB37H)

Fig. 4. Crossing time distribution for MUAC sector EDYYB37H

with sufficient accuracy. This would allow to explore models
with a varying number of conditional parameters and start with
simple models that could be enriched if necessary.

The use of Gaussian Mixture Models (GMM) is described
hereafter. An additional and important advantage of GMM is
that they can be used with the probabilistic trajectory model
described in subsection III-A.

B. Gaussian Mixture Models
A Gaussian mixture model is a probabilistic model that

assumes that all the data points are generated from a mixture
of a finite number of Gaussian distributions with unknown
parameters ([5], [6]).

GMM ∼
n∑

i=1

wiN(µi, σi)

with the corresponding probability density function:

pGMM(x) =
n∑

i=1

wiN(x|µi, σi)

Fig. 5. EDYYB37EH entry times from EHAM fitted with a 3 components
GMM

where wi is the weight of the ith Gaussian of the mixture with∑n
i=1 wi = 1. Similarly µi and σi are, respectively, the mean

and the standard deviation of the ith Gaussian. The resulting
distribution would “generate” elements distributed along the
Gaussian N(µi, σi) with a probability of wi. In its general
setting, GMM supports multivariate Gaussian distributions.
Univariate distributions are sufficient here.

The process of fitting a GMM to given data is an unsu-
pervised learning problem. To fit the GMM to the data, the
unknown parameters n, wi, µi and σi for i ranging from 1 to
n will be determined from the historical dataset.

For a given n, these parameters can be determined using
expectation-maximization or Bayesian techniques. Bayesian
Information Criterion (BIC) can help to select the value of
n [7].

In the frame of this work, expectation-maximization as
implemented in the Python Scikit-learn toolbox [6] was used to
fit the GMM. As BIC led to high values for n, visual inspection
was used to determine the quality of the fit while favouring
models having a small number (2 or 3) of components. Figures
5 and 6 show the GMM fitted to the empirical distribution of
figures 3 and 4 respectively.

Both the entry times from Amsterdam and the crossing
times were fitted by expectation-maximization with 3 com-
ponents GMM. The parameters for the delta entry time GMM
are:

i wi µi (s) σi (s)
1 .68 1534.08 46.64
2 .15 1844.98 202.37
3 .17 1458.48 187.52

while the parameters for the crossing time GMM are:

i wi µi (s) σi (s)
1 .38 138.54 73.22
2 .41 451.23 111.10
3 .21 568.11 198.81
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Fig. 6. EDYYB37EH crossing times fitted with a 3 components GMM

Once fitted, a GMM can work either as a classifier or
a predictor: these two ways will be used hereafter. As a
classifier, the model is given a time (planned or predicted)
and returns the index of the most probable GMM component
for this value:

GMMclass(t)→ imax

When used as a predictor, the GMM gives, for an input value,
the probabilities that it has been drawn from the different
components:

GMMpred(t)→
(
ptk
)nGMM

k=1
.

The next section describes the general approach to use
Gaussian Mixture Models to build probabilistic traffic models.

C. General Model Structure

For each elementary sector, a series of GMM is fitted to
model the entry time distributions and the crossing times. An
additional model is fitted for each (major) airport to model
take-off delays (difference) between the planned off-block time
and the actual one.

When the models are conditioned on parameters that can
take many values (e.g. the departure airport), the value set is
divided in two: the set of values that concerns a majority of
elements in the dataset and the rest. For example, amongst the
601 different departure airports appearing in the traffic dataset
for elementary sector EDYYB37EH, 20 of them are the origin
of more than 50% of the flights. For each value in this first,
majority set, a separate GMM is fitted that will be used as a
predictor. A single GMM is fitted for the second set and used
as classifier to determine the distribution parameters for the
different values grouped by classes (e.g. ICAO region). See
Section V for the details.

A full traffic model is so defined by:
• A set of parameters: the features of the flight that will

determine the GMM to use (e.g. the departure airport, the
day of the week...)

• For each parameter: the list of GMM to apply. This list
may contain either a single model like for the elementary

sector crossing times or multiple models with different
models corresponding to different values of the parame-
ter, like for the airport of departure.

D. Compatibility with the probabilistic trajectory model

The previous subsections have shown how empirical en-
try and crossing time distributions can be approximated by
Gaussian Mixture Models. It is described now how GMM-
approximated distributions can be used in the probabilistic
trajectory model described in Section III-A where the entry
time and exit time distributions are approximated by Gaussian
distributions.

