
Airline Disruption Management with Aircraft 
Swapping and Reinforcement Learning

Gabriel Hondet
ENAC

Toulouse, France

Luis Delgado, Gérald Gurtner
School of Architecture and Cities

University of Westminster
London, United Kingdom

Abstract—Managing fleet disruption is essential for an airline
to control delay costs. Delays emerging from these disruptions can
be manipulated through fleet operations like aircraft swapping.
This paper applies machine learning techniques to the disruption
problem. While airlines might do this process manually or using
basic predefined rules, the complexity of the problem makes it
well suited for a computed approach. The paper describes the
principles of reinforced learning and the model used for testing
them. Two representations of decision states are considered and
applied to a set of historical schedules for an airline. The
performance obtained by swapping aircraft using the reinforced
learning is finally compared to the idle option, i.e., do not swap
any flight. The comparison evinces that while the algorithm is
far from being optimal, the agent takes relevant decisions as
it performs better than the idle behaviour in heavily disrupted
simulations.

I. Introduction
The design of a schedule is strategic as it happens months

in advance of its implementation. Since schedules try to
maximise profit, they are subject to an efficiency-resilience
trade off. A schedule is here said to be resilient if it is not
too sensitive to unexpected events, i.e., the probability that
the carried out operations deviate in time from what was
scheduled is low. The lower the buffer between operations,
the higher the cost efficiency but the lower the resilience. In
contrast, a schedule allowing more time between operations is
resilient but not efficient. To make profit, airlines will therefore
try to minimise delays between operations, and thus expose
themselves to disruption problems [1], [2].

Costs of disruption problems often rise due to the reac-
tionary delays triggered. To lower these costs, airlines can
modify the schedule in real time. However, the number of re-
configurations makes the problem highly combinatorial and
thus better suited for computed solutions than human found
ones. Airlines could modify the trajectory of flights, e.g.,
selecting a different route or modifying their operating cost
index [3]; actively wait for passengers so that they don’t miss
their connections [4]; swap aircraft [5]; cancel flights and in
some cases ferry aircraft [6]. Commercial tools can be used to
create and adjust the required flight plans such as Lufthansa
Lido or airline recovery management tools by Sabre.

In this paper, the reconfiguration problem that arises from
disruptions in the schedule is solved via reinforcement learn-
ing. Once a schedule has been built, it is given to a simulator

Partly supported by french government under contract ANR-17-EURE-005

and an agent. The agent will try to lower a cost function
by swapping aircraft to cope with disruptions created by the
simulator.

The goal of this paper is to present how reinforcement learn-
ing techniques could be used in the disruption management
problem. The agent will be trained by a basic reinforcement
learning algorithm, the Q learning algorithm.

The article is organised as follows. Section II presents a
literature review on models of disrupted management. It also
presents an overview of the reinforcement learning paradigm.
Section III describes the model used in this paper including a
description of the learning mechanism. Section IV explains in
detail the experimental setup used to test the model. Section V
shows the results obtained with the model on the experimental
setup. Finally, section VI draws some conclusions and looks
at future work.

II. Literature review

A. Disruption management

[5] and [7] provide a survey of different actions that might
be considered by airlines to manage disruptions. They include
among others: swap aircraft, cancel flight, delay flights, use
stand-by aircraft. Studies to minimise the impact of disruptions
often only handle a subset of all possible actions. Most articles
use aircraft swapping, flight cancelling, flight re-timing and
ferrying. Some works do not consider ferrying, as [8], stating
that ferrying is very seldom used. Some models would also
allow to use stand by aircraft such as in [9].

It is well understood that cost of delay is not linear in
function of delay [2], [10]. The immediate consequence is
that cost can be lowered by dividing delay among more flights
rather than having it concentrated, i.e., in average it is less
costly two flights delayed 20 minutes than one flight delayed
40 minutes.

To analyse the different techniques that try to minimise
disruption, an air traffic model is required. This is relevant
as knock-on effects, i.e., reactionary delay, needs to be con-
sidered. Several graph representations have been proposed. For
a exhaustive review see [11]:

• Connection network, in which each node is a flight leg
and two nodes 𝑢, 𝑣 are connected if leg 𝑣 can be flown
directly after leg 𝑢 with the same aircraft.

Eighth SESAR Innovation Days, 3rd – 7th December 2018



• Time line network, where nodes are events, i.e., arrivals
or departures specified by a time and an airport. An edge
represents an activity performed by the aircraft.

• Time band network, where each node is either a set of
activities performed by an aircraft within a time interval
(or time band) or the end of a recovery period, at a certain
time and in a specific airport. In this case the flights are
modelled as edges.

Passengers can be more extensively considered, as in [4],
[8]. Passengers of cancelled flights are often reassigned to
a new flight, where possible, or returned to their destination
according to the rules of Regulation 261.

In most of the works presented in the review, solutions
are found via graph algorithms, such as maximising the flow
in [12] or integer programming as in [13]. It has nevertheless
also been stated as a repartitioning problem in [14]. [9], uses a
heuristic on a graph. In this model, a node is either an aircraft
or a departure. A departure is connected to an aircraft in an
other airport which may be itself connected to a departure. The
network is then used here with a local search meta heuristic,
the steepest ascent local search. Another heuristic, the “grasp”
heuristic, is used in [15].

