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Abstract—One of the key enablers of ATM Network Management 

is the forecasting of the volume and complexity of traffic demand 

at different planning horizons. This paper proposes a visual 

analytics and machine learning approach for the prediction of 

airline route choice behavior in the pre-tactical planning phase, 

when few or no flight plans are available. Visual analytics is used 

to identify relevant variables determining airline route choices. 

The output of this analysis serves as a starting point to develop a 

multinomial logistic regression model that predicts route choices 

as a function of the identified relevant variables. We evaluate the 

predictive power of the model, showing its potential to 

outperform traditional forecasting methods. We conclude by 

discussing the limitations and room for improvement of the 

proposed approach, as well as the future developments required 

to produce reliable traffic forecasts at a higher spatial and 

temporal resolution. 

Keywords-pre-tactical traffic forecast; airline route choice; 

visual analytics; machine learning. 

I. INTRODUCTION

The goal of Air Traffic Flow and Capacity Management 

(ATFCM) is to make airport and airspace capacity meet traffic 

demand and, when capacity opportunities are exhausted, 

optimize traffic flows to meet available capacity. An essential 

enabler of ATFCM is the provision of accurate information 

about anticipated traffic demand. The available information 

(schedules, flight plans, etc.) and its associated level of 

uncertainty differ across the different ATFCM planning phases, 

leading to qualitative differences between the types of 

forecasting that are feasible at each time horizon. While 

abundant research has been conducted on tactical trajectory 

prediction (see, e.g., [1] and [2]), trajectory prediction in the 

pre-tactical phase, when few or no flight plans are available, 

has received much less attention. The tool currently used by 

EUROCONTROL for pre-tactical traffic forecast is the so-

called PREDICT system [3], which transforms flight intentions 

into predicted flight plans by assigning to each flight the flight 

plan of a similar flight that occurred in previous weeks. The 

route assigned to each flight intention is based on limited 

similarity criteria found in historical flight plans, without 

consideration of other factors (such as airline characteristics, 

meteorology, etc.) that also play an important role in airline 

route choices [4]. These simplifications limit the accuracy of 

the forecast, which may lead to inefficient or sub-optimal 

ATFCM decision-making [5].  

The starting point for the present work is the hypothesis 

that the quality of pre-tactical traffic forecasts can be enhanced 

by better exploiting historical data with predictive models that 

incorporate a finer characterization of airline route choices. 

Previous research has focused in the prediction in the tactical 

phase (short-and mid-term) to estimate arrival time at airports 

[1] or aircraft position to detect trajectory conflicts [2], [6] by

incorporating factors such as the actual trajectory and weather

forecasts. The goal of this paper is to explore how the

combination of visual analytics and machine learning can be

applied to historical flight data to extract meaningful insights

on route choice determinants and develop new approaches able

to improve the accuracy and reliability of demand forecasting

in the pre-tactical phase.

Visual analytics focuses on analytical reasoning facilitated 

by interactive visual interfaces, offering a way to discover 

unexpected patterns and relationships in big and heterogeneous 

datasets [7]. In this paper, visual analytics is used to identify 

potential explanatory variables of airline route choices and to 

get a first qualitative idea of the impact of each variable. A 

machine learning model is then developed that translates the 

insights obtained from the visual exploration of flight 

trajectories into a route choice predictor. The model is 

calibrated and validated with several months of historical data. 

We instantiate and evaluate these ideas through their 

application to a specific case study consisting in analyzing and 

modelling airline route choices for the flights departing from 

Istanbul airports and arriving in any of the Paris airports.  

The rest of this paper is organized as follows: Section II 

describes the selected case study, the data sources used, and the 

approach and methodology followed for route choice analysis 

and modelling; Section III describes the set of route choices 

between Istanbul and Paris considered in the analysis; Section 

IV summarizes the results of the exploration of historical flight 

data by means of different visual analytics techniques and the 

main insights extracted from this analysis; Section V presents 

the route choice predictor and the results of model training, 

validation and testing, comparing the model predictions with 

those provided by a null model; Section VI concludes and 

discusses future research directions. 
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II. DATA AND METHODOLOGY 

A. Case Study 

As an application exercise, we have selected the Origin-

Destination (OD) pair Istanbul-Paris. We study the flights 

departing from the Atatürk (LTBA) and Sabiha Gökçen (LTFJ) 

airports and arriving in Charles de Gaulle (LFPG) and Orly 

(LFPO). The criteria used to select this OD pair were:  

• to represent one of the main European air traffic flows 

(in this case the South-East traffic axis); 

• to have a significant volume of traffic (on average, 

there are more than 10 flights per day from Istanbul to 

Paris); 

• to include a sufficiently high number of alternative 

route options.  

