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Abstract—This paper describes a methodology to estimate the
peak threshold of the occupancy count metric by using machine
learning techniques on operational sector geometry and traffic
flow data. We propose a clustering approach to identify the
traffic flows crossing a sector from a sample of trajectories
representative of the periods when the sector is operationally
deployed. A dataset for the Bordeaux Area Control Center (ACC)
is built from metrics computed on the traffic flows and sector
geometry (e.g. number of crossing flows, sector volumes) and used
to train a model able to predict the peak value. The model can be
used to estimate the initial peaks for new designed sectors as well
as to help assess the validity of the current values for the existing
operational sectors. Even though the results are accurate for
Bordeaux ACC, the applicability of the method to different ACC
or its adaptation to estimate other capacity metrics’ thresholds
should be further investigated.

Index Terms—Sector capacity, traffic flows, traffic complexity,
machine learning, trajectory clustering, DBSCAN, random forest

I. INTRODUCTION

An Area Control Centre (ACC) provides Air Traffic Control
(ATC) services to the airspace under its jurisdiction. The ACC
airspace is made up of a set of elementary sectors some of
which can be combined together into control sectors. A sector
configuration is the set of sectors deployed within a certain
time period according to the daily Sector Configuration Plan
(SCP) established by the Flow Management Position (FMP).
Each deployed sector in a sector configuration is tactically
operated by a controller team and monitored by the FMP to
ensure that the traffic demand can be effectively managed by
the controllers.

The FMP can use several tactical indicators or metrics for
monitoring the traffic load in a sector, such as the Entry Count
(EC) or the Occupancy Count (OCC) [1]. In order to properly
represent the use of the capacity in a sector, these metrics have
a number of associated parameters and thresholds to be fine-
tuned. These thresholds are currently estimated based on the
judgement and experience of the FMP and can be regularly
adjusted to take into account the feedback of the controllers
as well as to adapt to any relevant operational change.

The OCC is a tactical indicator calculated at each defined
time step (usually every minute) as the number of flights inside
a sector during a period of time called OCC count duration.
If the OCC is higher than the defined peak threshold, the
FMP will consider taking some Demand and Capacity Bal-
ance (DCB) measures in order to resolve the traffic overload
situation, e.g. creating a regulation or splitting the sector into

two. In order to avoid unnecessary and costly DCB actions, the
peak thresholds should be determined according to the volume
of traffic that can be effectively managed by the controller
teams in the corresponding sectors.

For instance, Figure 1 shows an example of the OCC time
series for sector X4 in Bordeaux ACC, with the peak threshold
set to 20 by the operational teams (horizontal red line). We can
observe a traffic overload situation between about 10:30 and
11:10 requiring DCB action. As X4 is an elementary sector
which can’t be split, a cherry-picking measure to keep some
flights in sector X3 (below X4) or regulation may be needed,
inducing delays and costs for the airspace users.

On the other hand, with the SESAR Dynamic Airspace
Configuration (DAC) concept [2], it is expected that a wider
range of sector geometries will be designed to generate addi-
tional and more modular sector configurations, which will be
deployed in a further dynamic and flexible way in reaction
to changes in the traffic demand, weather and controller
workload. This creates the need for support tools to determine
the capacity thresholds such as the OCC peak for the new
sector designs.

This paper presents an approach based on Machine Learning
(ML) techniques to automatically estimate the OCC peak
threshold for either a new sector or an existing sector for
which we want to assess the validity of the existing peak
value. Even though the methodology described here is applied
to the specific case of the OCC peak estimation, it should
be possible to adapt it to similarly determine other traffic
monitoring values, e.g. Hourly Rate for the EC or the Sustain
Value for the OCC (see definitions at [1]).

The dataset for the ML process consists of a set of geometric

Figure 1. Occupancy values for sector LFBBX4 with the peak threshold
represented by the red line.
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and traffic complexity features computed on the existing
sectors along with the OCC peak values determined by the
FMP. In order to select the relevant geometric features, we
have considered some of the variables used in the analytical
model developed in [3] to assess sector capacity. As for the
traffic complexity metrics, we have found relevant the research
in [4], where the authors propose a list of traffic complexity
metrics based on a set of identified sector flow patterns.

