
Towards Simplified Optimal Sector Splitting
Leonid Sedov and Valentin Polishchuk

Communications and Transport Systems
ITN, Linköping University, Sweden

firstname.lastname@liu.se

Billy Josefsson
LFV

firstname.lastname@lfv.se

Abstract—Merging and splitting control sectors is a certified
way to address demand-capacity imbalances in an airspace:
during high-traffic hours a sector is split into two or more smaller
sectors, while in low-traffic hours the parts are merged back.
In this paper we explore ways of splitting a sector with simple
straightline cut so as to balance, as well as possible, the number of
controlled aircraft in the obtained smaller sectors. The approach
is verified by computational experiments with enroute traffic over
Swedish airspace.

I. INTRODUCTION AND RELATED WORK

Demand-capacity imbalances are a major challenge in
airspace management, and initiatives like dCDB (dynamic
Demand Capacity Balancing) within SESAR and DAC (Dy-
namic Airspace Configuration) in NextGen are specifically
addressing it. The issue is that the traffic density is changing
over time, so static control sectors may become under- and
overloaded during a day. To alleviate the pressure on the air
traffic controllers (ATCOs), sectors are being split during high
traffic hours; to save the operational costs, the sectors are
merged back when the traffic density decreases.

Finding optimal ways to split and merge sectors is a
fundamental research problem in ATM, which has attracted
a lot of attention over the years. One of the most important
distinction between algorithmic sectorization paradigms is
whether the resulting sectors are built up by gluing together
some ”elementary bricks” (hexagons [1], square pixels [2],
3D voxels [3], etc.), or are obtained by directly cutting the
airspace into the sectors [4], [5], [6] (see survey [7] for a
full taxonomy of approaches to sectorization). Work of the
former type employs an Integer Program (IP) to build up the
sectors optimally – this synthesis approach provides a lot of
means to fine-tune sector design, but gives little control over
the sectors shape (the sectors are produced by the ”blackbox”
IP); therefore additional tricks and/or postprocessing are then
required to even keep each sector (simply) connected, and
further care is needed to ensure that the sectors boundaries are
smooth. On the contrary, direct partitioning of the airspace into
sectors allows one to influence the sectors geometries within
the algorithm (producing, in particular, convex sectors), but
gives little flexibility in taking care of complex constraints
and objectives.

The research area remains active: a new form of sector-
ization IP was developed in [8], [9], and novel tools, like
simulated annealing [10], are also being explored.

Our contribution

We consider a sectorization approach falling into the second
(geometric decomposition algorithms) category from the two
paradigms outlined above. In a nutshell, the major difference
between this paper and earlier research is that previous work
aimed at producing sectors of potentially complicated shapes
(including 3d) taking into account the whole variety of sec-
torization quality measures; naturally, due to the complexity
of the considered model, it was impossible to require that the
obtained sectors are truly optimal according to some objective.
Contrary to that, we consider only two KPIs (which, moreover,
are based on a single input – the number of flights in the
sector), but aim at attaining a perfect sector split into two
parts in terms of the objectives. We show that, surprisingly, it
is possible to find sectors which simultaneously balance the
maximum and the average aircraft count, using the simplest
straightline cut through the airspace. As a by-product, we ob-
tain sectors of simple (convex) shapes and simple (straightline)
boundary between the sectors.

The rest of the paper is organized as follows: The next
section outlines the model. Section III presents problem for-
mulation and our solution to it, culminating in our main result:
simple straightline cut suffices to perfectly balance traffic
between the sectors (Theorem 4). Section IV illustrates the
use of our method on a synthetic example and reports on
computational experiments with real-world flight data. The last
section discusses possible extensions.

II. MODELING

This section describes our abstraction of the sectorization
problem.

