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Abstract—PNOWWA (Probabilistic Nowcasting of Winter 
Weather for Airports) project has studied methods to forecast 
snowfall for next few hours by extrapolating movement of radar 
echoes. Three different methods to create motion vectors (a 
simple method, a method used operationally and a new method) 
as well as three methods to produce probability forecasts with 
help of a motion vector field have been studied. The verification 
results of four case studies show a large dependence of the 
weather regime: widespread frontal precipitation is easier to 
forecast than isolated snow showers. The effect of orography can 
be split to quantitative enhancement of snowfall due to lower hills 
and mountains, and dynamic effect of the Alps which are 
effecting the movement of the entire weather system. Here the 
forecasts using motion extrapolation will often fail due to the 
complex interaction of synoptic-scale systems with orography. A 
further aspect in this study is the conversion of radar reflectivity 
(either forecasted or actual measured) to parameters which are 
of interest for the airport operation like visibility, de-icing index, 
or snow accumulation. Conversion formulas will be provided for 
easy use, even though there is a large uncertainty due to the wide 
variability of the shape and density of ice particles or snowflakes.  
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I. INTRODUCTION

The PNOWWA (Probabilistic Nowcasting of Winter 
Weather for Airports) project produces methods for the 
probabilistic short-term forecasting of winter weather. A 
survey of user needs has shown demand of short, detailed 
forecasts (nowcasts) of snowfall and related phenomena such 
as the decrease of visibility, and accumulation on runways. 
Empirical conversion formulas will be provided, however, due 
to the large variability of ice particles or snowflakes there is a 
large scatter in the retrieved parameters. 

The approach taken in PNOWWA is based on extrapolation 
of the movement of snowfall areas in consecutive radar images. 
Extrapolative methods have their limits, but in the very short 
range forecasting they have the ability to express timing of 
short-lived phenomena, such as a 45 minute pause in snowfall. 
Very few other methods can do that. The presence of 
mountains in the vicinity of airports will considerably influence 
the behavior of precipitation systems and thus the predictability 
in short time ranges. This is studied in detail for the airports of 
Oslo in Norway and Rovaniemi in Northern Finland. Even 

more complex is the situation for the airports of Munich in 
Southern Germany and Salzburg in Austria where there is a 
strong interaction between the Alps and synoptic-scale 
precipitation systems. 

II. NOWCASTING METHODS

A. Motion of precipitation
In a method suggested by Andersson and Ivarsson [1] the

wind at 850 hPa level is used to describe the movement. The 
wind is taken from HIRLAM (High Resolution Limited Area 
Model) numerical weather prediction model. This approach 
had been tested in SESAR1, so it was known to provide 
reasonable results. 

The method operationally used and originally developed at 
FMI, applies modified correlation-based atmospheric motion 
vector (AMV) system by EUMETSAT [2]. It is described in 
detail in [3]. The AMV system was originally developed to 
extract wind data from METEOSAT imagery to be used as 
input for numerical weather prediction. For that purpose it 
provides a sophisticated automatic quality indicator (QI) of the 
vectors [4], which is also useful in application to the radar 
images.   

The five latest 500 m PseudoCAPPI reflectivity fields 
combined from ten radars in Finland are used as the input to 
the AMV system. Radar echoes with reflectivity less than 0 
dBZ are removed from the analysis. Data is processed at time 
steps of 5 minutes, in grid of 16 x 16 km grid boxes. Each grid 
box is compared to the neighboring grid boxes from the 
previous time step, and the best autocorrelation is chosen to 
show the area of origin of the precipitation cells in the grid box. 

The quality indicators of atmospheric motion vectors 
consist of five separate parts: consistency is tested for 
direction, speed, vectors, spatial homogeneity and for first 
guess field. The five parameters are then combined to one 
normalized quality indicator QI, details of this are described in 
[4]. In the application for radar images, vectors with quality 
index QI greater than 0.7 are included. This allows scatter of 1-
15 degrees in direction, and 5%-20% in speed.  
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After rejecting vectors with quality index smaller than 0.7, 
a smooth vector field is analyzed by applying a modified 
Barnes interpolation scheme [5], [6]. 

When the method was developed at FMI, tests showed that 
it is crucial to have radar data at time steps of 5 minutes; 
otherwise the rapid development of precipitation systems is too 
large compared to the change of radar image by movements of 
the existing precipitation systems. European wide OPERA data 
is available only at steps of 15 minutes. For the area of Finland, 
the motion vectors from FMI’s operational nowcasting were 
archived for comparison purposes in case studies. 