A traffic flow can be defined as a group of similar trajecto-
ries, where the notion of similarity can be based on either some
operational criteria (e.g. flights concerning a specific city-
pair) or distance metric between trajectories when clustering
techniques are used to automatically identify them.

We believe like the authors in [5] that complexity metrics
based on traffic flows could be a better way to account for
traffic complexity than metrics such as the dynamic density
[6], which are instead based on instantaneous measures of
individual aircraft positions and intent. Firstly, flow patterns
are more robust to traffic uncertainties because of their aggre-
gated nature and higher-level view of traffic characteristics.
Secondly, flows provide a more natural representation of
the mental picture of the operational teams when assessing
complexity, which is useful for model validation.

Therefore, we have developed a specific algorithm to iden-
tify the sector traffic flows from the set of trajectories crossing
the sector when operationally deployed, which can be deter-
mined by exploiting the dataset of historical SCP. Based on
previous methods to determine traffic flows from trajectories
by using clustering techniques [7] [8] [9], our algorithm is
designed to be relatively simple to use as it does not require
the definition of specific parameters per sector.

We describe here the application of our methodology to
the Bordeaux ACC, but we believe the generalisation to
any other ACC should be possible. However, this should be
further investigated as should the feasibility of combining
data from multiple ACC into a single dataset by considering
the specificities of the operational enviroments of each ACC.
When the study is limited to a single ACC, the small amount
of sectors available for the training of the OCC peak model is
a real challenge. Fortunately, research in the area of ML with
small data exists in the clinical/biomedical domain [10] that
can be applied to our case.

This paper is organized as follows. Section II describes the
Bordeaux ACC scenario and associated datasets. Section III
presents the methodology including the clustering algorithm
to identify the sector traffic flows as well as the selection of
the relevant sector features. A ML model is then introduced
to estimate the OCC peak value from geometrical and traffic
flow features. Section IV presents the results obtained from
the Bordeaux ACC operational data. Finally, section V sum-
marizes the main achievements and limitations and identifies
some ideas for future work.

II. SCENARIO AND DATASETS

The scenario used in this study is illustrated in Figure 2.
Figure 2a shows the horizontal and vertical split of Bordeaux

ACC in terms of elementary sectors whereas in Figure 2b an
example of a sector configuration is presented.

(a) Elementary sectors

(b) Sector configuration

(c) SCP

(d) Traffic

Figure 2. On the left, the Bordeaux ACC elementary sectors and an example
of a sector configuration. On the right, an example of a daily SCP and the
traffic between July 13th and 19th 2017 in blue (resp. in red) southward (resp.
northward) trajectories.

Sector data (AIRAC 17111) including geometry and OCC
peak values as well as the SCP datasets were provided by the
Bordeaux operational team. In total, we have a dataset of 75
sectors with OCC peaks ranging from 16 to 30.

We downloaded the trajectories for each of the 75 sectors
from the OpenSky ADS-B network [11] according to the
deployment timeslots of the sector configurations specified in
the SCP dataset (Figure 2c shows an example of a daily SCP
in the dataset). The main period considered was the week of
operations between July 13th and 19th 2017 in the Bordeaux
ACC (see Figure 2d). Even though this was the week with
the highest traffic volume in 2017, some of the sectors still
had an insufficient number of trajectories (under 400) to be
representative of the traffic operated in the sectors. For these
sectors, we also downloaded the traffic for their deployment
slots during the rest of the days in July and the first semester of
2017. Thus, the total number of trajectories per sector ranges
from 481 for sector T123 to 4965 for sector US34, with an
average of 2523 trajectories per sector.

III. METHODOLOGY

Figure 3a presents an overview of the methodology, which
will be detailed in the next sections. The trajectory, sector and
SCP datasets are the main inputs to the traffic flow identi-
fication algorithm (see Figure 3b). The dataset for the ML
process is generated from the computed sector geometry and
flow metrics, the operational peaks and some other contextual
features.

1In fact, we could have used any 2017 AIRAC cycle as no significant
changes were introduced in the ACC sector geometry data in 2017.
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(a) Overview (b) Flow identification

Figure 3. Methodology to build a model for OCC peak estimation with a
focus on the sector flow identification process.

A. Trajectory preprocessing

Data preprocessing of the ADS-B trajectories was necessary
to extract the trajectories for the area of interest (Bordeaux sec-
tors), filter out the noise, project their geographic coordinates
in order to facilitate distance calculations and finally simplify
them with the Douglas Peucker [12] algorithm.