When a GMM is used as a classifier, it returns which of
the Gaussians is the most probable for a given value. On the
other hand, if a GMM is used as a predictor, it returns the
probabilities of its different Gaussian components. In the first
case, the parameters of the selected Gaussian can be directly
used in the probabilistic trajectory model. In the second case,
a separate trajectory can be produced with the parameters of
the different components, each with the probability of the
corresponding component.

If more than one parameter are used, the joint probability
table of the predicted probabilities is built (the parameters are
assumed independent). The size of the joint probability table
is exponential in the number of parameters. This provides a
strong justification to keep both the number of parameters and
components in the models as small as possible.

Formally, let us assume a sector crossing (entry and exit
times) for flight f modelled by q parameters. From the
full model, the mixture models Mk for k ranging from 1
to q have been selected for the flight given the values of
the different parameters. This set of GMM is made of two
subsets: q1 models (Me

k) affecting the delta entry time and q2

models (Ml
k) affecting the crossing time. Each Mk has nk

components of weights w(k,l) (with l from 1 to nk). A GMM
used as a classifier has a single component of weight 1.

The sector crossing will be represented by n =
∏q

k=1 nk
probabilistic sector sequences and the set of possible GMM
component combinations is the cross product of the integer
sequences from 1 to nk:

If = ×q
k=1{1...nk}.

If is assumed to be ordered in some way (e.g. lexicographical
order) so that I(f,i) = (l(f,i,1), ..., l(f,i,q)) selects the ith

combination of GMM components. Then the probability of
each of the n sector sequences is

p(f,i) =

q∏
k=1

w(k,l(f,i,k))

and the entry and exit time distribution parameters are

µe
(f,i,j) =

q1∑
k=1

µ(Me
k
,l(f,i,k))

σe
(f,i,j) =

√√√√ q1∑
k=1

σ2
(Me

k
,l(f,i,k))
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µl
(f,i,j) = µe

(f,i,j) +

q2∑
k=1

µ(Ml
k
,l(f,i,k))

σl
(f,i,j) =

√√√√(σe
(f,i,j))

2 +

q2∑
k=1

σ2
(Ml

k
,l(f,i,k))

where j is the index of the elementary sector crossing in the
ith probabilistic trajectory.

V. APPLICATION

To fix the ideas, practical details on how entry and exit
times of a single elementary sector can be modelled using
the framework just described are given now. The model uses
the airport of departure and the flight state (airborne or not) as
mixture selection parameters. It is built for MUAC elementary
sector EDYYB5KL. The historical dataset is built from the
traffic of 3 consecutive AIRAC cycles (1607, 1608 and 1609).
It contains 91389 crossings of EDYYB5KL. The model is used
to derive occupancy count distributions for traffic predicted on
the 5th of May, 2017.

A. Model building

The model describes off-block delays, delta entry times and
crossing times by three series of GMM. Note that the off-block
delays are airport specific, the delta entry times depend on both
the sector of interest and the departure airport while crossing
times depend on the elementary sector only.

1) Off-block delay and delta entry time models: Off-block
delay and delta entry time models use the departure airport as
parameter. Both model types are built the same way.

Traffic flying through a given sector potentially originates
from a wide number of airports (552 in this case). Fitting
separate GMM for each of these airports would be a large
undertaking. To limit the effort, only the 11 most frequent
airports (representing 59% of the traffic) have their off-block
delay and delta entry time empirical distributions modelled
by a GMM. A residual model is built for the remaining 541
airports.

The following table lists the 11 airports representing close
to 60% of the traffic and the number of components of the
fitted GMM:

Airport % n
EGGL 17.00 1
EGKK 12.19 3
EGSS 8.71 2
EGGW 4.50 2
LFPG 4.48 2
EDDF 2.71 2
EBBR 2.34 1
EGLC 2.30 2
EDDM 1.65 2
LEBL 1.58 1
EDDL 1.54 2

To build the residual model, a single GMM is fitted to the
off-block delay or delta entry time distributions for all the

remaining departure airports. In this case, the fitted GMM has
3 components. The remaining airports are then grouped by
ICAO region (i.e. the two first letters of their ICAO code). The
average off-block delay or delta entry time is then computed
per region. This average is then input to the GMM used as
a classifier to determine for each region the most probable
component. The parameters (mean and standard deviation) of
the selected component are used as the parameters of the off-
block or delta entry time distribution for any flight originating
from the region.