The new motion vector analysis schema [7] is based on 
approach of optical flow, introduced by Proesmans et al. [8]. 
The novel, consistency-driven technique implemented in 
PNOWWA is based on the intuition that for a reliable estimate, 

the forward- and backward-computed motion vectors should 
have opposite directions. When this is not the case, there is 
likely to be growth or decay of precipitation or measurement 
artifacts. All of such phenomena make the motion estimation 
problem ill-defined, as the optical flow methods are based on 
the assumption that intensity of the tracked features is 
preserved. 

The new method aims at minimization of a cost function 
that penalizes intensity changes and motion inconsistencies. 
This leads to a set of coupled differential equations, for which 
we have implemented a numerical solver. The computations 
are done in multiple spatial scales in order to increase 
robustness to large advection velocities. An example motion 
field estimated with the method is shown in Figure 3. 

A key feature of the proposed approach is that it provides 
confidence estimates for motion vectors based on their 
consistency. The proposed method was compared to four state 
of the art optical flow methods and it showed to be more robust 
and to provide the most reliable confidence estimates. 

During testing for research demonstration campaign, it was 
noticed that the method was not yet suitable for extrapolative 
use without further development. Because of residual, non-
moving targets in radar composites, the method was not able to 
generate proper motion vectors either to these areas or the areas 
without precipitation. This issue was improved later on by 
introducing additional quality filters and thresholds to the input 
data. 

B. Approaches of probability forecasting 
The method by Andersson and Ivarsson [1] was used with 

60 degree movement uncertainty sector (Figure 1).  The sector 
in each airport is divided to sections corresponding to the 
movement of radar echoes during each 15 minute nowcast 
interval. The content of each section is analyzed to get the 
probability distribution of precipitation intensity. 

The number of pixels in each intensity class was divided by 
number of pixels in the entire section (assuming that each pixel 

 
Figure 1. Andersson and Ivarsson method. Colorful 60 degree sector 

illustrates the direction, from where radar echoes are moving towards the 
airport. Distribution of snow/dry in each segment represents probability of 

snowfall during one 15 minute timestep. 

 
Figure 2. RAVAKE method. Example of using vectors backwards to 

determine, which pixels will arrive to the airport (star) after 3 timesteps. The 
ellipse indicates uncertainty of the vector field: in this case the deterministic 
forecast would be “dry”, but there is a small probability that the radar echoes 
in the upper half of the ellipse arrive at the airport at the validation moment. 

 
Figure 3. Proesman method Motion field estimated from two radar reflectivity 

images, snowfall case Vantaa 12th January 2016. 

 
Seventh SESAR Innovation Days, 28th – 30th November 2017 

 

 

 
 

 

 

2



has equally large probability to arrive at the target point at the 
validity moment of the forecast).  

In the FMI operational method the smoothed motion vector 
field is used “backwards” step by step: first finding out where 
is the pixel which should be at airport in 15 minutes, then 
seeing where that pixel comes from etc. Distribution of pixels 
in an ellipse at the source point is used to estimate the 
uncertainty and hence converted to probability distribution. 
The dimensions of the ellipse come from quality indicator of 
the vector field (lower quality, larger ellipse), and pixels within 
the ellipse get a Gaussian weighing, the pixels in the center 
having the largest weight.   

The stochastic ensemble method can use any motion vector 
field as an input. It is the only method which assesses also the 
uncertainty due to growth and decay of the precipitation 
systems, not only the uncertainty in the motion field. 

It is known that forecast uncertainty increases with lead 
time, and predictability is proportional to spatial scale (i.e. 
small-scale features have shorter lifetime). In the stochastic 
ensemble method this is modeled by autoregressive process in 
each spatial scale. Unexplained variance is gradually replaced 
with spatially correlated noise field. 

Perturbations are added to the deterministic nowcast based 
on the motion field. 51 ensemble members are obtained by 
perturbing precipitation intensities and motion field. The 
ensemble mean represents the “most probable” precipitation 
intensity. The mean field becomes smoother when the forecast 
time increases: badly predictable scales are filtered out. The 
ensembles also yield probability distributions of precipitation 
intensities. At a given location, an empirical probability 
distribution for precipitation intensity can be constructed from 
the ensemble members.   