A. Complexity based on density

Prior research has singled out several desirable properties
that a good sectorization should possess, see e.g., [7], [11].
The foremost requirement is the balance of control between
the sectors – no sector should be overloaded with traffic while
other sectors see only few airplanes. We therefore aim at
balancing two measures of traffic complexity between the
sectors:

1) The maximum number of aircraft in the sector over time
2) The average number of aircraft in the sector over time

The former is a standard measure of sector load, used in many
prior works; it corresponds to the Monitor Alert Parameter
(MAP) – the number of aircraft in the sector that should not

 
Seventh SESAR Innovation Days, 28th – 30th November 2017 

 

 

 
 

 

 



be exceeded. The latter measure is proportional to the average
dwell time of aircraft in the sector [12]. While the maximum
aircraft count represents the peak complexity of the sector, the
average count represents the total complexity over the day.
Balancing the two objectives tends to give a fair distribution
of the traffic between the sectors.

We acknowledge that looking only at the number of aircraft
(and not at flight directions) is a delimitation of our model,
as it ignores the control complications caused by converging
aircraft trajectories (the celebrated Dynamic Density [13],
[14], [15]). We believe that our setup nevertheless provides
a good starting point for more elaborated models. This was
confirmed with operational experts from Nordic Unified Air
traffic Control (NUAC) and Swedish ANSP Luftfartsverket
(LFV) who manage enroute traffic over Sweden – the subject
of our experiments (Section IV): the need for complex decon-
fliction maneuvers is rare in the uncongested Nordic airspace.
We remark that aircraft count and, in particular, its maximum
over time, was, in fact, in focus also in most of the earlier
work on geometric airspace partitioning.

B. Binary split

In a generic sectorization problem, the input are flight
trajectories through an airspace, and the goal is to partition
the airspace into some number K of sectors, while redirecting
a set of constraints. We consider the simplest case of splitting
into only K = 2 sectors. While in most practical cases,
one would be looking for a larger number of sectors, our
split into 2 parts may be used as the basic ingredient for a
more complex sectorization: since the binary split increases
the number of parts by 1, it can be applied recursively to
obtain an arbitrary number K > 2 of sectors (however, if K
is not a power of 2, some parts may not be perfectly balanced).
The recursive splitting of high-traffic sectors may be motivated
also by the subsequent recursive merging: when the sectors
are to be merged during low-traffic hours, it is important that
the merged sectors also have balanced workload and bounded
maximum complexity.

C. Flight segments

We assume that aircraft trajectories are given as a set of
time-stamped segments – the standard data format in EURO-
CONTROL’s demand data repository (DDR2) which we use
in our experiments (Section IV).

D. Straight boundary

It is commonly acknowledged that the existing sectors
have suboptimal geometries, often following state boundaries
(which were optimized for anything but ATC); in fact, SESAR
Joint Undertaking puts a lot of effort into removing country
boundaries from consideration when designing the sectors
– one important initiative is establishing FABs (functional
airspace blocks) over the harmonised European skies. A good
sector should have ”nice” shape and ”simple” boundary –
subjective criteria which are often formalized by requesting
that the sectors are convex [7], [11], [9] (convexity is a

RL

RCLC

C

Figure 1. Left: A rectangular airspace (dotted) partitioned into sectors L
and R; a ”kink” (black dot) in the boundary between the sectors makes
sector R non-convex – a flight segment (blue) may exit the sector and

re-enter it again. Right: Chord C (bold) is the boundary between sectors
LC and RC ; blue segments are flights

desirable property also from the operational point of view
because, by definition of convexity, any straightline-segment
flight intersects a convex region at most once, thus never re-
entering the sector). Note that if the boundary between two
sectors has a vertex (i.e., is not a single straightline segment),
then one of the sectors is not convex (Fig. 1, left). Thus,
to ensure convexity, we require that the sector boundary is
a straightline segment, or equivalently that the sectorization is
obtained by a single straightline chord joining two points on
the boundary of the airspace (Fig. 1, right).

As an additional constraint we require that the chord does
not go through a flight segment, i.e., no flight segment should
belong to the chord. This restriction makes sense from the
operational perspective – the control over the plane should
not be shared between the sectors (the only time when two
ATCOs have to attend to the flight is when it crosses between
the sectors). In fact, even stronger forms of this restriction may
be imposed – that any flight segment lies somewhat ”deep”
inside within the sector (the distance between the flight and
the sector boundary is larger than a given tolerance parameter),
that the angle at which the flight segment crosses the boundary
is not too small, etc.