For each sector, a representative trajectory sample was
extracted from the downloaded ADS-B traffic by clipping the
trajectories crossing the sector when operationally deployed
(opening slots defined in the SCP dataset). Finally, we re-
sampled the extracted trajectories with the PCHIP algorithm
[13] [14] to smooth each trajectory with 50 data points
regularly distributed, which is only useful to compute the
cluster centroids (see next section for further details).

B. Traffic flow identification

Traffic flow identification is required to compute the traffic
complexity metrics which will be part of the ML dataset.

One way to identify the sector flows is by clustering similar
trajectories together, each cluster representing a traffic flow.
The trajectories should be representative of the sector traffic
for the periods when it is operationally deployed, which can be
determined thanks to the SCP dataset. A number of methods
in the literature [7] [15] [8] [9] [16] are specifically designed
to cluster flight trajectories into flows, most of them based on
density-based clustering algorithms such as DBSCAN [17].

A general framework for flow analysis is developed in [7]
based on the HDBSCAN clustering algorithm [18] and two
trajectory distances. We tried to apply this method with the
Euclidean distance, but the need to fine-tune the parameters
of the clustering algorithm to adapt to the specificities of each
sector made the approach impractical for our use case in spite
of obtaining sometimes reasonably good results.

A much simpler approach for flow identification is pre-
sented in [4], where a flow is represented by a triplet of
sector designators: entry sector, current sector and exit sector.
However, as pointed out by the authors, an issue in the way

the flows are identified is that some flows contain a mix
of ascending and descending flights that should actually be
separated into two different flows. A related issue is that the
lateral dispersion of trajectories associated with a flow can
sometimes be considerable due to the fact that the location of
the trajectory entry and exit points in the sector are not taken
into account.

In order to overcome some of the issues of these two
approaches, we propose here a new method. The idea is to
represent a trajectory within a sector only by its first and last
points corresponding to the entry and exit points of the flight
in the sector. The reason is that, after experimentation, we
realised that the intermediate trajectory points were actually
superfluous in terms of the quality of the resulting clustering
and that by ignoring them we could develop a clustering
approach more appropriate to our problem than the one
proposed in [7]. On the other hand, flows’ homogeneity should
be improved compared to [4] since trajectories are associated
with flows based on the precise entry and exit points of the
trajectory in the sector and not simply by a triplet of sector
identifiers.

The proposed clustering method is further detailed in Fig-
ure 3b. First, for each sector, a matrix is built from the
sector trajectory sample generated in the pre-processing phase,
where each line of the matrix is a vector of six dimensions
representing the trajectory entry and exit points in the sector,
i.e. the two geographic coordinates and altitudes of the entry
and exit points.

The logarithmic function is applied to the altitude. Thus
two stable (levelled off) cruise trajectories at high levels (e.g.
FL330 and FL370) will be relatively closer than a potentially
evolving (climbing or descending) and a stable trajectory inter-
acting at lower levels (e.g. FL290 and FL330), which should
help the algorithm to separate the two types of trajectories.
Also, all matrix values are standardized to have zero mean
and unit variance. The resulting matrix is the input to the
DBSCAN algorithm which identifies the initial set of clusters
(flows) and outliers, i.e. the set of trajectories identified by the
algorithm as not belonging to any of the clusters (noise).

After the first application of DBSCAN, certain clusters seem
to represent more than one flow (see Figure 4). A possible
solution would have been to set specific DBSCAN parameters
per sector, which would negatively impact the usability of our
approach. Also, we could have included the aircraft track as
an additional feature in the clustering, but this would have
not solved completely the issue, which is especially frequent
when two flows have the same entry and exit coordinates in
the sector, but one is stable and the other evolving. In this
situation, the trajectories in both flows can be relatively very
close as only their altitude differs.

However, if we apply the same steps recursively to the
subset of trajectories in a cluster (see Figure 3b), we can
increase the distance between trajectories as an effect of data
standardization being applied to a subset of more homoge-
neous data. In the same way, additional flows can also be
identified in the subset of outlier trajectories by providing sub-
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Figure 4. Examples of clusters containing several flows after the first
application of DBSCAN for trajectories in sector ZX4.

cluster level DBSCAN parameters facilitating the creation of
new clusters.