III. VERIFICATION AS CASE STUDIES 
These verification exercises are limited to comparing the 

nowcasts of radar reflectivity to observations of radar 
reflectivity. The research area was Southern Finland, and a 
period of 12 nowcasts at 5 min intervals were studied. Four 
cases were considered – radar images of all these are in Fig. 4: 

• Case W is widespread precipitation 1 Feb 2015  

• Case K was isolated snow showers 13 December 2015 
• Case L was lake effect snow 3 – 9 January 2016. 
• Case T was frontal precipitation 22 February 2017 

The parameters selected for assessing quality of probability 
forecasts are Brier score, CSI and ROC. These are described in 
detail at website of WWRP/WGNE Joint Working Group on 
Forecast Verification Research or in book by Jolliffe and 
Stephenson [9]. Brier score answers the question: What is the 
magnitude of the probability forecast errors? It measures the 
mean squared probability error. Brier score range 0 to 1, with 
perfect score being 0. Brier scores for all four cases as function 
of forecast length are shown in Fig. 5a. 

The Brier score can be decomposed into 3 additive 
components: Uncertainty, Reliability, and Resolution. The 
reliability term measures how close the forecast probabilities 
are to the true probabilities, given that forecast. For example, if 
we group all forecast instances where 80% chance of snowed 
was forecast, we get a perfect reliability only if it snowed 4 out 
of 5 times after such a forecast was issued. The resolution term 
measures how much the conditional probability given the 
different forecasts differs from the climatic average. The higher 
this term is the better. In the worst case, when the climatic 
probability is always forecast, the resolution is zero. In the best 
case, when the conditional probabilities are zero and one, the 
resolution is equal to the uncertainty. 

 
Figure 4. Radar images: from top left: Case W (1 Feb 2015), Case K (13 

December 2015) , Case L (9 January 2016), and Case T (22 February 2017). 

 
Figure 5. Brier score (left) and CSI (right). Case W (1 Feb 2015) in blue, Case K (13 December 2015) in red,  

Case L (9 January 2016)  in yellow, and Case T (22 February 2017) in green. 
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In this short verification set, widespread precipitation case 
W gets almost perfect scores, because high probabilities are 
forecasted and snow is almost always observed. The lake effect 
case gets worst scores. 

The Brier score includes comparison to climatology, which 
is not straightforward in comparing such disparate events. Our 
plan is to perform longer verification timeseries using Brier 
Skill Score, and the persistence as a reference forecast. 

A more common verifications score, critical success index 
CSI, was calculated assuming that probability over 50% means 
“yes”. The CSI measures, how well did the forecast "yes" 
events correspond to the observed "yes" events? CSI combines 
probability of detection and the false alarm rate. CSI score 
ranges from 0 to 1, with perfect score being 1. CSIs for all four 
cases as function of forecast length are shown in Fig. 5b. 

From the CSI scores we can see, as expected, that the 
predictability in case W (widespread precipitation) is high for 
all forecast lengths (because in whatever direction the snowfall 
area moves, it is still snowing everywhere), while for case K 
(scattered showers) the quality decreases rapidly. The frontal 
precipitation case T is nearly as good as W, and the lake effect 
case is somewhere between showers and the others.  

Relative operating characteristic ROC is presented by 
plotting hit rate (POD) vs false alarm rate (POFD), using a set 
of increasing probability thresholds (0.1, 0.2, 0.3, etc.) to make 
the yes/no decision. The area under the ROC curve is 
frequently used as a score. ROC answers the question: What is 
the ability of the forecast to discriminate between events and 
non-events? A perfect curve travels from bottom left to top left 
of diagram, then across to top right of diagram. Diagonal line 
indicates no skill. ROC curves for 60 minute forecasts are 
shown in Fig. 6. It is easy to see, how for widespread 
precipitation the probability of detection stays relatively high 
but also the false alarm rate is relatively high, while for the 
showers case false alarms are more rare. 

Longer verification periods and comparison of different 
nowcasting methods in the same situations are still to be 
calculated.  

IV. CONVERSION OF PARAMETERS 

A. Needs for conversions 
All the nowcasting methods produce probability 

distribution of radar reflectivity in dBZ. PNOWWA Survey 
indicated the parameters which are most useful for different 

           

           

Figure 6. ROC curves for 60 minute forecasts for cases W (top left; 1 Feb 2015), Case K (top right; 13 December 2015),  
Case L (bottom left; 9 January 2016), and Case T (bottom right; 22 February 2017). 
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activities at the airport.  

Several conversion equations are needed, using the 
reflectivity forecasts and a number of auxiliary data such as 
temperature and dewpoint, which are achieved from the 
METAR observations, TAF forecasts or HIRLAM numerical 
weather prediction model. 