III. PROBLEM FORMULATION AND SOLUTION

Formally, the input to our problem consists of:
• The region of interest P (the airspace) which is to be split

into sectors. We assume that P is convex (for otherwise,
decomposing P into convex sectors may not be possible).

• A set S of n straightline segments, where each segment
s ∈ S is a 6-tuple (as, bs, cs, ds, es, fs) where (as, bs),
(cs, ds) are the coordinates of the segment start and end
points resp., and es, fs are the times when the aircraft
enters and leaves s resp. For simplicity we assume that
the segments are traversed by the planes with the same
speed (the assumption is not essential and can be easily
lifted). Equivalently, each element of S is a segment in
the (x, y, t)-space (Fig. 2, left). We will also make the
General Positioning Assumption (GPA) that S is non-
degenerate in the sense that no 3 segments go through a
common point, no 3 segment endpoints are collinear, etc.
(we will include other assumptions into GPA as needed)
– one can make the GPA hold by perturbing the input.
We will often identify a segment with the flight following

2

 
Seventh SESAR Innovation Days, 28th – 30th November 2017 

 

 

 
 

 

 



P

t

x

y RCLC

t = 1
C

x

y

Figure 2. Left: The rectangular region of interest P (dotted) and the input
segments in the (x, y, t)-space. Right: P split into two sectors by the chord
C (bold). LC(1) = 4 is number of segments intersecting the left sector at

time t = 1 (the intersection points are the circles)

it and speak e.g., about the time when a segment enters
a region, and such.

Our output is a chord C – a (directed) straightline segment
with endpoints on the boundary of P . The chord splits P into
two parts – the sector LC to the left of the chord and RC to
the right of C.

Let LC(t) be the number of flights inside the left sector at
time t, or equivalently the number of segments intersecting LC

lifted to height t in the (x, y, t)-space (Fig. 2, right); define
R(t) analogously. Let ML(C) = maxt∈[0,T ] LC(t) denote
the maximum aircraft count in LC , where T is the given time
horizon. The maximum count in RC is defined analogously:
RL(C) = maxt∈[0,T ] RC(t).

The average number of aircraft in LC is

AL′(C) =
1

T

∫
t∈[0,T ]

LC(t) dt (1)

By ergodicity, this average number is proportional to the total
length of the segments from S inside LC . Indeed, for a
segment s ∈ S, let 1(s, t) be the indicator function of the
presence of s in the sector over time: 1(s, t) = 1 if s is in LC

at time t, and 1(s, t) = 0 otherwise. Then
∫
1(s, t) dt is the

time that the aircraft, following s, spends in LC :∫
1(s, t) dt = |s ∩ LC |/v (2)

where |s∩LC | is the length of s inside the sector and v is the
speed of the aircraft. Counting separately the contribution of
each aircraft, we can write LC(t) =

∑
s∈S 1(s, t) and rewrite

(1) as

AL′(C) =
1

T

∫ ∑
s

1(s, t) dt (3)

Interchanging the integration with the summation and using
(2), we obtain

AL′(C) =
1

Tv

∑
s∈S
|s ∩ LC |

Since v and T are independent of C, we use

AL(C) =
∑
s∈S
|s ∩ LC |

i.e., the total length of the segments in LC , as the measure of
the average aircraft count in the sector. We define

AR(C) =
∑
s∈S
|s ∩RC |

analogously.

The objectives

As the measures of how good a split a chord makes, we
use the differences in the maximum and average numbers
of aircraft in the left and right sectors. Specifically, for a
chord C, the max-imbalance or M-imbalance is defined as
M(C) = |ML(C) −MR(C)|; similarly, the avg-imbalance
or A-imbalance is A(C) = |AL(C)−AR(C)|. With the above
defined notation, our problem can be formally stated as

Given the airspace P and the set S of flight segments,
find the chord C balancing the maximum and aver-
age aircraft count between the sectors LC and RC ,
i.e., the chord minimizing the M- and A-imbalances
M(C) and A(C).

Since A(C) and A′(C) differ by a factor of vT , minimizing
A(C) is equivalent to minimizing A′(C).