The period used for data exploration and for the training of 

the machine learning model consists of the AIRAC cycles 

1601, 1602 and 1603, i.e., from the 7th of January 2016 to the 

30th of March 2016. The period used for model testing 

comprises AIRAC cycles 1501 and 1502, i.e., from the 8th of 

January 2015 to the 4th of March 2015. 

B. Data Sources 

1) DDR. The Demand Data Repository (DDR) is a 

restricted-access flight database maintained by 

EUROCONTROL, which records data for almost all flights 

flying within the European airspace (ECAC area). The 

information stored in DDR includes: 

• Trajectory description: coordinates, timing, altitude 

and length of the flight. 

• Flight description: ID, airline, aircraft, origin, 

destination, date, departure time, arrival time, most 

penalizing regulation and ATFM delay. 

• Airspace information: charging zones shape and airport 

coordinates. 

This information is available for both the last filed flight 

plan and the actual flight trajectory. The 4D trajectories in the 

DDR are not radar tracks, but a simplification that only 

includes those points that deviate significantly from the Flight 

Plan (FP). 

The current study focuses on the analysis and prediction of 

the routes followed by actual trajectories. 

2) CRCO. The Central Route Charges Office (CRCO) is 

an office within EUROCONTROL that charges airspace users 

for air traffic services on behalf of the Member States. The 

CRCO calculates the route charges due to the Member States 

for the services provided, bills the airspace users and 

distributes the route charges to the States concerned [8]. The 

unit rates and tariffs for en-route and terminal charges are  

published on a monthly basis by the CRCO in the 

EUROCONTROL website [9]. 

C. Approach and Methodology 

1) Route Clustering. Usually there is a vast number of 

route options to fly from one airport to another. The aim of 

this study is not to predict accurately the route followed by 

each aircraft, but the airspace through which the aircraft will 

fly. To convert this problem into a discrete-choice form, the 

actual trajectories of historical flights are grouped into a set of 

clusters represented by a mean trajectory. Density-Based 

Clustering (DBC) is used. In DBC, clusters are formed by a 

set of core samples close to each other and a set of non-core 

samples close to a core sample, but not considered as core 

samples themselves. This allows the computation of clusters 

with any shape, which makes it more generic than centroid-

based approaches (k-means clustering). Core samples are 

those in areas of high density whilst non-core samples are 

within a maximum distance to a core sample, but without a 

minimum number of nearby core samples. Any sample that is 

not a core sample and is not within the maximum distance to a 

core sample is identified as noise. In our implementation, the 

routes assigned to a cluster with less than 5% of the total 

number of flights are also treated as noise. The routes 

identified as noise are grouped into an additional category 

named as “other”. DBC was implemented using the function 

DBCScan of the Python public library scikit-learn [10]. 

2) Visual Exploration. The objectives of the visual 

exploration phase are to discover relevant explanatory 

variables of airline route choices. Route choice determinants 

are explored by means of different types of temporal and 

spatial representations, including heatmaps, multivariate map 

representations, and multivariate bar plots. 

3) Route Choice Modelling. The goal of this phase is to 

model airline route choices as a function of the explanatory 

variables identified by means of the visual exploration. The 

modelling process comprises two steps: first, flights are 

segmented according to their characteristics; then, for each 

segment, airline choices are modelled as a function of the 

identified explanatory variables, using a multinomial logistic 

regression model [11]. The output of the model is the 

probability of a route option to be chosen. The model is fit to 

the actual observed probabilities in the training dataset, 

consisting of 70% of the flights during the training period. The 

rest of the flights in that period are reserved to validate the 

model by comparing predicted and actual figures. The training 

and validation datasets are separated randomly. Once 

validated, the model is applied to a different period of time 

(testing period) to evaluate its predictive power. The testing 

period may include routes and airlines not present in the 

training dataset. Hence, route options are re-computed with 

data of the first AIRAC cycle in the testing period. The rest of 

the testing data are used to measure the performance of the 

model. The results obtained with the model are compared with 

those of a null model that assigns a route to a flight with a 

probability equal to that observed for flights in his segment in 

the training dataset. 
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III. ROUTE CLUSTERING  

