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Abstract – A deep feedforward network has been used to predict 

the flight level with look ahead time up to six minutes for climbing 

flights. Representing features were developed which provide 

adequate flight characteristics. Mode S Enhanced Surveillance 

data from more than 400,000 real world flights were collected to 

calculate the feature vector. After supervised training of the 

network, the results for different prediction horizons will be 

presented.    
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I. INTRODUCTION

In Air Traffic Control, current and future operational 

concepts rely on the accurate prediction of the aircraft trajectory 

[1]. Controller Decision Support tools like Conflict Detection or 

Conflict Resolution tools require a good knowledge about the 

future position of an aircraft in lateral, vertical and longitudinal 

dimension. Of particular interest is the improvement of the 

vertical part of the trajectory, which seems to be one of the most 

challenging research questions because of the high bandwidth of 

vertical climb rates, speed development and the associated 

operational and technical uncertainty [2]. The prediction is 

already rather accurate in the lateral plane because aircraft 

follow their route with a high precision, defined by the Required 

Navigation Performance (RNP). 

A successful and more accurate vertical prediction would be 

highly advantageous for the Controller Assistance Tools 

(CATO), which provides conflict detection and resolution 

support for Air Traffic Controllers [3]. Since these tools do not 

use aircraft performance models like Base of Aircraft Data 

BADA [4], the predicted flight level is calculated as follows: 

Whenever two planes are foreseen to come closer than six 

Nautical Miles (NM) on the lateral axis, a vertical conflict 

calculation is kicked off. A prediction for the next six minutes 

(value derived from SESAR real time validations [5][28]) will 

allow the controller in lower airspace to successfully resolve 

potential conflicts in advance. 

For now, this is being done by simply taking the most recent 

rate of climb from the radar with a static buffer of ±500 feet per 

minute. This buffer is needed in order to take into account the 

vertical uncertainty and to obtain a good compromise between 

false and missed alarms [5]. However, this procedure necessarily 

results in a higher workload for controllers due to the likely 

increase in alarm rates. With more potential conflicts to resolve, 

their attention is constantly captured inducing stress and perhaps 

even mistrust in the system. To reduce false alarms while 

keeping the rate of missed conflicts reasonably low, a more 

accurate prediction would be beneficial. The miss rate or false 

negative rate cannot be quantified at this stage because it 

depends on the working methods of the Air Traffic Controller.  

The focus of this work lies in predicting an aircraft’s altitude 

immediately after Take Off up to Flight Level 285 (1FL = 100ft) 

after its initial climb by making use of machine learning methods 

with supervised learning in form of a deep feedforward neural 

network. 

In the past, many research activities regarding trajectory 

prediction (TP) rely on parametric models where typical aircraft 

characteristics are derived from the EUROCONTROL BADA 

model [4]. [6] provides an extensive overview of TP research 

studies. The majority uses a point-mass model with the problem 

of estimating the a priori not known input data, e.g. Take Off 

weight. Another unknown is the operational environment of the 

flight, which may impose other constraints that heavily impact 

the performance of the aircraft [7].  

Current research tries to overcome part of these problems by 

applying machine learning techniques to estimate some of the 

most important parameters, e.g. the Calibrated Airspeed [8] or 

the aircraft mass at Take Off [9]. By training a network with the 

observed trajectory data, the BADA parameters could be 

adjusted accordingly and the future altitude could be predicted 

with a significantly reduced root mean square error. In [10], a 

hybrid system based on BADA has been developed in an online 

context where known altitudes were used to fit the model 

parameters and to predict the remaining part of the trajectory for 

the climbing phase. This paper again confirms the need to use 

aircraft derived data to feed the BADA model. 

Non-parametric approaches are less frequent because in 

general they require a huge amount of input data for sufficient 

training. In [11], a single hidden layer feed forward network was 

trained with a relatively small set of trajectories. It has been 

trained for a selected aircraft type and already demonstrates the 
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potential of these networks. Other approaches [12] use genetic 

programming in order to learn the structure of the variables of a 

linear regression. Disadvantage of the non-parametric trajectory 

prediction is the difficulty to generalize the model once it has 

been trained, and, as mentioned before, the required data base.  