In [8], the problem is then modelled with a time band
network and solved with Cplex using the financial cost as
objective function. In addition to the time band network, a
“passenger transition relationship” is introduced. This relation-
ship enables the passengers to be transferred on other flights
when a flight is cancelled.

When optimising the tactical network operations, several
objective functions might be considered. The review [11]
mentions counting the total delay, counting the number of
operations carried out (e.g., swaps, reassignments, ferryings)
and evaluating the real cost. The latter is the most used,
however costs are complicated to model and thus several levels
of refinements can be seen. For example, two sub-costs are
considered in [9]. One is associated with delays and the other
with cancellations. Costs associated with passengers might
also be included [8], [16], [17]. Further analysis of costs can
be found in [3], [18] and [19].

The test setups presented in [11] span from 3 aircraft and 8
flights to 332 aircraft and 2921 flights, solved in 24 minutes
using Cplex. In [9], the method using heuristics has been tested
on an instance of 80 aircraft, 44 airports and 340 flights. The
time needed to solve such an instance is below 10 seconds.

B. Reinforcement learning
Reinforcement learning is a method of machine learning

based on the interaction between an agent and its environment.
It has been extensively used in games where the agent embod-
ies the player and the environment is the world the player
evolves in. It has been proven successful in small games such
as Tetris, outperforming the human player with the most basic
algorithm known as Q learning using lookup tables [20]. Many
more sophisticated learning methods have been developed
since, such as Deep Q Networks (DQN), developed by Google
using convolutional deep neural networks [21].

Environment

Agent

ActionNew state Reward

Figure 1. Reinforcement learning principle

The disruption problem in a fleet can be easily compared
to a game making reinforcement learning suitable to solve it.
The player would be the airline operator who can swap aircraft
and the environment is the real world and more specifically
the fleet being disrupted.

Simple problems may be solved using simple Q learning
algorithms using matrices. Real world problems however gen-
erally involve a large amount of states or of actions, making Q
matrices unusable. To overcome this limitation, multi layer per-
ceptrons can replace the Q matrix as described in [22]. Multi
layer perceptrons are able to handle continuous inputs. If the
problem involves many actions, restricted Boltzmann machines
can be used as presented in [23]. As the problem involves a
fleet of aircraft, it might be seen as a multi agent behaviour.
While research has been lead on multi agent reinforcement
learning, it is stated in [24] that it is even more subject to
the curse of dimensionality than single agent reinforcement
learning and thus less prone to manage an important amount
of actions or states.

III. Model

A. Reinforcement learning model

The idea is to make an agent interact with an environment
in order to learn the best possible behaviour. This behaviour is
modelled by a policy which maps states of the environment to
actions the agent should perform. To learn how to behave,
each action the agent carries out is rewarded, and each
action modifies the environment. The agent will thus adapt its
behaviour in function of the rewards it receives (see Figure 1).
Every time the agent performs an action, the environment is
modified and shifts into a new state. The following notations
will be used:

• 𝒮 the set of states,
• 𝒜 the set of actions,
• (𝑠, 𝑠′) ∈ 𝒮2 states of the environment,
• 𝑎 ∈ 𝒜 an action,
• 𝛾 ∈ [0, 1) the vision of the agent or the discount factor,
• 𝑇𝑓 ∈ ℕ the end of the lifetime of the agent, being, in our

case, a day of operation.
Mathematically, the best behaviour is the behaviour max-

imising a criterion. This criterion is usually the expectation of
the cumulative sum of rewards, i.e., the total reward the agent
can expect during its lifetime, with 𝑟𝑡 the reward at time step

Eighth SESAR Innovation Days, 3rd – 7th December 2018

2



𝑡, 𝛾 ∈ [0, 1) the discount factor,

𝔼 ⎛⎜
⎝

𝑇𝑓

∑
𝑡=0

𝛾𝑡𝑟𝑡
⎞⎟
⎠

(1)

In our case, the reward is the cost savings obtained by
performing a given action

Valuation functions are used to discriminate policies. Given
a policy 𝜋∶ 𝒮 → 𝒜, the associate valuation function will be
𝑉𝜋 ∶ 𝒮 → ℝ. Finding the best policy falls back to computing
𝑎𝑟𝑔 𝑚𝑎𝑥𝜋 𝑉𝜋.

Given an initial state 𝑠0 ∈ 𝒮, the valuation function can
be defined as, with 𝔼𝜋 the expectation following policy 𝜋,
∀𝑠 ∈ 𝒮,

𝑉𝜋
𝛾 (𝑠) = 𝔼𝜋

⎡⎢
⎣

𝑇𝑓

∑
𝑡=0

𝛾𝑡𝑟𝑡
∣
∣∣
∣
𝑠0 = 𝑠⎤⎥

⎦
(2)

The optimal valuation function 𝑉∗ satisfies the Bellman
equation, which can be written as, with 𝑠 ∈ 𝒮,

𝑉∗(𝑠) = 𝑚𝑎𝑥
𝑎∈𝒜

{𝑟(𝑠, 𝑎) + 𝛾 ∑
𝑠′∈𝒮

𝑝(𝑠′|𝑠, 𝑎)𝑉∗(𝑠′)} . (3)

Once found, 𝑉∗ gives the optimal policy 𝜋∗ such that 𝑉∗ =
𝑉𝜋∗.