A. Route Clustering Results 

The average trajectory of the clusters and the trajectories 

assigned to each cluster are shown in Figure 1. The trajectories 

are grouped into 8 clusters: Cluster 0 (red) enters LF through 

ED avoiding LR; Cluster 1 (green) enters LF through ED, LK 

and LZ; Cluster 2 (gray-green) avoids ED through LO; Cluster 

3 (light blue) goes through LD, LI and South LS; Cluster 4 

(orange) goes through LD, LI and North LS; Cluster 5 (blue) 

enters LF through ED and LR; Cluster 6 (dark blue) goes 

through LJ and North LS; Cluster 7 (purple) goes through LK, 

LO, LH and LR. The main characteristics of each cluster are 

shown in Table I. 

TABLE I CLUSTER STATISTICS. 

Cluster 
No of 

flights 

Average 

length (NM) 

Average 

charges (EUR) 

Regulations 

per flight 

0 139 1277 1188 0.1 

1 110 1314 1144 0.1 

2 190 1273 1199 0.06 

3 218 1274 1203 0.06 

4 117 1256 1207 0.07 

5 73 1274 1204 0.1 

6 29 1271 1229 0.03 

7 24 1304 1152 0.04 
 

 

a) 

 

b) 

 

Figure 1. Results of route clustering: a) Average trajectories. b) Actual 

trajectories colored by assigned cluster. The background shading indicates the 
unit rate of each charging zone: red means more expensive, blue means 

cheaper. 

 

a) 

 
b) 

 

Figure 2.  a) Horizontal length of individual trajectories. 

b) Average value per cluster. Length is expressed in Nautical Miles (NM). 

IV. VISUAL EXPLORATION 

A. Exploration of Flight Efficiency Metrics 

First, we study the characteristics of individual flights and 

their relationship with the average values of the corresponding 

cluster. Figure 2 shows the most direct routes (in green) and 

also the variability inside a cluster. Horizontal length varies 

from 1,230 to 1,360 kilometers. Clusters 0, 2, 3, 5 and 6 have a 

medium length and include routes with a wider range of 

lengths. Cluster 4 has the shortest average length, with little 

dispersion among the flights that form the cluster. Clusters 1 

and 7 have higher distance values, and also low dispersion. The 

most selected clusters (3, 2 and 0) show intermediate values of 

horizontal length, despite having a much lower achievable 

length. As an example, the lowest length flown in Cluster 3 is 

1,247 kilometers, which is lower than the average value of 

route 4 (1,256 km), whilst the average length of Cluster 3 is 

1,274 km. This suggests that, in addition to the average 

distance values, the achievable distance values may also have 

an impact on route choice. In any case, it is clear that the 

horizontal length is not the only variable that determines route 

choice. 

B. Exploration of Route Charges 

Figure 3 shows en-route charges per flight and average 

route charges per cluster. Charges are in general homogeneous 

inside a cluster. We can observe that Cluster 1, despite having 

the highest average length, is the fifth most flown route due to 

having the lowest charges. The same applies to Cluster 0, with 

high length but low charges, which us the third most flown 

route. On the other hand, the shortest route (Cluster 4) is the 

fourth most flown due to its high charges. Clusters 3 and 2, the 

most flown, offer a longer but much cheaper alternative. 
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a) 

 
b) 

 

Figure 3. a) En-route charges of: individual trajectories. 

b) Average value per cluster. Charges are expressed in EUR. 

a) 

 
b) 

 

Figure 4. a) Flight duration of individual trajectories. b) Average value per 

cluster. Time is expressed in minutes. 

C. Exploration of Flight Duration 

Another variable affecting route choice is flight time. This 

parameter is highly correlated with horizontal length, but can 

be adjusted during the flight, thus resulting in a high variability 

inside a cluster (see Figure 4). The yellowish colors indicate 

that the average values per cluster are far from the extreme 

values achieved by some individual flights. Cluster 5 has the 

lowest average flight time although its average length is longer 

than that of other clusters and its charges are moderate. This 

suggests that this route could be suitable to recover delay. 

 

 

Figure 5. Arrival time of individual trajectories. Green means early morning 

flights, red means late evening flights. 