In this paper, the main contribution stems from the fact that 

recorded data from real operations for more than three months 

with hundred thousands of flights from all major German 

airports were available. They were used for selecting features, 

training and validation of a neural network in order to predict the 

flight level of the next six (configurable parameter) minutes. The 

advantage with this approach is the good generalization because 

the results are not constrained to a specific aircraft type or 

operational ATC/airport environment. It is assumed that the 

Feedforward network is able to ‘learn’ and differentiate the 

operational environments. 

After a general introduction to neural networks, the chosen 

feature vectors for the Machine Learning approach as well as 

their extraction from the available Mode S data will be 

explained. Section IV provides some feature statistics and first 

results on a large data set. The outlook includes some ideas how 

to combine this approach with other machine learning 

techniques. 

II. NEURAL NETWORKS

A. Brief Introduction

In general, three different ways of Machine Learning can be

distinguished: supervised learning, unsupervised learning and 

reinforcement learning. A thorough introduction to the subject 

can be found in [13]. 

The main objective for supervised learning, which is 

supposed to be applied for this trajectory prediction task, is to 

train a model with labeled training data. This trained model 

allows to make predictions of future yet unknown input data. 

The training data are often called ‘features’ 𝑥 of an observed 

phenomenon (the explanatory variables) while the output data 

are called ‘labels’ 𝑦. We assume that there exists a relation 𝑦 =
𝑓(𝑥) between 𝑥 and a target variable 𝑦. In general, a model ℎ is 

learned with examples of the outputs (𝑦0, … , 𝑦𝑁) associated

with the inputs  (𝑥0, … , 𝑥𝑁), approximating 𝑓. A performance

measure 𝑃 will be applied to measure the abilities of the machine 

learning algorithm. 

Supervised learning itself can be broadly divided into two 

different main categories: classification and regression. In 

classification tasks, the output 𝑦 belongs to a category or group. 

For example, we could forecast the aircraft type given certain 

input trajectories to train a network. In regression tasks, 𝑦 is a 

variable with a ‘real’ numerical value or a vector of values. In 

our problem, we will use regression techniques to forecast the 

flight level in up to six   minutes, expressed as a numerical value, 

e.g. FL326.

Unsupervised learning is used to discover structures in big

data sets and to extract useful information without knowing the 

corresponding output 𝑦 like in supervised learning. 

Unsupervised learning problems can be further divided into 

association and clustering problems. An association rule 

learning problem is where you want to discover rules that 

describe large portions of your data. A clustering problem is 

where you want to discover the inherent groupings in the data. 

In Air Traffic Control, for example, it could be interesting to 

group aircraft with similar performance without knowing certain 

parameters like the Cost Index or the Take Off weight. 

In Reinforcement Learning, a computer program will 

interact with a dynamic environment in which it must perform a 

particular goal (such as playing a game with an opponent or 

driving a car). The program is provided with feedback in terms 

of rewards and punishments as it navigates through its problem 

space. Being exposed to this environment of continuous training, 

the machine learns to make specific decisions with the aid of its 

algorithm. For example, an Arrival Manager could learn to turn 

and space the aircraft with minimum separation while receiving 

feedback in terms of the number of landings per hour (the more 

the better) in relation to other parameters. 

B. Feedforward Netwok

Figure 1 shows a feedforward network with one input layer 𝒙,

two hidden layers 𝒉𝑖 , 𝒉𝑗  and one output layer 𝒉𝑙 .

Figure 1. Schematic diagram of a feedforward network 

The feedforward network defines the mapping of the 

supervised target 𝒚 = ℎ(𝒙; 𝜽) and learns the value of the 

parameters 𝜃 that result in the best function approximation. 𝜽 

may consist of weights 𝑤 and a bias 𝑏. In this example, layer 𝑗 

computes an output vector 𝒉𝒋 using the output 𝒉𝒊 of the previous 
layer, starting with the input 𝒙 =  𝒉𝟎. Thus:

𝒉𝒋 =  𝜎(𝒃𝒋 +  𝑊𝑗𝒉𝒊)  (1) 

with 𝑊𝑗 as a matrix of weights and 𝜎 as the in general non-

linear activation function. The rectified activation function is the 

default function recommended for use with most feedforward 

neural networks [13]: 

𝜎(𝑢) = {
0, 𝑢 < 0
𝑢, 𝑢 ≥ 0

(2)
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The goal is to minimize the cost function or the loss of our 

model. In most cases, our parametric model defines a 

distribution 𝑝(𝒚|𝒙; 𝜽) and we can use the principle of maximum 

likelihood, i.e. we use − log 𝑝(𝒚|𝒙; 𝜽) as cost function. Other 

cost functions can be used as well, e.g. predicting the median 

value of 𝒚 for each 𝒙 (mean absolute error). In optimizing the 

cost function, it is expected that the chosen performance 

measure 𝑃 is optimized as well. 