B. The Q learning model
1) Principle: Q learning is based on the use of a function

𝑄∶ 𝒮 × 𝒜 → ℝ as an equivalent of the valuation function,
with (𝑠, 𝑎) ∈ 𝒮 × 𝒜,

𝑄𝜋(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 ∑
𝑠′∈𝒮

𝑝(𝑠′|𝑠, 𝑎)𝑉𝜋(𝑠′) (4)

The Bellman equation is then with 𝑄, ∀(𝑠, 𝑎) ∈ 𝒮 × 𝒜,

𝑄∗(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 ∑
𝑠′∈𝒮

𝑝(𝑠′|𝑠, 𝑎) 𝑚𝑎𝑥
𝑏

𝑄∗(𝑠′, 𝑏) (5)

The idea is then to update incrementally the values of 𝑄 for
each transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1), with 𝑠𝑡, 𝑎𝑡 being the state of the
environment and the selected action at time step 𝑡, 𝑟𝑡 the reward
associated to 𝑠𝑡 and 𝑎𝑡, and 𝑠𝑡+1 the state resulting from the
application of 𝑎𝑡 on 𝑠𝑡. The update is done using the following
formula, which comes from equation 5, with 𝛼(𝑠𝑡, 𝑎𝑡) ∈ [0, 1)
the learning rate;

𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) = 𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼𝑡(𝑠𝑡, 𝑎𝑡)

(𝑟𝑡 + 𝛾 𝑚𝑎𝑥
𝑏

𝑄𝑡(𝑠𝑡+1, 𝑏) − 𝑄𝑡(𝑠𝑡, 𝑎𝑡))
(6)

2) Parameters: Looking at equation 6, one can denote two
parameters, 𝛼 and 𝛾

The discount factor 𝛾 can be interpreted as the sight length
of the agent. Seeing equation 2, the higher 𝛾 is, the more
delayed reward are taken into account. On the opposite, a 𝛾
of zero creates a myopic agent which considers only immediate
rewards.

If transitions between states are stochastic, the learning
parameter 𝛼 must be a sequence verifying the properties
(see [25]) ∑∞

𝑘=0 𝛼𝑘 = ∞ and ∑∞
𝑘=0 𝛼2

𝑘 ∈ ℝ.

Require: 𝑄, 𝛾 ∈ [0, 1], 𝛼
initialise state 𝑠
repeat

𝑎 ← choose action from an action set
play 𝑎, observe reward 𝑟 and new state 𝑠′

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾 𝑚𝑎𝑥𝑎′ 𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎))
𝑠 ← 𝑠′

until training finished

Figure 2. General Q learning algorithm [26]

3) General algorithm: The training algorithm is given in
Figure 2. The training is finished when the state becomes
terminal. Whether a state is terminal is decided by the un-
derlying environment. Typically, the training algorithm will
be run many times to have a Q function close enough to the
optimal one.

a) Action selection: Choosing actions consists in solv-
ing an exploitation-exploration trade-off. The exploration be-
haviour consists in exploring the state space, taking decisions
that are not necessarily considered the best ones. The explo-
ration is required to avoid local minima. Indeed, while the
exploitation behaviour relies on the data accumulated to make
the best decisions, it might carry out actions that are wrongly
considered best because other ones have not been tried yet.
The exploration carries out actions to see whether, by chance,
they would be better than the ones known so far.

Different methods can be used to deal with this exploitation
exploration trade off while selecting actions, see [26] for a
detailed review. In this paper, we use bandit methods. Bandits
methods come from an analogy with slot machines, where
a bandit with 𝑘 arms is able to activate 𝑘 slot machines
sequentially. The goal of the bandit is to select each time the
machine yielding the highest reward, maximising profit and
minimising the regret of not activating the best machine. The
UCB method (for upper confidence bound, see [26]) bandit
algorithm can be implemented by using action 𝑎 defined by,
with 𝑡 the time step, 𝑁𝑡(𝑠, 𝑎) the number of times action 𝑎
has been performed in state 𝑠, 𝑐 ∈ ℝ+ a constant controlling
exploration,

𝑎 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑎′∈𝒜

⎛⎜⎜
⎝

𝑄𝑡(𝑠, 𝑎′) + 𝑐√ 𝑙𝑛 𝑡
𝑁𝑡(𝑠, 𝑎′)

⎞⎟⎟
⎠

. (7)

The first term motivates exploitation. The second one, being
higher as the number of visits is low, motivates exploration.