A. Listing M-imbalances

We prove that even though there are uncountably many
chords, the number of possible max-imbalances is only quatric
in the number of segments, because many of the chords lead
to the same M-imbalance:

Theorem 1. The number of distinct max-imbalances is O(n4).

Proof. Let us look closer at the interaction between chords
and segments in S. In this proof we will work in the (x, y, t)-
space, so by a chord uv we will actually mean the vertical
plane in the space, going through the points u and v on the
boundary of P in the (x, y)-plane.

Let H be the set of the horizontal planes t = es, s ∈ S
through the starting and ending points of all segments in S.
We call the points in H∩S critical. That is, critical points are
intersections of the planes with the segments (e.g., the hollow
circles in Fig. 2, right are critical points).

Define the combinatorial type of a chord to be the subset of
the critical points to the left of the chord and say that a chord
is canonical if it passes through two critical points (Fig. 3). It
is easy to see that canonical chords define combinatorial types:
consider any chord and transfer it parallel to itself until it hits
a critical point, and then rotate the chord around the hit point
until it hits another critical point (i.e., until the chord becomes
canonical); during the transfer and the rotation, the combinato-
rial type of the chord does not change (since changing the type
requires moving over a critical point). Moreover, chords of the
same combinatorial type have the same M-imbalance. To show
this, use the same transfer-and-rotation to move any chord C
onto the canonical chord C∗ of the same type. During the
motion, the sector boundary does not intersect any segment,
hence LC and LC∗ contain the same subset of the aircraft at
any time t, meaning that also the maximum number of aircraft
in the sectors are the same ML(C) = ML(C∗). By the same
argument, MR(C) = MR(C∗), and so the max-imbalances
of all chords having the same type as C∗ is the same.

Finally, since |S| = n, there are O(n2) critical points and
O(n4) canonical chords. Hence there are also O(n4) different
possible values for M(C) – one per chord combinatorial type;

3

 
Seventh SESAR Innovation Days, 28th – 30th November 2017 

 

 

 
 

 

 



P

(1)
(2)

Figure 3. C (dashed) is moved (1) and rotated (2) until becoming canonical
(bold). Circles are critical points

moreover, they all can be listed algorithmically by computing
the canonical chords.

It follows from the above proof that the M-imbalance is a
“continuous” function of C:

Corollary 2. As the chord C moves infinitesimally, M(C)
changes by at most 1.

Proof. Changing the maximum count ML(C) or MR(C)
by 2 would require the chord to jump over 2 critical points
simultaneously, which is not possible by the General Position-
ing Assumption. Moreover, as C moves over a single critical
point, only one of ML(C),MR(C) changes by 1; thus also
the difference M(C) = |ML(C)−MR(C)| changes by 1.

We use the corollary in the next subsection to prove our
main result (Theorem 4).

B. Minimizing both M- and A-imbalance

Previous subsection showed how to find all possible max-
imbalances. However, it did not show how to balance the
maximum counts, and did not consider avg-imbalance at
all. The reminder of this section fills both gaps: we ”scroll
through” all A-imbalances and show that the maximum and
the average may be balanced simultaneously.

The crucial fact is that for any position of one endpoint of
the chord, there exists a unique position of the other endpoint
that vanishes the A-imbalance:

Lemma 3. ∀u ∈ ∂P ∃!v : A(uv) = 0

Proof. If v is immediately clockwise from u along the bound-
ary ∂P of the airspace, then Luv , and hence AL(uv) are
very small (essentially AL(uv) = 0); on the contrary, if v
is immediately counterclockwise from u, then Luv is (almost)
the entire P , and hence AL(uv) is large (essentially equal to
the total length of all segments). Since AL(uv) changes con-
tinuously and monotonically as v moves along the boundary of
the airspace, by the Intermediate Value Theorem, there exists
a unique point v where AL(uv) passes over half of the length
of all the segments.