In fact, the idea is to use a progressive clustering approach
[8] [9], where the same steps are applied recursively for
each of the identified clusters in order to refine them. This
refinement can be achieved thanks to the effect of data
standardization which will transform data differently at cluster
and sub-cluster level, as well as by fine-tuning at each level
the DBSCAN parameters ε and MinPts determining the size
and density of clusters.

In the post-processing phase of the clustering process, a rep-
resentative trajectory (centroid) is computed for each cluster as
the average of the trajectories belonging to the cluster, where
each trajectory is represented by a sample of 50 data points.
However, because both the number of outliers and flows were
excessive, a fusion step was needed to compensate for the
effect of over-clustering caused by the recursive application
of DBSCAN.

Thus, we added the following two steps to the post-
processing:

1) Among the outliers, a trajectory that is close to a cluster
centroid is added to the corresponding flow and the
centroid is recomputed.

2) If two centroids are close, we merge them and compute
the centroid of the resulting cluster.

For a trajectory to be considered close to a centroid, both
need to be of the same nature (stable or evolving) and their
entry points as well as their exit points have to be separated by
less than 30NM. The same conditions apply for two centroids
to be considered close, but the maximum distance is in this
case 15NM. Finally, a flow is evolving (or in evolution) when
the altitude difference between its entry and the exit points is
greater than 4000ft.

In order to find the suitable values for the clustering param-
eters (see Table I), several trials were performed with different
settings. Although Davies-Bouldin Index and Silhouette Index
[19] [20] were computed to statistically assess the quality
of the clustering, results were validated mainly by visual
inspection, when possible with the help of the operational team
in Bordeaux ACC (see conclusions in section V for further
details).

Figure 5 shows the results for sector T4, where nine flows
are identified with only 6.4% of the trajectories classified
as outliers. The descending flows in the 3D figure are a

TABLE I
CLUSTERING PARAMETERS

Name Value

DBSCAN ε
Cluster: 0.4
Sub-cluster/noise: 0.5

DBSCAN MinPts

Cluster: 1%N
N : total number of trajectories
Sub-cluster/noise: max(1%N, 3)

N : number of trajectories in sub-
cluster

Minimum number of trajectories
to form a flow

2% of the global number of tra-
jectories

Distance to merge an outlier tra-
jectory and a centroid

<30NM

Distance to merge two centroids <15NM

Evolving if altitude difference >4000ft

Figure 5. Clustering results for sector T4 displayed in 2D and 3D.

good illustration of flows not being recognized during the
first application of DBSCAN and justifying the progressive
clustering approach.

C. Sector metrics generation

The OCC peak and more generally the capacity of a sector
depends on a number of geometric and traffic features, but
it is difficult to determine beforehand which ones are the
most significant for prediction. Thus, from analysis of previous
research and available operational expertise from Bordeaux, a
set of potentially relevant sector metrics have been generated
as input to the ML model for OCC peak estimation. A
preliminary assessment of metric relevance has also been
performed by computing the standard correlation coefficient
with the target variable OCC peak.

1) Geometry metrics: Table II lists the metrics we have
considered based on the study in [3], where the analytical
relationship between sector geometry and capacity is analysed
in detail. In particular, the study points out the non-linear rela-
tionship between sector volume V and capacity (see Figure 6).
If we create a new feature log(V ), we obtain the strongest
correlation coefficient of all computed metrics (0.682).

Features ll and lu should provide some indication of the
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Figure 6. OCC peak versus V and log(V ).

TABLE II
SECTOR GEOMETRY METRICS

Name Description

V Sector volume (NM3)
A Sector area (NM2)
H Sector floor-to-ceiling heigh (ft)
ll Sector lower limit (sector floor altitude) (ft)
lu Sector upper limit (sector ceiling altitude) (ft)

traffic complexity in a sector, since sectors in the lower
airspace have more traffic in evolution than those in the upper
airspace. However, they can only take five different values
(sectors in Bordeaux are vertically structured in four layers)
when considered together, which is rather limited to properly
discriminate between the different OCC peak values corre-
sponding to a certain flight level. Feature lu has nevertheless
a correlation of about 0.54 whereas the ll one is considerably
weaker (< 0.3).