4) Implementation: In this paper, a simple implementation
approach has been selected for computational reasons. In this
form, the agent is a lookup table mapping state-action tuples
to their reward expectation. This way, the operation 𝑄(𝑠, 𝑎) ←
𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾 𝑚𝑎𝑥𝑎′ 𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)) is straightforward
and consists in the replacement of the old value by a new one.
While this method has several advantages among which its
simplicity, it cannot be scaled to high dimensional states or
continuous states. More advanced methods can be used, like
neural networks, see [26].

Eighth SESAR Innovation Days, 3rd – 7th December 2018

3



AIBT1 SOBTn1

Turnaround1 bu�er

EIBT2

Estimated

Turnaround2

EOBTn2SOBTn2

Flight 1

Flight 2
rd2

(a) No swapping: Flight 1 on time, Flight 2 expected to propagate
reactionary delay (𝑟𝑑2)

AIBT1 SOBTn1

Turnaround1

EIBT2 EOBTn2SOBTn2

Flight 1

Flight 2d2

d1

Estimated

Turnaround2

(b) Swapping: Flight 2 experiencing 𝑑2 delay and Flight 1 expecting
𝑑1 delay. 𝑑1 + 𝑑2 ≤ 𝑟𝑑2

Figure 3. Example of benefit of swapping

C. Disruption management problem description

This paper focuses on the ability to swap aircraft when
airlines are faced with disrupted operations. Swapping aircraft
consists in exchanging aircraft between two flights. Intuitively,
swapping can be cost effective for at least two reasons. The
first is illustrated in Figure 3 where the amount of delay that
is expected to be propagated by a given flight (𝑟𝑑2) is divided
between two flights producing 𝑑1 and 𝑑2 with 𝑑1+𝑑2 ≤ 𝑟𝑑2. In
this examples, two flights are delayed instead of one but part
of the buffer for flight 1 is used to recover delay from flight 2,
so not only the delay is divided between more flights, but also
reduced. This is cost effective because the cost of delay is non-
linear and the cost of the two lower delays is lower than the
cost of a single higher one. Note that aircraft swapping then
helps to manage reactionary delay which account for 44% of
all the delay experienced [10].

Another reason to perform aircraft swaps is that, in some
cases, an aircraft with delay might have more legs in its
schedule than another flight the airline can swap the flight
with. By doing this swap, the number of legs where delay can
be propagated can be reduced.

Finally, swapping are also often used in practice to save
costs in other ways that are out of the scope of this paper. For
instance the airline can concentrate all delay into one flight
and then cancel it; modelling this would require modelling
passengers flows as load factors will have to be modelled and
the consideration of cancellations.

More parameters such as additional passenger information
(e.g. type of passengers, and their connections) can be used
by airlines to better estimate the cost of the different options.

Some constraints need to be considered when performing

the swaps. An aircraft can be swapped with another only if
the flight of one ends where the flight of the other starts and
the aircraft type is the same. Or in other words, two aircraft
can be swapped if they have an airport in common in their
flights itineraries. On real operations, further constrains need
to be considered such as crew availability, number of seats per
specific aircraft, etc.

An aircraft becomes available for a flight after the
turnaround operations are preformed. For example, in Fig-
ure 3b, the first aircraft can be used for the next rotation of
the second flight after its turnaround. These ground operations
are modelled as a function of the type of aircraft and airport.

D. Scope of model
The main objective of the air traffic model is to capture the

propagation of delay through the network, as this will allow
us to capture situations as the ones described in Figure 3.
The simulator focuses on the fleet of an airline and on one
day of operations. The simulator is driven by the landings
of aircraft. When an aircraft lands, it can either follow its
scheduled flight plan sequence or swap the remaining flights of
the day with another aircraft of the same type. As mentioned,
other disruption management strategies (e.g., ferrying, flight
cancellation or trajectory modification) are not considered.
There are no stand-by aircraft available to swap with and crew
management is not considered.

A total cost is computed at the end of the day based on
flight delay and on the ending position of the aircraft.

E. Delays and uncertainty
Delays have been capped to five hours. Above this threshold,

it is generally more cost effective to cancel the flight which is
out of scope of this paper.

1) Sources of delay: There are four sources of delay and
uncertainty in the system:

• reactionary delay,
• taxiing in and out of the runway,
• air traffic flow management delay,
• any other sources of delay (e.g., ground operations)
The distributions used to generate the delays have been

calibrated and validated in previous projects [27], [28].
a) Taxiing: The taxiing in and out time distributions are

Gaussians. The mean and the standard deviation depend on
the airport and type of operation [27].

b) Reactionary: Reactionary delays, i.e., delays caused
by delays on previous flights, are explicitly modelled and thus
not generated from a distribution.

c) Air traffic flow management (ATFM): A probability
and distribution of ATFM delay is built on historical data
analysing the Demand Data Repository (DDR2) [29].

d) Miscellaneous: Encompasses all other sources of
primary delay not explicitly modelled (e.g., late arrival of
passengers, mechanical failure, &c.). The distribution of mis-
cellaneous delays is an exponential one with parameter 15
capped at 90 minutes [27].