These conversion equations were used to express the user-
defined parameters in radar reflectivity dBZ. The results, as 
used in the first scientific demo, are shown in tables 2 – 4.  

The microphysical properties of different types of 
snowflakes are different. Some of the differences are related to 
temperature: ice needles fall in very cold temperatures, large 
“monster snowflakes” in near-zero temperatures, while wet 
snow is observed in even warmer weather.  

To select the right dBZ thresholds, type of snow had to be 
determined. ICAO has defined the types of snow as follows 
[10] 

- Dry snow – can be blown if loose or compacted by 
hand, will fall apart again upon release. 

- Wet snow – can be compacted by hand and will stick 
together and tend to form a snowball. 

- Compacted snow – can be compressed into a solid 
mass that resists further compression and will hold 
together, or break up into lumps, if picked up. 

The most useful parameter to distinguish between snow and 
rain is the wet bulb temperature. Near 0°C of the wet-bulb 
temperature, both rain and snow are possible, and the 
probability of liquid rain increases with increasing wet bulb 
temperature. The image below (Fig. 7) shows the cumulative 
distribution of the non-zero rain-components as function of 
wet-bulb temperature, analyzed with a video-disdrometer 
Particle Imaging Package (PIP). As coarse analysis, it can be 
stated that until -0.45°C, snow can be treated as dry, with rain-
component being less than 10% in the CDF and over 1.9°C, it 
can be treated as rain as 90%  in CDF is considered to be 
composed of rain. In between wet snow values can be applied. 

As wet bulb temperature is not included in standard 
METAR airport observations, the snow type for PNOWWA 

demos was determined based on temperature and dewpoint, 
read from the METAR.  

The microphysical properties of different types of 
snowflakes were studied using the video-disdrometer Particle 
Imaging Package (PIP), OTT Pluvio2 weighing gauge and laser 
snow depth sensor (Jenoptik SM30). 

In Fig. 8 the snow ratio for every 15 minutes is plotted as 
function of wet-bulb temperature. The median value is 
computed for every half degree bin. There are only few 
observations of the cold snow events, and there are not enough 
data points to make any conclusions. The larger values such as 
40 even with temperatures close to 0°C are most likely because 
of the low precipitation rate, when resolution accuracy of 
Pluvio2 accumulation might be too coarse for computing the 
ratio. The mean value of snow ratio, 10.1, calculated between 
temperatures -4°C and -0.2°C, is selected to present the snow 
ratio in dry snow. The polynomial third-order fit is performed 
in between temperatures -0.2°C and 2°C to define the ratio in 
wet snow. Approximately it can be assumed to be 5.    

TABLE I.  THE DEPENDENCY BETWEEN VISIBILITY AND RADAR 
REFLECTIVITY 

Visibility dBZ for dry snow dBZ for wet snow 
<=600 >29.0 >29.0 
600-1500 24.5-29.0 23.5-29.0 
1500-3000 15.5-24.5 19.5-23.5 
>3000 <15.5 <19.5 

TABLE II.  THE DEPENDENCY BETWEEN LIQUID WATER EQUIVALENT 
AND RADAR REFLECTIVITY 

Liquid water 
equivalent mm/h 

dBZ for dry snow dBZ for wet snow 

>=4 >29.0 >29.0 
2-4 24.5-29.0 23.5-29.0 
0.4-2 15.5-24.5 19.5-23.5 
<0.4 <15.5 <19.5 

 
Figure 7. Cumulative distribution function of rain component of the 

precipitation rate higher than zero as a function of the wet-bulb temperatures. 

 
Figure 8. The 15 minute values of snow ratio for  95 snow cases, the median 

values calculated for every half degree bins of wet-bulb temperature between -
14°C - 4°C are depicted in bracket line and solid line show the mean value of 
snow ratio in temperature region of -4°C – (-0.2)°C and the fit describing the 

change of snow ratio as function of wet-bulb temperature. 
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TABLE III.  THE DEPENDENCY BETWEEN SNOW ACCUMULATION AND 
RADAR REFLECTIVITY 

Snow accumulation 
mm/15 min 

dBZ for dry snow dBZ for wet snow 

>10 >29.0 >29.0 
5-10 24.5-29.0 23.5-29.0 
1-5 15.5-24.5 19.5-23.5 
<1 <15.5 <19.5 