In general, the hidden layers (𝑖, 𝑗, see Figure 1) in a well 

trained neural network form a “good” representation of the data, 

which helps to make good predictions. Multiple layer neural 

networks with deep architectures are more difficult to train than 

those with shallow architectures [14]. With random 

initialization, the layers closer to the input layer are poorly 

trained. Much better results can e.g. be achieved with 

unsupervised pre-training. It is anyway a big challenge to 

optimize all hyperparameters of a deep feedforward network. 

III. DATA SET AND USED FEATURES

We have restricted the input data to easily available radar 

data that could be obtained from the vast majority of aircraft. 

Since there is a Mode EHS mandate in Germany since March 

2005 for all aircraft with a maximum take off mass in excess of 

5.7 tons [15], [16], the current equipage rate for IFR flights is 

more than 98% in Germany (according to DFS internal statistics 

from 2017, Lage- und Informationszentrum). 

It is essential that the raw input data are pre-processed in 

order to obtain a representative feature vector 𝒙 ∈  𝑹𝒏. A well

chosen set of features can greatly enhance the predictive 

capabilities of the chosen machine learning model. For this 

reason, we have put some effort in defining and preprocessing 

the raw input data in order to obtain features that are well suited 

for this task. 

A. Extraction and Decoding of Mode-S EHS

Selected Mode S Enhanced Surveillance Data (EHS) were

collected in spring and summer 2018 in order to extract the 

required information for data preparation. Seven radar stations 

all over Germany were considered: 

 Frankfurt South FFS/ASR

 München South MUS/ASR

 Düsseldorf DUS/ASR

 Nordholz NHZ/SREM

 Tegel TGL/ASR

 Auersberg AUB/SREM

 Gosheim GOS/SREM.

ASR: Airport Surface Radar 

SREM: Surveillance Radar Equipment Medium-Range 

The date and time are converted into a timestamp and the 

CAT48 Item 250 Mode-S Enhanced Surveillance (Mode-S 

EHS) data were decoded [17]. The Mode-S EHS data contain 

the Comm-B Data Selector (BDS) number with the available 

register. Further details of the BDS register can be obtained from 

[18]. Selected were: 

1. BDS 4.0 - Selected Vertical Intention

2. BDS 5.0 - Track and Turn Report

3. BDS 6.0 - Heading and Speed Report

The flight example in Figure 2 shows the different extracted 

parameters and how they evolve over time. The IAS restriction 

of 250 knots (red line) below FL100 at about 200 seconds can 

be seen. After that, the acceleration takes place with the typical 

drop in the vertical rate (orange line). Then, the IAS remains 

constant until the change to Mach at ≈ 780 seconds. The Flight 

Control Unit (FCU) Selected Altitude (blue line) reflects the 

current clearance. The figure also shows a typical initial peak in 

the climb rate shortly after take off (≈ 3000 feet/minute). 

The two vertical bars mark the prediction interval: the 

earliest predictions are made 60 seconds after take-off while the 

latest predictions are made not later than Flight Level 220. The 

main reason for this choice is to avoid making forecasts, once 

the aircraft has been leveled off. 

Figure 2. Example of obtained Mode S flight data 

B. Data Cleansing

Being interested in making predictions for climbing flights,

a flight was defined to be “climbing” whenever the recorded data 

fulfills: 

𝑚𝑖𝑛𝑡  {𝐹𝐿(𝑡)} < 20, 𝑚𝑎𝑥𝑡  {𝐹𝐿(𝑡)} > 285  and 

𝑎𝑟𝑔𝑚𝑖𝑛𝑡  {𝐹𝐿(𝑡)} <  𝑎𝑟𝑔𝑚𝑎𝑥𝑡  {𝐹𝐿(𝑡)}  (3) 

The data are filtered such that these conditions hold true. In 

addition, all datasets for which no time stamp was available were 

dropped since no information can be gained from these. 