In fact, the explicit dependence v(u) of v on u may
be derived using the Implicit Function Theorem: One may
(re)define the combinatorial type of a chord as the set of
segments endpoints that are to the left of the chord (here,
unlike in there previous subsection, we work in 2d); similarly
to the previous section, it can be shown that there is only a
quadratic number of the types, and that they are defined by the
set L of O(n2) lines passing through all pairs of segments’

Lu1u2
=

u1

u2

Ru1u2
=

P

Ru2u1

Lu2u1

Figure 4. As the A-balanced split rotates, the sectors swap places

endpoints. One may scroll then through all combinatorial
types. Chords from the same type have their endpoints on
two fixed arcs of ∂P (the arcs are defined by lines from L),
and intersect the same set of segments from S (since the set of
intersected segments is uniquely determined by the endpoints
to the left of the chord). Thus, for a fixed combinatorial type,
and hence fixed arcs to which u and v belong, the total length
AL(uv) of segments in Luv is given by the same formula
which may be explicitly written. If u and v are such that
AL(uv) = AR(uv), then AL(uv) = const (the common
value of AL(uv) and AR(uv) is equal to the half of the total
length of all segments). Setting the full differential to 0

∂AR(u, v)

∂u
du+

∂AR(u, v)

∂v
dv = 0

we obtain, in accordance with the Implicit Function Theorem,

dv

du
= −∂AR(u, v)/∂u

∂AR(u, v)/∂v
(4)

Equation (4) may be solved for v(u) (analytically or numeri-
cally).

We are now ready to prove our main result – existence of
the ”doubly-balanced” split:

Theorem 4. ∃C : M(C) = A(C) = 0

Proof. For a point u ∈ ∂P on the airspace boundary, let
C(u) = C(uv(u)) be the chord that vanishes the A-imbalance:
A(C(u)) = 0 (existence and uniqueness of C(u) is guaranteed
by Lemma 3). Let M(u) = M(C(u)) be the M-imbalance of
the chord.

Take an arbitrary point u1 ∈ ∂P , and let u2 = v(u1) be
such that A(u1u2) = 0. By symmetry, u1 = v(u2), i.e., C(u2)
is the same chord as C(u1), just going in the opposite direction
(Fig. 4). In particular, the left and right sectors of the chords
swap places (L(u1u2) = R(u2u1), R(u1u2) = L(u2u1)),
implying that

ML(u1u2)−MR(u1u2) = MR(u2u1)−ML(u2u1) (5)

Now, suppose that M(u1) 6= 0, e.g., that ML(C(u1)) >
MR(C(u1)). Move u1 along ∂P . By Corollary 2, during
the motion M(u1) changes continuously ”in integers”, i.e.,
changes in increments/decrements of 1. By equation (5), when
u1 gets to u2, the M-imbalance changes the sign. Thus,
somewhere between u1 and u2 there exists a point u where
M(u) crosses 0.

One may find the doubly-balanced split using equation (4)
to ”watch” how C(u) changes as u moves along the boundary
of P , and using Theorem 1 to keep track of M(u).

4

 
Seventh SESAR Innovation Days, 28th – 30th November 2017 

 

 

 
 

 

 



Figure 5. Left: Black circles are the critical points; the M-imbalance
changes in increments or decrements of 1 (the red stepwise function). Right:

The sectors shifted up to the times at maximum aircraft counts

IV. EXPERIMENTS

Figure 5 shows a small synthetic example. On the left, the
red circular stepwise curve is the graph of ML(uv(u)) −
MR(uv(u)) as the function of u. For visualization clarity, the
location of u is represented by points on a circle surrounding
the rectangular airspace (instead of points on the boundary of
the airspace itself). That is, the ”u-axis” of the graph is the blue
circle around the airspace, and the value of the function (the
red curve) is given by the distance from the center of the circle.
In fact, the function takes only three values (-1,0,1) – the
circles represent the levels of the function. It can be seen that
the difference ML(uv(u))−MR(uv(u)) indeed changes by 1
at certain points (and, in fact, stays equal to 0 at quite many
angle ranges), and that the graph is centrally symmetric about
the circle center, in accordance with the theory developed in
the previous section. On the right, the times of maximum
aircraft counts are shown.