D. Exploration of Arrival Time 

The arrival time may influence route choice in several 

ways, e.g. flights departing earlier may be prone to fly non-

congested routes in order to avoid reactionary delay. However, 

Figure 5 shows a high variability within clusters, and therefore 

the direct use of average values per cluster is meaningless. The 

relevance of arrival time becomes clearer when congestion is 

taken into account. 

E. Exploration of Congestion Metrics 

To explore the impact of congestion on airline route 

choices, two metrics are considered at cluster level: average 

deviation of the actual flight level (FL) flown during cruise 

with respect to the reference FL in the last FP (Figure 6) and 

average number of regulated flights (Figure 7). Regarding the 

average deviation of FL with respect to the FP, Clusters 2, 7 

and 1 have the highest values, whilst Clusters 6, 0 and 3 have 

the lowest values. Regarding the number of regulations, 

clusters 5, 1 and 0 (i.e., the ones flying through central Europe, 

which is highly congested) have values above 10%. On the 

other hand, Clusters 6 and 7 have the lowest number of 

regulations. Combining both metrics, Clusters 3 and 6 seem to 

be less congested than the rest, whilst Clusters 0, 2 and 5 

appear to be the most congested. 

a) 

 
b) 

 

Figure 6. Average deviation of FL: a) Individual trajectories. b) Average 

value per cluster. The values are given in FL. 
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Figure 7. Average number of regulations per cluster. 

The average deviation of FL (Figure 6) has high dispersion 

inside a cluster. The reason is the intra-day variability of 

congestion. It seems therefore interesting to study the 

relationship between the selection of routes and the arrival time 

and its corresponding level of congestion (Figure 8), as airlines 

may tend to avoid congested routes at traffic peak hours. Early 

morning flights (Figure 8a) choose in general Clusters 2, 3 and 

0. Cluster 2 is the most congested, while the rest show low FL 

deviation, i.e., they are less congested. Flights at the morning 

traffic peak (Figure 8b) do not consider Cluster 3 and tend to 

fly more deviated routes like Cluster 5 and 7, or even Cluster 4, 

with low FL deviation but high charges. Cluster 2 is still used 

in spite of being congested. At this point it is important to note 

that average congestion metrics of deviated routes might 

appear higher than those of the direct routes, even when those 

deviated routes are actually less congested. This is because the 

average is calculated over the total number of flights taking 

each route, and deviated routes are selected mainly during high 

traffic peaks. Flights in the afternoon (Figure 8c) continue to 

choose deviated routes due to congestion in the more direct 

routes (Cluster 2). In this case the preferred route is Cluster 3, 

due to its low level of congestion. In the evening (Figure 8d), 

the tendency is the same as in the afternoon. In the early 

evening (Figure 8e), congestion levels are similar to those in 

the afternoon, resulting in similar route choices. The last flights 

of the day (Figure 8f) tend to choose Cluster 5 (fastest) or 3 

(shortest). 

 

Figure 9.  Number of flights of each airline per cluster. 

F. Exploration of Airline Behaviour 

When analyzing route choices per airline (Figure 9), 

differences between airlines arise. Turkish Airlines (THY) flies 

virtually all the clusters, with preference for Clusters 1, 2 and 

4. Air France (AFR) and Pegasus Airlines (PGT) also use most 

of the available routes. AFR has a marked preference for 

Cluster 0, while PGT fairly divides its flights among the 

Clusters 1, 2, 3 and 6. On the contrary, Onur Air (OHY) flies 

almost only Cluster 3 regardless of external variables. Atlasjet 

(KKK) and MNG Airlines (MNB) fly a narrower set of two or 

three clusters. 

These results suggest that the influence of the route choice 

determinants identified in the previous sections depends on 

other, airline-specific factors (e.g., cost of delay) that may be 

driven by the business model of each airline, the structure of its 

network (point-to-point vs hub-and-spoke), etc. 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

 

Figure 8. Variations of FL of actual trajectories arriving between: a) 6:00 and 8:30; b) 8:30 and 12:00; c) 12:00 and 16:00; d) 16:00 and 20:00;  

e) 20:00 and 22:00; f) 22:00 and 00:00. The colour scale is the same as in Figure 6. 
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G. Conclusions of Visual Exploration 

The present visualization exercise allows the extraction of 

relevant insights regarding airline route choice criteria. The 

factors identified as route choice determinants are: 

• Horizontal length, which is the most significant 

parameter to explain fuel costs. 

• En-route charges, which explain air navigation costs. 