Eighth SESAR Innovation Days, 3rd – 7th December 2018

4



TABLE I
Statistics of the simulator calibration (average among all flights

and quantiles among delayed flights, in minutes).

Variable Avg. Q10 Q50 Q70 Q90

Reactionary delay 3.97 0 5 20 46
Departure delay 11.04 18 32 45 70

F. Exceptional delays
To stress the environment, exceptional delays are randomly

created. Each simulation is started with a probability of
encountering an exceptional delay. Each departing flight might
have an exceptional delay, based on this probability. A delay is
said to be exceptional if it is superior to three hours as airline
must compensate clients from three hours of delay [30].

G. Calibration and validation
The behaviour of the simulator has been checked against

the values given in [10]. Particularly, have been checked
• the average departing delay,
• the average reactionary delay,
• the proportion of reactionary delay among all delays.

As an overview, 21.21% of the flights were delayed and some
additional data has been gathered in table I.

H. Costs
Costs depend on the aircraft model and the delay. The cost

function is increasing non linearly with the delay: the more
a flight is delayed, the higher the ratio cost/delay is (i.e., the
second derivative of the cost w.r.t the delay is positive). These
costs are modelled from [2].

Additionally, if an aircraft ends in an airport which is not the
final airport indicated on the initial schedule, a cost is added
to reflect the rerouting of crews or aircraft. This cost has been
set to the maximum cost of delay.

I. Simulator as reinforcement learning environment
The successive steps of the simulator fit the succession of

states needed in reinforcement learning.
Feeding the agent with all the data computed in the simu-

lator would be inefficient. As an example, states used by the
algorithm need to be visited as much as possible along an
episode, which requires them to be, ideally, time independent.
It would therefore be counter productive to embed the time of
the simulation in the state.

To ease the work of the algorithm, states are converted
to observations. An observation is the reduction of a state,
gathering the essential information to allow the agent to take
the appropriate action and estimate the cost associated to the
action.

Choosing which information to include in the observation is
a difficult problem. They need to be precise enough, to improve
final performance; but not too detailed to avoid the explosion
of the number of states, leading to a slower convergence. Fields
that can be considered to be included in the observations are:
delay, number of extra flights in the day remaining for a given
aircraft or type of airport.

J. Actions
In each state, the agent performs an action on the en-

vironment. Here, an action is either swapping the landed
aircraft with another one or doing nothing. Swapping two
aircraft means that the aircraft exchange the remaining of their
respective flight paths. We thus consider swapping aircraft
equivalent to swapping flights or, to be more precise, flight
paths.

One must then decide which flights can be swapped with.
The first way would be to allow to swap with any not
flown flight departing from the current airport. However, this
have two drawbacks. First, too many actions would be made
available, slowing the convergence. Secondly, actions wouldn’t
be clearly recognisable by the agent. The agent needs to
associate an expectation of the cost following an action on
a state. But swappable flights might be very different from
one state to another which could increase the variance of the
final reward given the current state.

K. Reward
In reinforcement learning, the reward allows the agent

to decide which action is the most suited to the state the
environment is in. Furthermore, by the estimation of reward
expectations, the agent is also able to determine the best action
for not only the current state but also the probable sequence
of all future states.

In our model, the reward is the final cost of delays. Since
the algorithm maximises the expectation of reward, if the value
on which the reward is based should be minimised, the reward
will be the opposite of this value. We will therefore use the
opposite of the cost as reward.

IV. Experimental setup
A. Schedules

The algorithm uses one day of operation of one airline. It has
been tested on a subset of the traffic of Vueling on October
12, 2014. The initial schedule has a fleet of 90 aircraft. In
order to speed up experiments, only 6 aircraft have been kept.
The aircraft has been chosen such that there is a fair amount
of swapping possibilities, i.e., each aircraft has at least one
swapping possibility along its flight path. Flight data has been
obtained from [29].

The cost of reallocation at the end of the day has not been
taken into account. As reallocation costs only happen at the
end of an episode, they are the most delayed reward possible
and are thus hard to learn. Given that this paper is a proof of
concept and not a real life application, applicability is reduced
in favour of results.

B. Observations and actions
1) Observation: Two type of observations have been tried.

The first one is based on flight paths and contains:
• a mapping from aircraft to flight paths,
• a mapping from aircraft to their delay,
• the identifier of the landed aircraft,
• the delay of the landed aircraft,

Eighth SESAR Innovation Days, 3rd – 7th December 2018

5



TABLE II
First observation type example.

Field description Example instance
aircraft → flight path {(𝑎1, 𝑓2), (𝑎2, 𝑓1), … }
aircraft → delay {(𝑎1, low), (𝑎2, high), … }
aircraft → sobt before ready time {(𝑎1, 𝑡), (𝑎2, 𝑓 ), … }
aircraft → more remaining {(𝑎1, 𝑓 ), (𝑎2, 𝑓 ), … }
landed aircraft id 2
landed aircraft delay low

TABLE III
Second observation type example.