For a real-world example, we took airspace over Sweden.
The Swedish Flight Information Region (FIR) was enclosed
into a rectangle P , to avoid dealing with the complicated
outer boundary, which mostly follows the state boundary.
A busy day (T=24hrs) of flight data was downloaded from
Eurocontrol’s DDR2 repository. We restricted attention to the
FIR overflights: our focus is on partitioning the upper airspace,
and those aircraft that landed and/or took off within the region
would mostly be handled in the transition airspaces. All the
flights were clipped off at the points where they crossed P
(each of our flights had a unique entry and a unique exit
point from P ). We replaced every fight trajectory with the
single segment between the crossing points, thus emulating
free routing through the airspace (which is in place in the
Danish–Swedish FAB for several years). Even though some
of the flightplans did contain waypoints inside P , using the
direct segments allowed us to exclude the turning points as
workload hotspots (attention attractors) for ATCOs, providing
yet another justification for using only aircraft count as the
complexity indicators. (Alternatively, our algorithms could
take as the input the flightplans together with the turning
points.)

We then used Theorem 1 to zoom in on cuts with 0 max-
imbalance: we drew canonical chords through pairs of critical

I1

i u2

∂P

j

u1

I2

Figure 6. Two canonical chords (dashed) and points u1, u2 in the intervals
I1 and I2 = (i, j) on ∂P . If AL(u1u2) > AR(u1u2), the next candidate
location for u2 = v(u1) is tried clockwise of the current u2; otherwise, the

search for u2, delivering A(u1u2) = 0, continues counterclockwise

points, which split ∂P into intervals (Fig. 6). For every pair
of intervals I1, I2 such that for any u1 ∈ I1, u2 ∈ I2 the
combinatorial type of the chord u1u2 is the same, we evaluated
M(u1u2) and kept only pairs with no M-imbalance (their
existence is guaranteed by Theorem 4).

Finally, we searched for avg-balanced splits of the airspace
into two parts as per Theorem 4 (since we handled traffic
over the whole FIR, our parts rather represent control centers
than sectors). To avoid going around the full boundary of the
airspace, we looked for the A-balanced chords A(u1u2) only
for u1, u2 lying within the pairs of intervals I1, I2 that have
M(u1u2) = 0 for all points u1 ∈ I1, u2 ∈ I2 (i.e., the intervals
identified as described in the previous paragraph).

Solving the differential equation (4) may be a daunting
task in practice; instead, we used monotonicity of AL(u1, u2)
as the function of u2 and performed a binary search for
the A-balanced chord A(u1u2). Specifically, for each pair of
intervals I1, I2, we took a large set U ⊂ I1 of points laid
out regularly in the first interval (essentially U is a dense
1d grid within I1). For each point u1 ∈ U we evaluated
AL(u1i), AR(u1i), AL(u1j) and AR(u1j) where i and j are
the endpoints of I2. If the differences AL(u1i) − AR(u1i)
and AL(u1j)−AR(u1j) had the same sign (both positive or
both negative), we discarded u1; otherwise we knew that there
exists a point u2 ∈ I2 such that A(u1u2) = 0. We searched
for u2 with the binary search: given a candidate location for
u2, we computed the length of segments inside Lu1u2

, and
directed the search clockwise or counterclockwise around the
boundary depending on whether AL(u1u2) was smaller or
larger than the total length of all segments (see Fig. 6).

The pseudocode for finding the balanced cut is presented in
Algorithm 1. The computational complexity of the algorithm
is O(n5).

Figure 7, left shows the resulting split of the airspace.
The chord cuts out Sweden off the congested area southeast,
suggesting that there is essentially as much control work to
do in Sweden as there is in the adjacent European airspace. It
is worth noting that this is obtained fully automatically with
our algorithms, without any human looking over the map.