Feature H has a correlation similar to the one of lu and
shares the same poor variance issue with ll and lu preventing
both of them from being good discriminants if used on
their own. However, the surface A, which alone has a weak
correlation coefficient (< 0.3), could be used in combination
with ll and lu. In particular, the derived feature log(A∗ ll ∗ lu)
has a correlation coefficient of 0.675, almost matching the
log(V ) one.

2) Traffic flow metrics: The study in [4] proposes a list
of traffic flow metrics to assess traffic complexity in order to
dynamically predict the capacity of a sector. Based on this list,
we have computed from the identified flows in each sector the
complexity indicators in Table III.

For the characterization of the distribution of stable and
evolving flows in a sector, we tested several possibilities and

TABLE III
SECTOR TRAFFIC METRICS

Name Description

Nflo Total number of flows
Nstb Number of stable flows
Nevol Number of evolving flows
Nconv Number of converging flows
Ncros Number of crossing flows

we found that Nstb and Revol = Nevol

Nflo
had the strongest

correlation coefficients with 0.434 and −0.349 respectively.
The latter negative correlation reflects indeed the fact that the
capacity of a sector (OCC peak) should decrease when the
rate of evolving traffic (Revol) goes up.

The metric Nconv counts the number of converging flow
pairs, i.e. entering a sector via two different entry points to
eventually merge into a single flow within the sector. For a
flow pair to be considered as converging, we check that the
distance between their exit sector points is less than 15NM
and the difference between their directions when leaving the
sector is not greater than 40◦. The latter condition is to filter
out flow pairs crossing rather than converging at the proximity
of the sector border. By computing the rate of converging flow
pairs, we obtain a new variable Rconv with a better correlation
coefficient of −0.469.

Converging flows is a source of complexity for the con-
trollers because they need to monitor that the separation
minima is satisfied by aircraft when reaching their conver-
gence points. Similarly, crossing flows are sources of potential
conflicts that should increase complexity. This is the reason
for computing the metric Ncros, the number of crossing flow
pairs, and the derived metric Rcros, the latter presenting a
stronger negative correlation coefficient of −0.366. Rcros is
Ncros divided by the maximum number of potential crossing
pairs (N×(N−1)

2 ), where N is the total number of flows in the
sector. A crossing flow pair is identified when the minimum
distance between the two flows is less than 5NM, excluding
the case when a flow pair shares the same entry point but
then the flows split into two different routes. For the sake of
simplification, the distance is computed by considering each
flow as a straight line.

D. Model learning

Our ML problem falls into the category of supervised
learning, since for each sector in the dataset, we have the
set of sector metrics/features described in the previous section
along with the defined target OCC peak value as a label, which
is an integer between 16 and 30. We dismissed addressing the
problem as a classification task due to the important number
of classes (15) relative to the small size of data and use instead
a regression model.

On the other hand, since our data for this study is limited to
the Bordeaux ACC sectors, we have a very small dataset with
only 75 sectors. Therefore, in order to increase the chances
of a better generalization, we started by testing some ML
algorithms with high bias and low variance such as a simple
linear regression model or Support Vector Machines (SVM).
However, we obtained the best results with a Random Forest
(RF) model, which also proved to be successful with small
data in the field of clinical tests [10]. To be more specific, we
selected a variant of RF called Extremely Randomized Tree
(Extra-Tree) [21] as it slightly outperformed the RF in our
experiments and it is considerable faster to run.

The RF model was trained with 80% of the data and tested
with the remaining 20%. Because of the small size of the
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dataset, the split was not done randomly but by ensuring
that the training set was representative enough to cover both
the Bordeaux ACC airspace and the different peak values as
uniformly as possible. Thus, 60 sectors were used for training
and the remaining 15 sectors were included in the test set:
FNOR, H3, L4, N34, NH34, R12, RL12, RL1234, T123,
USUD, US4, X1, Z2, ZNH4 and ZX34. Unfortunately, there
is only enough data to cover 86.6% of the peak values in
the training set (only values 28 and 29 are not included) and
53.3% in the test set (values included are: 18-23, 25-26, 28,
30).