2) Crossing time model: A single 3 components GMM is
fitted to model the sector crossing times. It has the following
parameters:

i wi µi (s) σi (s)
1 .37 115.04 77.38
2 .31 330.67 159.85
3 .32 474.25 90.54

3) The complete set of models: In total the traffic model
for sector EDYYB5KL is composed of 25 GMM fitted to
historical data:
• 12 GMM for the off-block delay models: 11 predictor

GMM for the most frequent airports and one additional
classifier GMM used for all the remaining airports.

• 12 GMM for the delta entry time models: 11 predictor
GMM for the most frequent airports and one additional
classifier GMM used for the remaining airports.

• 1 predictor GMM to model sector crossing times.

B. Model use

The probabilistic traffic model is applied to the list of flights
predicted for given target and look-ahead times. The list of
flights known at a given time as well as their predicted trajecto-
ries is extracted from the Enhanced Traffic Flow Management
System (ETFMS) logs for the day of interest.

The model selection parameters are extracted for each flight
(in case of the model example given above the airport of
departure and the state — airborne or not — of the flight).
These parameters are used to select the models (set of GMM)
that will be applied to compute the distribution parameters. If
the off-block time is predicted (the flight is not yet airborne),
the off-block delay model is used to compute the parameters
of entry time distribution.

The currently predicted delta entry and crossing times of the
flight are then input to the selected models and the returned
probabilities are used to compute the parameters of the entry
and exit time distributions for all the combinations of mixture
components. So, for each flight, the application of the model
results in a set of probabilistic trajectories.

The sets of probabilistic trajectories computed for all flights
in the list are fed in the algorithm described in the section III-B
to compute the occupancy count distributions Θ(s,t,).

VI. RESULTS

Figure 7 and Figure 8 show the occupancy count distribu-
tions, actual and predicted counts around respectively 11:00
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Fig. 7. Occupancy count distributions (red and dashed) along actual (blue)
and baseline (grey) occupancies as predicted at 10:30 for 11:00

Fig. 8. Occupancy count distributions (red and dashed) along actual (blue)
and baseline (grey) occupancies as predicted at 13:00 for 14:00

and 14:00 on the 5th of May 2017 for MUAC elementary sector
EDYYB5KL using the approach described in this paper. The
predictions were done 30 minutes and 1 hour in advance. The
red curve represents the means of the occupancy count distri-
butions computed every minutes. The (blue and red) dashed
lines give the 90% interval computed from the occupancy
count distributions (respectively the 5% and 95% quantiles).
The blue curve gives the sector instantaneous occupancy
counts as computed from the actual flight profiles extracted
from the AllFT+ archive of the day. The grey curve is the
occupancy counts as computed from the flights known at the
time of prediction (baseline).

To further assess the model, probabilistic predictions (Prob-
abilistic counts) and current occupancy count predictions
(Baseline counts) were compared to the occupancy counts
computed from the final profiles available in the corresponding
AllFt+ archive (Actuals counts). The comparison was done for

Fig. 9. RPS means and standard deviations for baseline (red) and probabilistic
(blue) counts

37 target times falling every half an hour from 05:00 to 23:00
on the 5th of May, 2017. For each target time t, the predictions
were compared for 11 look-ahead times (l) ranging, every half
an hour, from t− 5h to t.

The comparisons were done using the Ranked Probability
Score (RPS) ([8], [9]).

If FΘ
(s,t,l) is the cumulative distribution function of the

occupancy count distribution Θ(s,t,l) for sector s at time t
predicted with look-ahead time l:

FΘ
(s,t,l)(n) =

n∑
i=0

Θ(s,t,l)(i)

and H[n] is the discrete Heaviside step function:

H[n] =

{
0, n < 0,

1, n ≥ 0,

then, for the probabilistic count prediction Θ(s,t,l) and the
actual count o(s,t), the RPS is computed as follows:

RPS
(
FΘ

(s,t,l), o(s,t)

)
=
∞∑

n=0

(
FΘ

(s,t,l)(n)−H[n− o(s,t)]
)2

The RPS has the useful property of being able to handle
both probabilistic predictions (the probabilistic counts) and
deterministic predictions (the baseline counts): Deterministic
predictions are considered as distributions with single value
of probability 1. In this case the RPS is equal to the absolute
error.

Figure 9 and Table I show the means and standard deviations
of the scores computed between the actual counts and, respec-
tively, the baseline counts (red) and the probabilistic counts
(blue) for the different look-ahead times (lower scores mean
better results).