Unavailable call signs were replaced by a numeric ID. A 

posteriori, it was observed that a few data sets contained a call 
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sign of question marks or blank spaces. These flights were also 

discarded. 

Furthermore, the radar stations were not always capable of 

capturing all data so that we had to deal with incomplete 

datasets. We used the benefits of the Python numpy library [19] 

as well as interpolation techniques for this purpose. In total, 

more than 400.000 climbing flights all over Germany were 

extracted using this cleansing method. 

C. Feature Extraction

In order to determine which features are predictive for the

dynamics of the climbing phase, information from multiple 

sources were gathered, including the knowledge of controllers, 

pilots and Airbus employees, statistics of the given datasets, and 

a full flight simulator study. All features are calculated using the 

Mode S EHS data and the aircraft type. 

The motivation for the chosen features was to keep the 

Machine Learning network relatively small with fewer layers 

and less neurons per layer, compared to an unfiltered set of 

features with less predictive characteristics. The training is also 

expected to be faster and more efficient.  

Ultimately, the following features have been selected: 

a) Take Off Safety Speed V2 (𝑥0)

We want to get an approximation of the V2 take off safety

speed, which is the minimal speed an airplane needs to climb to 

the first safe altitude with one engine inoperative. Typically, all 

engines will be used, so usually the aircraft will fly with 𝑉2 + 10
knots. This speed will be reached shortly after takeoff (see Figure 

3). When the acceleration altitude between 1000-2000 feet above 

ground is reached, the aircraft will accelerate to the next 

maximum allowed airspeed. 

Figure 3. Take Off safety speed V2 at 0 seconds (red dot at IAS)

The data suggested to use the first finite entry of the IAS, 

where the flight level is less than 1000ft for mimicking the V2. 

Thus, the feature was set to be 

𝑉2 ≔ 𝐼𝐴𝑆(𝑡𝑥) 𝑤𝑖𝑡ℎ 𝑡𝑥 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐹𝐿(𝑡𝑥)  ≤ 1000     (4)

As the V2 speed is related to aircraft-specific parameters such 

as weight, temperature, and wind, it is expected to gain some 

information about aircraft performance characteristics. It varies 

considerably across aircraft types [20][21]. 

b) Average and Actual Rate of Climb (𝑥1, 𝑥2)

This feature describes the average and actual value of the rate 

of climb (ROC) over time. From the data, three different rates of 

climb were extracted: the inertial vertical velocity, the 

barometric altitude rate and the rate of climb calculated from the 

flight level and time. Since numeric differentiation is noisy and 

may lead to huge errors, data from Mode-S were used. Due to 

the measurement method, the inertial vertical velocity is more 

accurate than the barometric altitude rate. For all features, the 

inertial ROC is used if more than 80% of the data points are 

available, and the one with more available data points in any 

other case. 

c) ROC Peak below 2800ft (𝑥3)

Controllers observed that during the initial climb phase,

there is a vertical speed peak immediately after takeoff, which - 

to a certain degree - seems to correspond with the rate of climb 

after FL100 when the IAS becomes constant. Indeed, a moderate 

correlation of this peak and the average rate of climb between 

FL100 and FL285 exists (correlation coefficient r = 0.40). 

The peak might be typical for the performance of different 

aircraft types and could give a hint to the energy share factor 

used depending on the cost index of a particular flight. The 

maximum climb rate value below 2800ft was used as a value for 

this peak for our feature vector: 

𝑥3  ∶= max{𝑅𝑂𝐶(𝑡)  | 𝐹𝐿(𝑡) < 2800}   (5) 

The value of 2800ft was chosen, but could be replaced by 

other altitudes in this range. It is important to include the 

characteristic peak, but not any other peaks that might occur later 

in time due to the acceleration phase. 

d) Wind below FL285 (𝑥4, 𝑥5)

The wind component in flight direction influences the 

aircrafts performance during climb as well . The average wind 

in flight direction is calculated from the ground speed (GS), the 

true air speed (TAS), the true track angle as well as the magnetic 

heading ℎ. The heading has to be adjusted to the geographic/true 

heading ℎ𝑡𝑟𝑢𝑒 by adding the angle between magnetic north and

geographic north for Germany (𝑉𝐴𝑅). 