The RF hyper parameters’ maximum number of trees
(MNT) and maximum tree depth (MTD) have been tuned using
a 5-fold cross-validation (CV) method and the coefficient of
determination R2 score. A parameter grid has been defined
with the MNT ranging from 5 to 145 in steps of five and the
MTD ranging from 2 to 17 in steps of one, that is 29 and 16
different values respectively. The CV assessment process has
been performed uniquely on the training dataset and for each
pair of the grid parameters (464 candidates), which in a 5-fold
CV resulted in a total of 2320 assessments. The best settings
found during this process for the MNT and MTD were of 100
and 7 respectively and the resulting RF model was the one
selected for final evaluation on the testing set (see results in
the next section).

The features (metrics) pre-selected to be part of the training
and test sets were the ones presenting the strongest linear cor-
relations with the peak. However, the final selection (features
listed in Table VI) was done during the selection process of the
RF hyper parameters by testing in particular whether to include
log(A ∗ ll ∗ lu), log(V ) or both. Thus, in spite of its strong
correlation with the peak, feature log(V ) was finally excluded
as we realised it actually had a slightly negative impact on the
performance of the model.

For illustration purposes, we can see in Figure 7 a plot
of one of the RF decision trees showing the different splits at
each node and the leaves at the rightmost level. Unfortunately,
this kind of visualisation does not make the results more
interpretable, because the final predicted peak is computed
as the average of the predictions of the set of decision trees
forming the RF and rounded to the nearest integer number. To
get a better meaning of a RF model, it is more helpful to look
at the list of the most significant features (see Table VI).

IV. RESULTS

We use the coefficient of determination R2 to assess the
performance of the RF model. This coefficient is of 0.979 for
the training set indicating that the predictions are in general
very accurate. Thus, the peak has not been correctly predicted
for ten of the sectors or 17% of the training set (see Figure 8a
and Table IV), out of which nine present an error of one unit.

If we analyse these errors further, we realize that eight
of the problematic sectors are elementary sectors rarely used
(less than 50 times in three years2) on a sector configuration

2From 2014 to 2017
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Figure 7. Example of a RF decision tree (50th tree in the RF).

with the exception of L2. Consequently, the feedback from the
operational teams on the peak of these sectors is less frequent
and their values potentially less reliable. On the other hand,
trying to increase the tree depth parameter in the RF model to
further reduce these errors may lead to overfitting the model
to the training data.

As for the test set, the prediction results are displayed in
Table V and Figure 8b. The coefficient R2 for the test set is
of 0.838 reflecting also a good level of accuracy. Thus, for
80% of the test sectors, the error is either non-existent or of
just one unit. For the three sectors with errors of two units,
in the same three years, X1 has never been opened and NH34
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TABLE IV
RESULTS FOR THE TRAINING SET (ONLY SECTORS WITH ERRORS IN THE

OCC PEAK PREDICTION ARE DISPLAYED)

Sector Real peak Prediction Error Abs. error

X2 18 19 1 1
X3 17 18 1 1
H2 22 21 -1 1
T12 24 23 -1 1
R3 18 19 1 1
L1 16 17 1 1
L12 20 21 1 1
L3 21 20 -1 1
L2 19 20 1 1
R1 17 19 2 2

TABLE V
OCC PEAK PREDICTIONS FOR THE SECTORS IN THE TEST SET

Sector Real peak Prediction Error Abs. error

H3 20 20 0 0
ZX34 25 25 0 0
ZNH4 28 28 0 0
T123 22 22 0 0
FNOR 22 22 0 0
Z2 21 20 -1 1
NS34 23 22 -1 1
US4 30 29 -1 1
USUD 24 23 -1 1
R12 19 20 1 1
L4 20 21 1 1
RL12 22 21 -1 1
X1 18 20 2 2
NH34 23 25 2 2
RL 26 24 -2 2

only eight times with an accumulated time of 208 minutes in
operation. Thus, the errors may be again a consequence of the
limited use of the sector and the resulting poor operational
feedback.

However, this is not the case of sector RL which has been
used 3610 times in the same three years with a total operation
time of 63,184 minutes. Since we were unable to explain the
error in this case, we checked with the operational team in
Bordeaux. They indicated to us that this sector was usually
opened as a intermediate step to switch between two sector
configurations. In fact, RL is not usually opened for a long
time since it is quickly split into sectors RL12 and RL34. To
be more precise, RL is actually useful as a transition between
UBDX (355,826 minutes of accumulated time) and sector
pair RL12/RL34 (269,285 and 142,629 minutes respectively).
Therefore, poor operational feedback is again to blame, be-
cause full capacity in RL is actually never reached.