TABLE IV.  THE DEPENDENCY BETWEEN DE-ICING WEATHER INDEX AND 
RADAR REFLECTIVITY 

De-icing dBZ for dry snow dBZ for wet snow 
3 >24.5 >23.5 
2 15.5-24.5 19.5-23.5 
 

B. Visibility 
Both meteorological visibility and radar reflectivity are 

related to scattering properties of snowflakes: their size, type 
and amount. Still, using radar measurements for describing 
visibility in snowfall is a challenging task, mainly because of 
the strong dependence of extinction on microphysical 
parameters. For a given snowfall rate, the visibility has a large 
range of values, changing from a factor of 3 to 10 [11]. Particle 
size distribution has large effect on the relation between the 
radar reflectivity factor and the visibility. For example if the 
snow particle mass in the radar measurement volume stays the 
same, but though aggregation process the snow particles 
aggregate to snowflakes, the radar reflectivity increases 
strongly, but the visibility increases although the scattering 
cross-section enlarges [12], [13]. In her BSc thesis using 
measurements from Finland, Kaisa Ylinen found that the 
visibility of the same radar reflectivity factor was less than in 
the published  studies. It can be speculated that this is because 
the cases she studied were in very cold weather (-10 … -30°C), 
while many other researchers have mainly studied cases in 
near-zero temperatures, and the type of snowflakes is strongly 
connected to temperature [14]. 

Fig. 9 shows an example from visibility measurements at 
Munich airport using radar measurements with the DWD 
weather radar located at Isen about 30 to the South-East of the 
airport. It should be noted that the radar measurements are 
about 300 m above the airport and therefore not always 
represent the visibility observations at the surface. This might 
partly explain the large scatter, but a considerable part of the 
scatter is related to the large variability in size, density and 
shape of snowflakes. The parametrizations indicated in Fig. 9 
refer to Table 3 in [14].   

V. EFFECT OF MOUNTAINS 

A. Quantitative studies 
  When airflow approaches or comes over mountains, 

snowfall is more difficult to forecast than in other situations. 
The predictability is worse for all studied methods: 

extrapolation of radar images (which is the subject of 
PNOWWA), but also for TAF forecasts written by human 
forecasters, and for numerical weather prediction models.  

The quantitative effect of sea and orography was estimated 
using the nowcasting system developed for SESAR1, which 
was run on additional periods. The forecasted parameter is 
DIW, de-icing weather, which is an index getting values 0-3. 
For the comparison, DIW index is calculated in three ways: 

- DIWe - Extrapolating the movement of radar echoes 
using the method described by [1] 

- DIWT – from TAF forecasts 
- DIWm – from HIRLAM numerical weather prediction 

model forecasts 

The orographic effect was studied using the SESAR1 
methods at two airports: Rovaniemi EFRO and Oslo 
Gardemoen ENGM. 

Days were counted as orographic effect days if at 850 or at 
925 hPa (in the case of EFRO also 950 hPa was taken into 
account, as the terrain and height differences are rather low 
there) was from the sector (180° – 250°) in Rovaniemi and 
from (80° – 180°) in Oslo.  In most days the direction of the 
flow varies with time; the flow was considered coming from 
the valley when it remained in the sector at least two hours. 

In almost all the situations, the radar-based extrapolation 
method (DIWe) was slightly better than the others. Only in 
average of all cases for the 2 – 3 h period model forecasts 
outperformed the radar extrapolation. In orographic situations 
DIWe was best for the whole 3-hour period.  Fig. 10 shows the 
performance of DIWe for Rovaniemi and Oslo. If the flow is 
affected by mountains forecast quality is less than for all cases. 

B. Dynamical studies 
For the airports of Munich (EDDM) and Salzburg (LOWS) 

the effect of the Alps on the behavior of cold fronts 
approaching from northerly directions was investigated. It is 
observed that cold fronts can either be delayed when 
approaching the Alps, other systems cross the Alpine Foreland 

 

Figure 9. Visibility vs. reflectivity for Munich airport using Isen radar. Symbols 
indicate METAR snowfall intensities;  

fitting lines indicate different empirical relations [14]. 
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and the Alps without delay, and even acceleration can be 
observed for fronts passing along the Alpine Foreland (e.g. 
[15] or [16]). Delayed systems can generate long-lasting (up to 
a few days) continuous rain or snow fall events. Numerical 
weather forecast can forecast the behavior on a long term basis. 
However, nowcasting for a time horizon of one to three hours 
extrapolation techniques are more favorable because numerical 
models need some spin-up time. Radar-based extrapolation 
techniques will fail in case of non-linear propagation speed and 
direction due to delay or acceleration. 