Longer routes often avoid expensive charging zones, 

thus reducing the amount of charges paid. 

• Congestion. Some routes may provide a stable flight 

time, less delays or regulations, or allow airlines to fly 

their desired FL, thus reducing fuel consumption. 

Congestion is not constant and it is more relevant 

during traffic peaks. Thus, an accurate route choice 

model should be able to capture the different levels of 

congestion at different times of the day. 

• Flight time. This variable is highly correlated with the 

horizontal length of a flight. However, it presents high 

dispersion inside clusters because of its link with 

factors such as wind and assigned FL. 

• Weather, which can affect route choice in two ways: 

weather events as CBs may deviate a route, and tail 

winds may make one route choice better than other.  

• Airline. All the above factors may have different 

importance depending on the structure of costs of each 

airline. Point-to-point carriers tend to use routes with 

low air navigation charges, while hub-and-spoke 

airlines may prefer to choose routes that are more 

stable in time. It may also be the case that smaller 

airlines are not always able to optimize their route 

choices taking into account all these factors due to their 

more limited resources. 

While some factors are intrinsic properties of the routes 

(e.g., average horizontal length), their influence may depend on 

certain characteristics of the airline (e.g., cost of delay). There 

are also factors that change daily (e.g., wind). Additionally, 

route choices might depend on other variables that have not 

been explored in the analysis, such as the reactionary delay due 

to previous flights or the availability of certain routes as a 

function of military activity, thus generating an additional 

variability that cannot be explained by the observed variables.  

V. ROUTE CHOICE MODELLING 

A. Explanatory Variables and Mathematical Model 

The explanatory variables selected from the visual 

exploration can be classified into:  

• flight attributes: airline and arrival time;  

• route attributes: average horizontal flight efficiency 

[12], average air navigation charges and probability of 

being subject to a regulation. 

Flights are segmented according to the flight attributes by 

means of a k-means clustering. Then, for each segment, route 

attributes are used as input to a multinomial logistic regression 

function [11] to obtain the choice probability for each option: 

 

 
(1) 

where Pi is the probability of option i, βk is the model 

constant associated to the k route attribute, xik is the route 

attribute k of the option i, m is the number of route attributes 

and n the number of route options.  

B. Model Training 

For each flight, airline route choice is assimilated to one of 

the 8 clusters depicted in Figure 1a, by selecting the cluster to 

which the actual trajectory belongs. Flights are segmented by 

airline (6 classes) and arrival time (4 classes), resulting in 24 

segments. For each segment, the training dataset is used to 

calibrate the parameters of the route choice model so as to fit 

the observed airline choices. 

The model achieved a good fitting of the training dataset, 

with all predicted values within ±5% of the actual values. 

Errors are mainly generated by clusters with very similar 

characteristics, such as Clusters 0 and 5, both with intermediate 

length and relatively low charges (see Table I): these clusters 

cannot be distinguished by the model and return very similar 

probabilities, so that flights choosing one of these clusters are 

incorrectly assigned to the other cluster. This suggests that 

there is a missing factor in the current model explaining the 

difference in the choice probability of these two clusters. 

C. Model Validation  

Figure  depicts the comparison of the choices predicted by 

the model with the actual route choices for the validation 

dataset. The results show a fair approximation of route choice, 

with an error within ±10% of the actual values. The worst 

results are again obtained for Clusters 0 and 5, due to their 

similarity along the considered explanatory variables. This 

could be improved by including other route choice 

determinants, such as wind, airport configuration, delay at take-

off, etc., as well as by using a dynamic congestion indicator, as 

discussed in Section IV.E. 

 

Figure 10. Validation results. Early flights arrive before 12:00; midday 
flights between 12:00 and 16:00; late flights after 16:00. 
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D. Model Testing 

Testing gives a final estimation of the predictive power of 

the model. The results of the testing are shown in Figure 11: 

• In general, the clusters for which the validation results 

were less accurate, such as Clusters 0 and 5, are also 

the ones providing the worst results in the testing 

experiment. The case of Cluster 0 is remarkable, as the 

model would be expected to reduce the number of 

flights assigned to it due to the higher charges in 2015. 

Instead, the prediction is higher. The reason for this is 

the model training: in the training period, Cluster 3 has 

more flights than Cluster 0, despite having similar 

length and higher charges (see Table I). In order to fit 

this behavior, the model gives little weight to charges, 

assigning a similar probability to both clusters.  