Field description Example instance
aircraft → sobt before ready time {(𝑎1, 𝑡), (𝑎2, 𝑓 ), … }
aircraft → toward stn. {(𝑎1, 𝑓 ), (𝑎2, 𝑡), … }
aircraft → more remaining {(𝑎1, 𝑡), (𝑎2, 𝑓 ), … }
aircraft → on orig. flight path {(𝑎1, 𝑓 ), (𝑎2, 𝑡), … }
landed id. 4
total delay high

• a mapping from aircraft to whether, if there is a swappable
flight on its flight path, the SOBT (scheduled off block
time) of this swappable flight is before the ready time of
the landed aircraft,

• a mapping from aircraft to whether it has more remaining
flight in its flight path than the landed aircraft.

Table II presents an example of the fields included in this
observation description.

The second observation type does not contain the flight path
nor the delay. The fields considered are:

• a mapping from aircraft to whether the SOBT of its next
swappable flight is before the ready time of the landed
aircraft,

• a mapping from aircraft to whether it is currently flying
toward the current airport,

• a mapping from aircraft to whether it has more remaining
flights than the landed one,

• a mapping from aircraft to whether it is on its original
flight path (if reallocation costs are considered),

• the identifier of the landed aircraft.
• the accumulated delay on the fleet
Table III contains an example of the fields considered in

the second type of observation. To avoid the explosion of
the number of states, delay amounts are further discretised
from the set of integers to a finite number of variables (e.g.
{low, medium, high}). With 𝑑 the number of values used to
describe delay and 𝑛 the cardinal of the fleet, there are
𝑛𝑑 ⋅ 𝑛! 22𝑛𝑑𝑛 observations for the first model and 𝑑𝑛24𝑛 for
the second (with generally 𝑑 ≥ 𝑛).

2) Action: A flight is considered swappable if:
• the origin airport is the same as the current one,
• it is the first flight (according to SOBT) in the flight path

of the aircraft to match the above requirement,
• the previous flight has not landed yet.

In short, for an aircraft, a flight is swappable if it is the first
one to depart from the current airport and the aircraft is not on
the ground going ready to do it. Figure 4 shows an example of

A B

C

DE

1
2

Figure 4. Swappability example: airports and flight for two aircraft

two flights that can be swapped: aircraft 1 is supposed to fly
the plain legs while aircraft 2 flies the dotted legs. Aircraft 1
is arriving at airport C and aircraft 2 just departed from B, at
landing of aircraft 1, it can swap the remaining of its flights
taking the C to D leg. Aircraft 2 will therefore operate the C
to E leg.

V. Results
A. Parameters

All the parameters tuned in the model are:
• 𝛾 the discount factor, see III-B2.
• 𝑐 the exploration control parameter when using UCB

bandits, see Equation 7.
• 𝑝𝑑 the probability of introducing a severe delay on each

flight, a severe delay is 3h.
• 𝑞𝑖 the initial value of the 𝑄 matrix.

For the experiments, the parameters (𝛾, 𝑐, 𝑝𝑑, 𝑞𝑖) =
(0.95, 10, 0.06, −9 ⋅ 104) have been used.

B. Learning process
To verify that the agent learns and performs better, a metric

from [21] will be used. At the beginning, random states are
taken by following a random policy along an episode. Then
during the training, at each time step, with 𝑆 the set of selected
states and 𝒜 the set of available actions, is computed

1
𝑐𝑎𝑟𝑑 𝑆 ∑

𝑠∈𝑆
𝑚𝑎𝑥
𝑎′∈𝒜

𝑄(𝑠, 𝑎′). (8)

This metric thus gives an indication of the evolution of the
discounted reward expectation through training.

Figure 5 shows this metric used with both observations.
The second observation type seems to perform better since
it reaches the −8 ⋅ 104 of expected discounted reward in
approximately 1,000 trainings whereas the first observation
type does not even reach the −8 ⋅ 10−4 in 5,000 trainings. The
overall increase asserts that the agent learns how to perform
better, since its expectations of rewards are getting higher. The
sudden falls may be interpreted as the agent realising that
delays might happen.

C. Comparing with the idle behaviour
The usability of the algorithm is determined by asserting

whether it performs better than doing nothing. Figure 6 shows
the boxplots of the distribution of rewards (i.e., negative cost
of delay at the end of the day) for the agents and the idle

Eighth SESAR Innovation Days, 3rd – 7th December 2018

6



0 1,000 2,000 3,000 4,000 5,000

−8.5

−8

⋅104

episode

𝔼
(∑

𝑡𝛾
𝑡 𝑟 𝑡

)

obs.1
obs.2

Figure 5. Average maximum Q values over 5000 episodes with 𝑝𝑑 = 0.06,
𝑐 = 10, 𝛾 = 0.95, 𝑞𝑖 = −90, 000.

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
⋅106

ag. 1

idle

ag. 2

reward

Figure 6. Comparing the idle behaviour with the agent. Agent 1 uses the
first observation type while agent 2 uses the second. Both agent have been
trained over 20,000 episodes.

behaviour. The assumption that the agent with observation
type 2 is better than the other is verified, since all displayed
quantiles are higher for the former. Comparing with the idle
agent, our trained agent seem to perform worse in general.
However, the agent 2 (with observation type 2) has a shorter
left whisker than the idle, showing that the agent is able to
recover perturbed episodes.