ℎ𝑡𝑟𝑢𝑒 = ℎ(𝑡) + 𝑉𝐴𝑅   (6) 

For the sake of simplicity, a constant declination of 𝑉𝐴𝑅 =
2.0 degree is assumed. Compared to other errors and the 

resolution of the BDS register, this assumption may be 

justifiable. The wind components in flight direction are binary 

coded (0: tailwind, 1: headwind). A second bit indicates the wind 

strength above a certain threshold. This threshold has been set to 
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40 knots. Only some wind data are actually finite since there are 

missing data sets involved in the calculations. The main cause 

of this problem is the sparse availability of the BDS 5.0 register. 

The selected radars (except München) receive this register only 

every 10th antenna revelation. 

e) Heading Change Flag (𝑥6)

It is assumed that the influence of our wind feature (x4, x5)

would be less predictive if the aircraft makes bigger turns. 

Therefore, we include a feature of heading changes, which is the 

accumulation of observed heading changes. A flag is used to 

indicate whether these changes are above a certain threshold. 

Currently, this threshold has been set to 160 degree. 

f) Altitude Restriction Flag (𝑥7)

Especially below FL100, the aircraft is restricted in its climb

rate by the Flight Control Unit (FCU) or Control and Display 

Unit (CDU) settings because of the trade-off between 

acceleration to constant CAS and vertical rate. We assume that 

restrictions will not change very much the average climb rate, 

but that there might be some deviations arising due to 

restrictions like level-off clearances.  

Therefore, a Boolean flag was set, which is true, if the 

aircraft comes closer than a certain threshold to the FCU selected 

altitude. It is assumed that this impacts the average climb rate 

although we have observed that aircraft tend to compensate this 

level-off period by higher climb rates later on (of course, within 

the limits of aircraft performance envelopes). 

𝑥7  ∶=  {
0, 𝑖𝑓 ∃ 𝑡: 𝐹𝐶𝑈(𝑡) − 100 ∗ 𝐹𝐿(𝑡) ≤  𝜔 

1,         𝑒𝑙𝑠𝑒      
 (7) 

After discussion with Air Traffic Controller,  := 1400 [feet] 

was chosen.  

g) Time since FL100 (𝑥8)

Furthermore, the time that passed since Take Off (in

seconds) was included. The work of Maximilian Beierl [22] has 

shown, that climb rates can well be fit by an exponential model 

after FL100 with 𝑅𝑂𝐶(𝑡) = 𝑎 ∗ 𝑒−𝑏𝑡. It might be useful for the

network to include the following feature: 

𝑥8 = 𝑡 − 𝑡100 where 𝐹𝐿𝑡100 = 100  (8) 

h) Last FL (𝑥9 𝑡𝑜 𝑥13)

To provide a history and the development over time of the

flight level, five features were included: 

 FL 60s ago … FL 0s ago (actual FL).

To obtain these values, the FL needs to be interpolated to 

estimate the values if they were missing at these particular times. 

Calculations of the linear interpolation include all previous flight 

levels since 60 seconds ago. 

i) Last IAS (𝑥14 𝑡𝑜 𝑥18)

For the same reason, an interpolation of the IAS at the above

mentioned times is also included: 

 IAS 60s ago … IAS 0s ago (actual IAS).

If the aircraft is not yet flying with constant IAS, this feature 

may well describe the acceleration (or in general: the change) of 

the speed. 

j) Aircraft Type (𝑥19)

The aircraft type has been added as a separate feature since

this study was carried out with all aircraft types. 

Figure 4. Most frequent aircraft types 

. In summary, more than 120 different types, ranging from 

business jet to military aircraft, have been observed Figure 

4 shows the ten most frequently collected aircraft types. The 

types have been encoded using a) label encoding and b) 

one hot encoding. In both cases, no significant difference in 

the overall results could be observed. 

IV. FEATURE STATISTICS

In order to check whether the extraction yield 

reasonable features, the distribution of the features for all 

flights was analysed. Figure 5 to Figure 7 show the 

distribution for some selected features.  

A. Distributions

The altitude restriction flag (Figure 5) indicates that more than

2 3⁄  of all aircraft could climb without restriction in the sense 

that the difference between FCU Selected Flight Level and 

actual Flight Level is always more than 1400 feet. 