Of course, Swedish aviation authorities are less excited
about separating Sweden from Europe; the interest is in
partitioning the Swedish airspace itself. To accomplish that, we
shifted the right boundary of the rectangle R to the left, so that
it runs along the longitude of 18 degrees, and recomputed the
split. (Our techniques work for partitioning non-rectangular

5

 
Seventh SESAR Innovation Days, 28th – 30th November 2017 

 

 

 
 

 

 



Figure 7. The M- and A-balanced split of P . Left: The rectangle is the bounding box of Swedish FIR. Right: A smaller rectangle, more tightly focusing on
the flights over Sweden

airspaces just as well, but for this experiment we kept P a
rectangle – shifting the boundary to the left made a northern
part of Sweden fall out to the right of the rectangle, but the
fallen out contained almost no traffic anyway.) Figure 7, right
shows the result. Again, without any human oversight, our
algorithm separated the truly more congested southern part of
the Swedish FIR from the north – a reasonable division.

As mentioned in Section II-B, one natural way to proceed
with our method is to do recursive balanced partitioning: split
a large airspace into two and continue splitting the parts. In
terms of the considered example, this would mean that both
of our chords could be used simultaneously: first a SW–NE
chord (like in Fig. 7, left) cut out Sweden from Europe, and
then a SE–NW chord (ala Fig. 7, right) partition Swedish
airspace itself. Figure 8, left shows the two chords combined:
it can be seen that the combination results in a high-degree
vertex of the sectorization (at the lower side of P , around
the longitude of 18 degrees) where several sector boundaries
meet – an undesirable artifact. To remedy this, we note that our
technique produces all perfectly balanced cuts – and there may
be more than one (see e.g., our synthetic example in Fig. 5).
Figure 8, right shows all doubly-balanced cuts of the airspace
over Sweden (the part on the left of the cut in Fig. 7, left),
and Figure 9 shows two of the cuts used to divide the Swedish
part. The cuts were picked manually as the ones making the
largest angle with the primary cut from Fig. 7, left (i.e., so that
the chord at the next level of the recursion is as perpendicular
as possible to the previous-level chord) – designing algorithms
for automated choice of the perpendicular cuts is outside the
scope of this paper.

Algorithm 1: Balanced cut
Input : A convex region P and a set S of segments
Output: A chord C with endpoints on ∂P

1 I ← ∅ B Set of points on ∂P ;
2 C ← critical points of ;
3 foreach pair of points (c1, c2) ∈ C do
4 (i, j)← ∂P ∩ line through c1, c2;
5 I .append(i, j);
6 end
7 Sort I in counterclockwise order;
8 foreach pair of intervals (I1, I2) ∈ I : combinatorial

type of u1u2 is the same ∀u1 ∈ I1, u2 ∈ I2 do
9 M ← M-imbalance(u1, u2);

10 if M = 0 then
11 if ∃ A-balanced cut u1u2 then
12 return C ← u1u2;
13 end
14 end
15 end

V. CONCLUSION

We showed how to split a sector into two parts while
balancing the traffic density between the obtained sectors.
Our sectorization uses only single segment as the boundary
between two sectors, which provides for sectors of non-
complicated (in fact, convex) shape – a useful property [7],
[9], [11] (if applied recursively, in order to obtain an arbitrary
number K > 2 of sectors, the simple 1-chord split is remi-

6

 
Seventh SESAR Innovation Days, 28th – 30th November 2017 

 

 

 
 

 

 



Figure 8. Left: The two cuts meet in a high-degree vertex. Right: Any cut within a green area is doubly-balanced

Figure 9. Possible splits

niscent of the binary space partition sectorization [6]). Simple
splits are advantageous for subsequent dynamic sectorization,
when the sectors are split and merged on a regular basis: we
believe it will make it easier for the ATCOs to qualify to
handle sectors with the simple boundary (i.e., to be certified
both for split and for merged sectors).

Future work may extend our solution in many ways: (recur-
sively) splitting into multiple sectors, using more complicated
boundary between the sectors, caring about directions of
the flights (we looked only at the aircraft counts), taking
into account interaction between the fights and the sectors

boundaries (e.g., minimizing the number of sector changes),
etc. In some cases there may exist more than one sectorization
that simultaneously balances the maximum and the average
number of flights; in such situations it would be of interest
to choose the best sectorization based on some other KPI
(in fact, as our method produces all balanced binary splits,
the subsequent choice of the best sectors may be left to the
human designer). We hope that despite the relative simplicity
of our approach, it can be embedded as a basic unit into more
sophisticated sectorization tools.