• The worst performance is obtained for midday flights, 

coinciding with the peak of congestion (see Figure 8c). 

As previously discussed, these results reveal the need for 

additional explanatory variables able to account for the factors 

not captured by the current model (e.g., by using dynamic 

congestion metrics). 

Table II shows the correlation between the routes predicted 

by the proposed model and the actual route choices, compared 

with the results obtained with the null model, which assigns 

routes according to the empirical probability distributions 

observed within each flight segment during the training period. 

This null model aims to emulate current PREDICT algorithm 

used by EUROCONTROL [3]. Despite the room for 

improvement, the model predictions show much better 

correlation with actual choices than the null model. The poor 

results of the null model are explained by the steep change in 

unit rates between 2015 and 2016, which cannot be predicted 

with such a simple model. 

 

Figure 11. Comparison of actual, testing and null model results. Flights are 

grouped per arrival time as in Figure 10. 

TABLE II. COMPARISON OF TESTING RESULTS AND NULL MODEL. EARLY 

FLIGHTS ARRIVE BEFORE 12:00; MIDDAY FLIGHTS BETWEEN 12:00 AND 16:00; 

LATE FLIGHTS AFTER 16:00. 

  

Pearson’s correlation 

Total 
Estimation 0.9588 

Null model -0.3479 

Early Flights 
Estimation 0.9360 

Null model -0.3756 

Midday Flights 
Estimation 0.6956 

Null model -0.3600 

Late Flights 
Estimation 0.7352 

Null model -0.0124 

VI. CONCLUSIONS AND FUTURE DIRECTIONS 

In this paper, we have presented a combined approach to 

pre-tactical route choice prediction based on the joint 

application of visual analytics and machine learning techniques 

to historical flight data. Visual analytics is used to unveil the 

main determinants of airline route choices, which are then 

included as explanatory variables in a multinomial logistic 

regression model. The model provides a fair prediction 

performance, showing the potential of the proposed approach 

to outperform current pre-tactical forecasting methods, which 

result often in over deliveries [13] after the ATFCM process. 

However, further improvements of the presented model are 

needed in order to achieve acceptable levels of predictability. 

Future research directions are outlined below: 

• Other machine learning techniques (e.g., decision trees, 

neural networks) could be tried to evaluate which 

technique(s) provides the best results and under which 

conditions. 

• The explanatory variables used by the model could 

also be improved. In particular, the indicators used as a 

proxy of congestion could be enhanced by considering 

a dynamic variable (e.g., depending on the arrival 

time) able to capture the different levels of congestion 

along the day. 

• The predictive models should incorporate other 

relevant route choice determinants, such as wind and 

availability of routes. In the current approach, the 

influence of wind is not taken into account; doing so 

would require a dynamic variable that should be 

computed for each flight and for each cluster, e.g. 

using the wind forecasts at the departing time. 

Additionally, in the model presented in this paper, 

airspace design is only taken into account implicitly, 

through the routes followed by historical flights. This 

approach is expected to provide good results when the 

airspace structure is stable. However, some elements of 

the airspace, such as military areas, vary over time. 

The model could therefore be improved by considering 
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only the choice set formed by the routes available at 

the departure time. 

• The model presented here has been trained with a 

dataset of historical flights corresponding to one single 

season. Extending the training dataset to encompass 

data from several seasons could help improve 

prediction across seasons.  

• More generally, the proposed approach could be 

extended to develop an adaptive approach in which 

models are recalibrated on a continuous basis to 

account for the most recent changes in the network. 

• Airline decisions are usually driven by a cost 

optimization process.  An interesting line of research 

would be the combination of data-driven approaches 

such as the one presented in this paper with 

optimization methods for trajectory prediction, in order 

to estimate variables such as the distribution of the cost 

of delay for different airlines. 

A prospective application of the proposed modelling 

approach is the aggregation of route predictions into traffic 

demand volumes in order to predict the appearance of hotspots. 

To do so, the current approach should be applied to all OD 

pairs for which one or more possible routes cross the hotspot. 

Then, predictions should be aggregated in a probabilistic 

manner to obtain the predicted traffic volume in the hotspot.  

On a more strategic level, the modelling approach 

developed in this paper could also be used to investigate 

questions related to the interrelationship between ATM Key 

Performance Areas, e.g. the trade-offs between environment 

(flight efficiency), capacity (delay) and cost-efficiency. 
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