The average rate of climb (Figure 6) can be fitted with a 

Gaussian distribution. We observed a mean of about 2216 feet 

per minute (fpm) and a standard deviation of 438 fpm. The 

distribution of IAS (Figure 7) interestingly shows two 

characteristic peaks. This may be due to 250 knots restriction 
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below FL100 and due to the constant airspeed regime, which 

aircraft apply after the acceleration phase during climb. In the 

future, one could perhaps come up with different criteria or 

additional clustering methods in order to sort aircraft into 

different performance groups, e.g. according to aircraft types.  

Figure 5. Altitude restriction flag 

Figure 6. Average Rate of Climb (ROC) assuming a normal distribution 

Figure 7. Distribution of current IAS 

B. Label Creation, Splitting and Scaling

The aim is to predict the flight level of the aircraft for the

next six minutes (360s) as this is the currently configured look 

ahead time for CATO conflict detection. It was decided to label 

each feature vector with a four-dimensional vector containing 

the FL values in 

𝑛 ∗ 90  𝑠𝑒𝑐𝑜𝑛𝑑𝑠  | 𝑛 = {1,2,3,4}  (9) 

Again, to obtain these values, an interpolation of the flight 

level had to be used. Due to performance considerations, the 

network was trained separately for each FL prediction horizon. 

For each flight, random indices were chosen and the feature 

vector as well as the corresponding labels were created for each 

index (only the data up to this index are provided, as it will be 

the case in future applications). In total, close to 400.000 features 

and label were generated leading to a feature vector of shape 

𝑿(397.242, 20). The data were randomly split with shuffling 

into 80% training data and 20% test data. 

In a second step, we standardized the features and labels by 

removing the mean and scaled them to unit variance. Centering 

and scaling happen independently on each feature by computing 

the relevant statistics on the samples. Standardization of a 

dataset is a common requirement for many estimators: they 

might behave badly if the individual feature do not look like 

standard normally distributed data. If a feature has a variance 

that is orders of magnitude larger than others, it might dominate 

the objective function and make the estimator unable to learn 

from other features correctly as expected [23]. 

V. MACHINE LEARNING RESULTS

The neural network has been developed with Keras, a well 

known deep learning library, together with tensorflow [24][25]. 

These open source software libraries support flexible machine 

learning architectures and allow computation across a variety of 

platforms including Graphic Processor Units (GPU). 

The obtained results were achieved with a network of six 

hidden layers while each layer contains a different number of 

nodes in descending order with one node for the output layer. 

The rectified linear unit has been chosen as activation (3) for 

each layer. Different optimizers were tested (ADAM, Adadelta, 

stochastic gradient descent SGD, refer to [26] for an overview) 

but no significant differences in convergence could be observed. 

Figure 8 shows an example of the learning curve for training and 

validation (test) data with SGD.  
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Figure 8. Training and validation loss

While the model fit with the training data further improves 

with the number of epochs, the loss of the test data seems to 

improve only quite slowly. Further evaluations with the 

number of layers and neurons per layer may lead to smaller 

gaps between training and test data and thus a better bias-

variance trade-off. For assessment of the model performance, a 

𝑘-fold cross validation (𝐶𝑉) has been used. This approach 

involves randomly dividing the set of observations into 𝑘 

groups, or folds, of approximately equal size. The first fold is 

treated as a validation set, and the method is fit on the 

remaining 𝑘 − 1 folds. The scorer function (𝑆𝐹 e.g. mean 

squared error) is then computed and the procedure is repeated 

𝑘 times.  
𝐶𝑉 =  

1

𝑘
 ∑ 𝑆𝐹𝑖

𝑘
𝑖=1  (10) 

The 𝑅2 statistic provides a measure of fit. It measures the

proportion of variability in 𝑌 that can be explained using 𝑋. An 

𝑅2 statistic that is close to 1 indicates that a large proportion of

the variability in the response has been explained by the 

regression [27]. For 𝑘 = 8 and using the 𝑅2 statistic as scorer

function, the resulting mean score and standard deviation is 

0.922 ± 0.002 (360 seconds prediction horizon). 

After training of the network with the training data set, the 

output predictions are generated with the previously splitted test 

data. We can now compare the predicted flight level with the 

features (i.e. the ‘true’ flight level) and perform an evaluation 

with the mean and standard deviation of the error between 

prediction and test data. Figure 9 shows the resulting distributions 

for 360 seconds prediction horizon. At first glance, there seems 

to be a good match although the network seems to predict higher 

levels in the first segment. This can probably be explained with 

the acceleration phase of the aircraft at the beginning of the flight 

that results in a significant drop of the climb rate. It seems that 

this drop in climb rate is not taken into account to full extent. 