Statistical tests applied to both the means and standard
deviations show, at a 5% significance level, that:
• The baseline and probabilistic score standard deviations

are significantly different for all the look-ahead times.
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TABLE I
MEANS AND STANDARD DEVIATIONS OF THE BASELINE AND

PROBABILISTIC SCORES

l Baseline Probabilistic
(h) mean stdev mean stdev

−5.0 2.20 1.155 0.89 0.507
−4.5 2.12 1.177 0.97 0.579
−4.0 2.41 1.500 1.11 0.701
−3.5 2.00 1.963 1.18 0.804
−3.0 1.63 1.606 1.19 0.914
−2.5 1.93 1.574 1.15 0.821
−2.0 2.13 1.586 1.26 1.100
−1.5 2.31 1.306 1.08 0.878
−1.0 2.39 2.106 1.07 0.789
−0.5 2.59 1.987 1.15 0.861
0.0 1.57 1.290 1.08 0.910

The probabilistic prediction scores being less spread,
there is a reduction in uncertainty on the count predictions
which, according to the Capacity buffer theory [2], would
lead to a capacity increase.

• The baseline and probabilistic means are significantly
different for all look-ahead times except for predictions
made at time t (0 hour look-ahead time) and at t − 3h:
In the majority of the cases, the probabilistic count
predictions are more accurate.

The stability over (look-ahead) time of the probabilistic
prediction score has also to be noted as it would mean that
probabilistic prediction provides more accurate and stable
count predictions earlier in time.

VII. CONCLUSION AND FURTHER RESEARCH

Based on the probabilistic trajectory model and the al-
gorithm presented in [1], the paper described a flexible
and extensible approach based on historical data to attach
uncertainty to traffic demand: The empirical take-off delay,
delta entry time and crossing time distributions conditioned
on selected parameters are modelled by Gaussian Mixture
Models (GMM). The approach allows to model the multi-
modal entry and crossing time distributions observed in ATM.
When applied, the GMM-approximated distributions can be
however represented as a combination of probable trajectories
each having Gaussian entry and exit time distributions which
are more tractable. These sets of trajectory combinations are
input to a polynomial time algorithm computing occupancy
count distributions.

The flexibility of the approach allows to select the set of
most relevant model parameters and while being exponential
in the number of parameters, it is shown that simple models (3
parameters modelled by GMM with up to 3 components) are
already able to provide sensible results: Current results show
not only a significant reduction in the spread of the prediction
scores but also a general improvement of the quality of the
predictions made using the probabilistic models.

The approach, limited here to the crossing of a single
elementary sector, is being combined with probabilistic sector
sequences necessary to model the uncertainty on the actual
route flown by the aircraft.

Detailed performance analysis is on going. At this stage
however, all computations related to the usage of the model
always remained below one minute on standard desktop com-
puters.

The work presented here opens several further research
questions, amongst which:
• How to determine the most significant inputs or pa-

rameters to be taken into account when building traffic
models?

• Is modelling time (or other) distributions in ATM using
Gaussian mixture applicable/useful to other purposes than
occupancy count distributions as described here?

• The use of Bayesian modelling should be explored when
fitting the mixture models to the historical data. It would
allow to inject some prior knowledge while determining
the mixture parameters and avoid the tendency of BIC-
based model determination to lead to models with a high
number of components.

REFERENCES

[1] F. Gonze, A. Simonetto, E. Huens, J. Boucquey and R. Jungers, Prob-
abilistic Occupancy Counts and Flight Criticality Measures for ATM,
Twelfth USA/Europe Air Traffic Management Research and Development
Seminar (ATM2017).

[2] R. Irvine, Enhanced DCB Step 1 R4 Validation Report (VALR) - Part II
EXE-13.02.03-VP723, SESAR Joint Undertaking, 2011.

[3] EUROCONTROL, CODA Digest 2016, 2017.
[4] EUROCONTROL, DDR2 Reference manual for generic users, Version

2.9.3, July 2015.
[5] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learn-

ing, Second Edition, Springer Series in Statistics, 12th Printing, January
2017.

[6] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay,
Scikit-learn: Machine Learning in Python, Journal of Machine Learning
Research, Vol. 12, pp. 2825–2830, 2011.

[7] H.S. Bhat, N. Kumar, On the derivation of the Bayesian Information
Criterion

[8] E.S. Epstein, A scoring system for probability forecasts of ranked cate-
gories, Journal of Applied Meteorology, 8, 985-987, 1969.

[9] A.H. Murphy, The Ranked Probability Score and the Probability Score:
A Comparison, Monthly Weather Review, Vol. 98 No. 8, 917-924, 1970

 
Seventh SESAR Innovation Days, 28th – 30th November 2017 

 

 

 
 

 

 

8