7

 
Seventh SESAR Innovation Days, 28th – 30th November 2017 

 

 

 
 

 

 



Acknowledgements

We thank Anders Nyberg (NUAC) for discussions on the
topic of the paper. This work is part of the Swedish En-
route Airspace Optimization (SWEAO) project supported by
the Swedish Transport Administration (Trafikverket) via the
Swedish Air Navigation Service provider LFV (Luftfartsver-
ket).

REFERENCES

[1] A. Yousefi, “Optimum airspace design with air traffic controller
workload-based partitioning,” Ph.D. dissertation, George Mason Uni-
versity, 2005.

[2] C. R. Brinton, K. Leiden, and J. Hinkey, “Airspace sectorization by
dynamic density,” in Proceedings of the 9th AIAA Aviation Technology,
Integration and Operations (ATIO) Forum. American Institute of Aero-
nautics and Astronautics, 2009.

[3] P. Jägare, P. Flener, and J. Pearson, “Airspace sectorisation using
constraint-based local search,” in ATM, 2013.

[4] D. Delahaye, M. Schoenauer, and J. M. Alliot, “Airspace sectoring by
evolutionary computation,” in Evolutionary Computation Proceedings,
1998. IEEE World Congress on Computational Intelligence., The 1998
IEEE International Conference on, May 1998, pp. 218–223.

[5] I. Gerdes, A. Temme, and M. Schultz, “Dynamic airspace sectorisation
using controller task load,” in Proceedings of the SESAR Innovation
Days. EUROCONTROL, 2016.

[6] A. Basu, J. S. B. Mitchell, and G. K. Sabhnani, “Geometric algorithms
for optimal airspace design and air traffic controller workload balancing,”
Journal of Experimental Algorithmics (JEA), vol. 14, p. 3, 2009.

[7] P. Flener and J. Pearson, “Automatic airspace sectorisation: A
survey,” CoRR, vol. abs/1311.0653, 2013. [Online]. Available: http:
//arxiv.org/abs/1311.0653

[8] T. A. Granberg, T. Polishchuk, V. Polishchuk, and C. Schmidt, “A novel
MIP-based airspace sectorization for TMAs,” in USA/Europe Air Traffic
Management Research and Development Seminar (ATMSeminar), 2017.

[9] C. Schmidt, T. A. Granberg, T. Polishchuk, and V. Polishchuk, “Convex
sectorization–A novel integer programming approach,” in Integrated
Communications, Navigation and Surveillance Conference (ICNS).
IEEE, 2017, pp. 1–12, 3rd Best Paper Award.

[10] M. Sergeeva, D. Delahaye, C. Mancel, L. Zerrouki, and N. Schede, “3d
sectors design by genetic algorithm towards automated sectorisation,” in
SESAR Innovation Days, 2015.

[11] M. Prandini, L. Piroddi, S. Puechmorel, and S. L. Brázdilová, “Toward
air traffic complexity assessment in new generation air traffic manage-
ment systems,” IEEE transactions on intelligent transportation systems,
vol. 12, no. 3, pp. 809–818, 2011.

[12] I. Kostitsyna and J. S. B. Mitchell, “Local redesigning of airspace
sectors,” CoRR, vol. abs/1302.1089, 2013. [Online]. Available:
http://arxiv.org/abs/1302.1089

[13] W. Hughes, “Dynamic density–a review of proposed variables,” NASA
Advanced Concepts Branch, pp. 1–12, 2000.

[14] P. Kopardekar and S. Magyarits, “Dynamic density: measuring and pre-
dicting sector complexity [atc],” in Digital Avionics Systems Conference,
2002. Proceedings. The 21st, vol. 1. IEEE, 2002, pp. 2C4–2C4.

[15] P. H. Kopardekar, A. Schwartz, S. Magyarits, and J. Rhodes, “Airspace
complexity measurement: An air traffic control simulation analysis,”
International Journal of Industrial Engineering: Theory, Applications
and Practice, vol. 16, no. 1, pp. 61–70, 2009.

8

 
Seventh SESAR Innovation Days, 28th – 30th November 2017 

 

 

 
 

 

 