Figure 9. Distribution of predicted flight level (test data)  

TABLE I. provides for different prediction times the 

obtained 𝑅2score, the mean absolute error and the standard 
deviation of the error, considering the absolute difference 

between network predicted flight level and the measured flight 

level. The number in brackets indicate the values training the 

network only with A320 aircraft (and suppressing feature 𝑥19 
Aircraft type). 

As expected, all metrics improve with a shorter prediction 

horizon. With the chosen network architecture, there is only a 

minor difference between the training and the test data, which 

indicates no problems with overfitting. Assuming a standard 

vertical separation of 1000 feet or 10 FL, we observe a mean 

error of about 8 FL for a prediction horizon of six minutes. 

This means that the mean error is less than the vertical 

separation standard. The standard deviation reflects the 

uncertainty, to some extent caused by human (controller and 

pilot) intervention. If the Managed Mode flag in the Mode S 

EHS could be made available, the standard deviation could 

possibly be decreased. Up to now, only few modern aircraft 

(e.g. B787, A350) transmit this flag. 

TABLE I.  PREDICTION METRICS ALL FLIGHTS (A320) 

Metric 
Prediction Time 360 seconds 

Test Data Train Data 

R2 score 0.922 (0.931) 0.931 (0.942) 

Mean error 8.14 (7.58) FL 7.63 (6.78) FL 

Std. Dev. error 7.21 (6.84) FL 7.04 (6.56) FL 

Metric 
Prediction Time 270 seconds 

Test Data Train Data 

R2 score 0.953 (0.956) 0.959 (0.963) 

Mean error 7.01 (6.68) FL 6.49 (6.02) FL 

Std. Dev. error 6.49 (6.30) FL 6.27 (6.01) FL 

Metric 
Prediction Time 180 seconds 

Test Data Train Data 

R2 score 0.975 (0.978) 0.978 (0.981) 
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Metric 
Prediction Time 180 seconds 

Test Data Train Data 

Mean error 5.35 (5.13) FL 4.95 (4.53) FL 

Std. Dev. error 5.32 (5.16) FL 5.13 (4.85) FL 

The results for a single selected aircraft type (here: A320) 

are slightly better than for all aircraft types together. This may 

be due to less variance in the performance parameters although 

we had less training (77.000) and test (19.000) data available. 

With a perfectly trained network and One Hot encoding for the 

aircraft type, we could finally expect the same mean error. 

VI. CONCLUSION AND FUTURE WORK

The obtained results show that the mean error for the flight 

level prediction horizon of up to six minutes is much better than 

the currently chosen static buffer in CATO of ±500 feet per 

minute, which results in ±30 FL in six minutes. Given the high 

operational and also technical uncertainty in climb behavior of 

aircraft, the results seem to be promising. The cross validation 

with the high number of training and test data confirms the 

validity of the results, without any limitations with regard to the 

aircraft type. The developed features describe the general climb 

behavior and allow to train the neural network, obtaining in all 

cases statistical 𝑅2scores above 0.9. The authors conclude that

this approach allows to reduce the uncertainty buffers for 

Decision Support Tools in the climb phase, which is the most 

challenging part of a flight in terms of trajectory predictions. 

Future work should extend this neural network to look ahead 

not only 6 minutes but e.g. in 30 seconds intervals. The number 

of layers and neurons could also be increased to improve the 

overall performance. Regularization like Early Stopping or 

Dropout may also enhance the results and prevent overfitting. 

Additional benefit would be to include the controller vertical rate 

clearances, which reflects the human intervention. These 

clearances could be made available via the ATM system, Data 

Link or Voice Recognition. The feature importance should be 

studied with the objective to reduce the number of features, e.g. 

with Sequential Backward Selection algorithm. It is also 

envisaged to cluster the aircraft types with similar performance 

according to their climb behavior, which reduces the size of the 

respective feature vector. The authors also believe that a 

combination of this neural network with recurrent neural 

networks like Long Short-Term Memory (LSTM) sequence 

models will further improve the performance because the 

dynamics of the early aircraft acceleration phase could be taken 

into account for the later climb behavior. 
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