The fact that the agent does not perform as well as the idle
might be explained by local maxima, i.e., the agent believes
that, given a certain observation, swapping is the best idea
although it is not. Indeed, even after 20,000 episodes, it
can be seen, inspecting the details of the simulations, that
some observations have been visited only a dozen times.
This problem might be solved by training more the agent
or providing other options rather than just swapping aircraft.
The average number of swaps per simulated day of operations,
computed on 1,000 episodes ran with trained agents, are 8.7
for agent 1 and 7.3 for agent 2.

The performance observed can also be explained due to
the limited options given to the agents (swapping or not), in
some cases swapping can be a risky operation as downstream
effects can be generated. The limited set of options explains
the relatively high number of swaps performed but further
validation is also needed. The next section discusses some
future work that can be done to improve the overall final

performance of the algorithm.

VI. Conclusion
This paper presents a method based on machine learning to

deal with air traffic disruptions by doing aircraft swapping. The
model used for the algorithm is able to manage a whole fleet
of aircraft and is primarily modelling the delay propagated
through flights, as well as defining the actions that can be
performed on the fleet. The step by step dynamic of the
simulator, coupled with the cost associated with an action is
well suited for reinforcement learning.

A basic reinforcement learning algorithm, the tabular Q
learning, is presented here, along with a non trivial method
concerning action selection. The results evince some inter-
esting features, namely the ability to recover from heavily
disrupted traffic and future potential lines of research.

Further work
Concerning the algorithm, several options are possible.

The tabular method might be improved by choosing more
adequately the states. Indeed, it has been seen in Figure 5
and Figure 6 that the design of the observation impacts the
performances of the agent. These features might be chosen ei-
ther on expert knowledge, or based on analysis of the relations
between the variables of the simulator and the resulting cost.
This analysis might be done using supervised learning and
decision trees, where the tree should predict the cost based on
the variables.

More advanced reinforcement learning algorithms can be
used, such as replacing the look-up table by a neural network
such as in [22], more advanced recurrent neural networks
as in [31] or using the latest A3C (Advantage Actor Critic)
algorithm by Deepmind presented in [32].

The model can also be extended, by e.g., adding the
possibility to cancel or ferry flights. Passengers can also be
included in the model, giving the opportunity to choose to
wait for an arriving flight having delay if there are passengers
from this flight who connect with the departing flight. Aircraft
performance could also be modelled, giving the ability to
choose whether to speed up the next flight, as could the op-
portunity to choose between different routes. However, adding
all these possibilities will increase the number of possible
actions, making the above methods inefficient. To deal with
large action space, a restricted Boltzmann machine could be
used as a substitute for the look-up table, as explained in [23]
where an agent has been proved able to manage 240 actions.

More complex cost estimations could be used, for example
by incorporating explicit passenger costs.

Finally, further validation of the algorithm outcome should
be needed. However, information on aircraft swap can be hard
to obtain since available data set do not have information about
if flights were swapped or not.

References
[1] M. G. Sohoni and S. Erat, “Can time buffers lead to delays? the

role of operational flexibility,” SSRN, April 2015. [Online]. Available:
http://dx.doi.org/10.2139/ssrn.2572801

Eighth SESAR Innovation Days, 3rd – 7th December 2018

7

http://dx.doi.org/10.2139/ssrn.2572801


[2] A. Cook and G. Tanner, “European airline delay cost reference values,”
University of Westminster, Tech. Rep., 2005.

[3] A. Cook, G. Tanner, V. Williams, and G. Meise, “Dynamic cost indexing
– managing airline delay costs,” Journal of Air Transport Management,
vol. 15, pp. 26–35, 2009.

[4] L. Delgado, J. Martín, A. Blanch, and S. Cristóbal, “Hub operations
delay recovery based on cost optimisation – dynamic cost indexing and
waiting for passengers,” in Proceedings of the 6th SESAR Innovation
Days, 2016.

[5] H.-W. M. Vos, B. F. Santos, and T. Omondi, “Aircraft schedule recovery
problem – a dynamic modeling framework for daily operations,” Trans-
portation Research Procedia, vol. 10, pp. 931 – 940, 2015, 18th Euro
Working Group on Transportation, EWGT 2015, 14-16 July 2015, Delft,
The Netherlands.

[6] J.-M. Cao and A. Kanafani, “The value of runway time slots for airlines,”
European Journal of Operational Research, vol. 126, no. 3, pp. 491 –
500, 2000.

[7] N. Kohl, A. Larsen, J. Larsen, A. Ross, and S. Tiourine, “Airline dis-
ruption management—perspectives, experiences and outlook,” Journal
of Air Transport Management, vol. 13, no. 3, pp. 149 – 162, 2007.

[8] Y. Hu, B. Xu, J. F. Bard, H. Chi, and M. Gao, “Optimization of
multi-fleet aircraft routing considering passenger transiting under airline
disruption,” Computers & Industrial Engineering, vol. 80, pp. 132 –
144, 2015.