22 cases from the winters (December - March) 2013-14, 
2014-15, 2015-16, and 2016-17 (April) were investigated 
where cold fronts did approach the Alps in the 
Munich/Salzburg region. To increase the number of samples 
both situations with rain and snowfall at ground were 
considered. In about half of the cases the fronts did pass the 
Alpine Foreland without noticeable delay (cf. Fig. 11), whereas 
the other cases showed considerable delay of the frontal motion 
leading to long lasting precipitation events (cf. Fig. 12). The 

duration of the events was between 8 and 46 hours.  

Fig. 13 shows the distribution of the events in relation to 
the approaching direction of the frontal systems. To find 
relations between flow and behavior the wind profile as 
measured by the radio sonde München-Oberschleißheim 
(located in the Alpine foreland about 50 km north of the Alps) 
was investigated (cf. Fig. 13). However, there is no clear 
relation between the propagation direction of the fronts and the 
wind direction at the 850 and 500 hPa level (about 1000 m 
above the Alpine Foreland and 2 km above the main ridge). 
This is mainly caused by the fact that during winter when the 
tropopause is low the Alps act as a major obstacle and cause a 
considerable distortion of the atmospheric flow. Especially 
during those conditions which were classified as up-slope or 
delay often low pressure systems develop in the Alpine region 
causing long-lasting precipitation and no more distinctive 
motion characteristics. It also should be considered that on the 
pre-frontal side the flow is parallel to the front, i.e. a front 
approaching from North-West will have south-westerly flow 

 
Figure 10. Summary showing the extrapolation performance in Oslo (red) and 

Rovaniemi (blue). 

 
Figure 13. Approaching direction of cold fronts in winter for the 

Munich/Salzburg region, Blue: total number of events; orange: number of 
events being delayed/blocked by the Alps. 

  

  
Figure 11. 3-hourly radar images of a frontal system passing South-Eastern 

Germany without major delay from 16 UTC on 19 until 00 UTC on 20 
December 2014. 

  

  

Figure 12. 3-hourly radar images of a frontal system passing South-Eastern 
Germany with delay and enhancement at the Alps from 22 UTC on 10 to 07 

UTC on 11 January 2015. 
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ahead of the front. A further investigation of propagation 
direction, motion vectors for those events, and wind field is 
ongoing. 

VI. CONCLUSIONS 
  The four case studies used for verification show, that the 

values of verification scores depend greatly on the weather 
situation. Hence, no conclusion can be drawn by comparing the 
skill of forecasts made during different time periods. Based on 
visual comparison of cases in different weather situations, the 
Proesmans method was found out to produce the most reliable 
motion fields.  However, the robustness of the method in cases 
of poor quality of input data (residual clutter) or missing data 
must be further improved. Verification of results with a 
statistically representing dataset remains to be made after the 
improvements have been implemented. 

The stochastic ensemble method is clearly our preferred 
solution for producing probabilistic nowcasts, as it is assessing 
more sources of uncertainty than the simpler methods. Work is 
needed to improve the computational performance and to 
define the hardware requirements to calculate the nowcasts for 
real-time service. 

Many of the methods for converting radar reflectivity to 
liquid water equivalent, snow depth and visibility introduced in 
the literature need such knowledge of microphysics which is 
not available operationally at the airports. We will continue 
following new scientific articles in the subject. 

VII. FUTURE WORK 
In this project, we have focused on radar-based methods 

due to their outstanding temporal resolution. In the possible 
follow-up projects, data fusion with other data sources such as 
numerical weather prediction should be considered, both to 

extend the valid time and widen the available weather 
parameters.  
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Figure 13. Wind direction for two levels (top row: 850 hPa; bottom row: 500 

hPa) for situations with up-slope/delay and passage (left column: up-
slope/delay; right column: passage) of 22 cold fronts events during winter. 

Labels (and colors) indicate the approaching direction of the frontal systems. 

 
Seventh SESAR Innovation Days, 28th – 30th November 2017 

 

 

 
 

 

 

8


	I. Introduction
	II. Nowcasting methods
	A. Motion of precipitation
	B. Approaches of probability forecasting

	III. Verification as case studies
	IV. Conversion of parameters
	A. Needs for conversions
	B. Visibility

	V. Effect of mountains
	A. Quantitative studies
	B. Dynamical studies

	VI. Conclusions
	VII. Future work
	Acknowledgment
	References