An advantage of an RF model is its capability to perform
automatic feature selection, which is helpful to understand
how the model makes the predictions. In Table VI, we list
the features and their relative importance as computed by our

(a) Train (b) Test

Figure 8. Results with test and train datasets.

TABLE VI
RANDOM FOREST FEATURE SELECTION

Feature Importance

log(A ∗ ll ∗ lu) 32.6%
lu 23.6%
Rconv 12.7%
ll 11.0%
Rcros 8.7%
Nst 6.6%
Revol 4.8%

RF model.
We can observe the general pre-eminence of the geometric

features over the traffic ones with log(A ∗ ll ∗ lu) being in
the top. A possible conclusion is that the geometric features
already offer on their own a good approximation to the peak
prediction, whereas the traffic complexity metrics play only a
secondary role in refining the prediction for the sectors which
are geographically similar. Nevertheless, we were expecting
the traffic metrics to be more significant, especially Nst and
Revol, which may be explained in part by the fact that features
lu and ll contain already in themselves some information
concerning the stability or evolving nature of the traffic.

V. CONCLUSIONS

This paper has presented a methodology based on ML tech-
niques aimed at predicting the sector OCC peak threshold from
a dataset of sector geometry and traffic complexity metrics.
We have developed a specific clustering method adapted to
the identification of the relevant sector flows from a sample
of trajectories representative of the traffic in the sector by
exploiting the SCP. The methodology has been applied to
Bordeaux ACC with the help of the operational teams who
provided us with the necessary data and support.

The results show that an RF model can be trained to
accurately predict a sector OCC peak from a small dataset.
However, additional tests and assessments from the operational
experts should be performed to ensure that some of the
assumptions and choice of parameters are optimal and to
further confirm that the model generalizes well when applied
to new sector designs.

The fact that the traffic complexity metrics are less signif-
icant than expected in the predictions of the model may be
explained as mentioned before by the fact that features ll and
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lu already characterize in part the nature of the traffic. But
it may also be due to shortcomings in our method for flow
identification or the way metrics are computed.

We asked an operational expert to draw the flows for sector
RL12. Only one of the flows identified by the operational
expert was not found by our algorithm and after analysis
we realized that it had been merged with another flow.
Further efforts are needed to assess the sensitivity of our
peak estimation model when this happens and if this could
be improved by setting specific clustering parameters for the
problematic sectors. Ideally, the same operational validation
should be performed for the 75 sectors. After discussion
with the operational team in Bordeaux and in order for the
clustering algorithm to better identify the sector flows, it may
be useful to consider the notion of flight city pairs as we
realized it was for the operational experts a natural way to
think of flows.

Concerning the complexity metrics, the operational team in
Bordeaux suggested a list of improvements to be tested in a
future version:

• To distinguish the evolving flows entering/leaving
from/through the sector floor or ceiling as they are more
complex than the rest.

• To consider only the parts of the flows within the 3D
volume rather than 2D border of a sector in order to
avoid for instance counting crossings actually happening
outside the sector.

• To distinguish crossings between stable flows from cross-
ings where at least one of the flows is in evolution since
the complexity of the latter is more significant.

• To create an additional feature linked to the number
and location of points of interest in a sector, i.e. the
areas of high complexity. The bigger the number of these
hotspots and their dispersion in the sector, the higher the
complexity should be.

• To consider the time dimension since metrics on converg-
ing or crossing flows are computed in a purely geometric
way without regard to the possibility that two flows may
actually never exist at the same time in the sector.

As for the improvement of the training process, the follow-
ing ideas could be worth investigating:

• To extend the dataset with sector data from other ACC
in France or even in Europe. This would need to be
further researched as the operational environment and the
way capacity is assessed may be significantly different
between ACC. Also, if our methodology is to be applied
to other ACC, geometric features may need to be adapted
to the fact that some sectors may be vertically composed
of prisms with different surface areas, which was not the
case in Bordeaux.

• To focus the training on the sectors where the peak
is more reliable, i.e. the sectors being regularly used.
This has the inconvenient of reducing even more the
data available for training, in particular by excluding a
significant part of the elementary sectors.
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