[9] M. Løve, K. R. Sørensen, J. Larsen, and J. Clausen, “Using heuristics
to solve the dedicated aircraft recovery problem,” Central European
Journal of Operations Research, vol. 13, no. 2, pp. 189–207, jun 2005.

[10] EUROCONTROL, “Coda digest 2017, all-causes delay and cancellations
to air transport in europe,” EUROCONTROL, Tech. Rep., 2017.

[11] J. Clausen, A. Larsen, J. Larsen, and N. J. Rezanova, “Disruption
management in the airline industry – concepts, models and methods,”
Computers & Operations Research, pp. 809–821, 2009.

[12] J. A, Y. G, K. N, and R. A, “A decision support framework for airline
flight cancellations and delays,” Transportation Science, 1993.

[13] T. Andersson and P. Värbrand, “The flight perturbation problem,”
Transportation Planning and Technology, vol. 27, no. 2, pp. 91–117,
2004.

[14] R. J, J. E, and N. G, “Rerouting aircraft for airline recovery,” Trans-
portation Science, 2003.

[15] M. F. Argüello, J. F. Bard, and G. Yu, Models and Methods for Managing
Airline Irregular Operations. Boston, MA: Springer US, 1998, pp.
1–45.

[16] Y. Hu, Y. Song, K. Zhao, and B. Xu, “Integrated recovery of aircraft and
passengers after airline operation disruption based on a grasp algorithm,”
Transportation Research Part E: Logistics and Transportation Review,
vol. 87, pp. 97 – 112, 2016.

[17] A. Cook, L. Delgado, G. Tanner, and S. Cristóbal, “Measuring the cost
of resilience,” Journal of Air Transport Management, vol. 56, pp. 38 –
47, 2016, long-term and Innovative Research in ATM.

[18] A. Cook, G. Tanner, and A. Lawes, “The hidden cost of airline
unpunctuality,” Journal of Transport Economics and Policy, vol. 46,
pp. 157–173, 2012.

[19] A. Cook, G. Tanner, and S. Anderson, “Evaluating the true cost to
airlines of one minute of airborne or ground delay,” EUROCONTROL
and University of Westminster, Tech. Rep., 2004.

[20] S. Melax, https://melax.github.io/tetris/tetris.html.
[21] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-

stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” in NIPS Deep Learning Workshop, 2013.

[22] G. A. Rummery and M. Niranjan, “On-line q-learning using connec-
tionist systems,” Cambridge University Engineering Department, Tech.
Rep., September 1994.

[23] B. Sallans and G. E. Hinton, “Reinforcement learning with factored
states and actions.” Journal of Machine Learning Research, vol. 5, pp.
1063–1088, 08 2004.

[24] L. Buşoniu, R. Babuška, and B. D. Schutter, “Multi-agent reinforcement
learning: An overview,” Studies in Computational Intelligence, vol. 310,
pp. 183–221, 2010.

[25] C. J. Watkins and P. Dayan, “Q-learning, machine learning,” Machine
Learning, pp. 279–292, 1992.

[26] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 2017.

[27] ComplexityCost project, “D4.5 – Final Technical Report,” SESAR JU,
Tech. Rep., 2016.

[28] Vista project, “D5.2 – final assessment report,” Deliverable 5.2 of the
Vista project, available on demand, SESAR JU, Tech. Rep., 2018.

[29] EUROCONTROL, “DDR2 reference manual for generic users,” EURO-
CONTROL, Tech. Rep. V. 2.9.4, 2018.

[30] European Commission, “Regulation (EC) No 261/2004 of the European
Parliament and of the Council of 11 February 2004 establishing common
rules on compensation and assistance to passengers in the event of denied
boarding and of cancellation or long delay of flights, and repealing
Regulation (EEC) No 295/91,” European Commission, Tech. Rep., 2004.

[31] B. Bakker, “Reinforcement learning with long short-term memory,” in
Proceedings of the 14th International Conference on Neural Information
Processing Systems: Natural and Synthetic, ser. NIPS’01. Cambridge,
MA, USA: MIT Press, 2001, pp. 1475–1482.

[32] V. Mnih, A. P. Badia, M. Mirza, A. Graves, D. Silver, T. Harley, T. P.
Lillicrap, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International Conference on Machine Learning,
2016.

 

 
Eighth SESAR Innovation Days, 3rd – 7th December 2018 

 

 

 

 

 

 

8

https://melax.github.io/tetris/tetris.html

	Introduction
	Literature review
	Disruption management
	Reinforcement learning

	Model
	Reinforcement learning model
	The Q learning model
	Principle
	Parameters
	General algorithm
	Implementation

	Disruption management problem description
	Scope of model
	Delays and uncertainty
	Sources of delay

	Exceptional delays
	Calibration and validation
	Costs
	Simulator as reinforcement learning environment
	Actions
	Reward

	Experimental setup
	Schedules
	Observations and actions
	Observation
	Action


	Results
	Parameters
	Learning process
	Comparing with the idle behaviour

	Conclusion
	References



