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Abstract—This paper presents a machine learning algorithm 
trained to predict the actual runway occupancy times at Vienna 
airport. Runway occupancy times are usually estimated by 
individual studies on previous operations or analytical methods. 
However, due to the uncertainty of the actual operations, wide 
safety margins need to be applied by air traffic controllers. 
Finding an acceptable compromise between the maximisation of 
the throughput and minimisation of the risk may improve runway 
utilisation. In the future, machine learning models could boost 
controllers’ confidence b y g iving m ore a ccurate p redictions on 
expected runway occupancy times, resulting in a smaller buffer 
that ultimately increases capacity without compromising safety 
levels.

The training of the machine learning model is focused on 
runway 34 of Vienna airport. Different predictive models com-
pute the expected runway occupancy time and expected exit 
at different distances from threshold. Features are engineered 
based on meteorological conditions, sequence of flights, aircraft 
trajectories and flight plan. At the end of the paper, a  l ist of the 
relevance importance of precursors is presented exactly at the 
threshold and 2NM ahead of it.

Keywords—Runway occupancy, prediction, machine learning, 
lightGBM.

I. INTRODUCTION

In the past, the most commonly used approach to increase
airport capacity was to modify infrastructure, e.g. additional
runway or terminals. However, this approach is difficult and
costly to implement. On the other hand, recent developments
in Artificial Intelligence and Machine Learning (ML) have
proven to be more efficient in optimizing systems through data
analytics. A representative indicator of airport performance
is the Runway Utilization (RU), i.e. the sum of the Runway
Occupancy Times (ROTs) of all the landing flights divided
by the total time of use of the runway. For each landing
flight, the ROT is defined as the time interval from the instant
the flight surpasses the threshold to the instant it vacates
the runway completely. Therefore, the RU is maximised by
minimising the aggregated ROTs. Hence, the obvious approach
to the problem is to study whether a decrease of the ROT is
feasible [1]–[6]. From previous works, two drawbacks in the
RU studies can be extracted: (a) all previous models try to
manually classify aircrafts into groups and fail to differentiate
performance characteristics; and (b) as claimed by Koenig [4]
in the 70’s, a strategy based in minimising the ROT can be
highly influenced by pilot/airline motivations, e.g. a pilot may
spend more time on the runway for a better exit . This adds the

complexity of non-trivial and most likely unknown incentives
of airlines and pilots.

In recent years, airport control has turned towards another
type of solution for RU optimisation: controlling the time
between consecutive landing flights. Time Based Separation
(TBS) [7]–[10] is a new operating procedure for separating
aircraft by time. While this effectively introduces a more
robust and resilient strategy, it still raises some issues due to
separation being predefined by weather conditions and aircraft
types. In fact, the ROT might depend on several other factors
unknown to the ATCO. In this context, Machine Learning can
be a powerful tool in accounting for more potential factors,
i.e. features, and measuring their impact on ROT predictions,
i.e. precursors.

In fact, the risk associated with decreased separation be-
tween flights is highly dependent on the risk assessment
of the controlled. This becomes particularly important in
High Intensity Runway Operations (HIRO) periods where
the amount of stress on the controllers and the higher level
of risks might directly impact their optimisation of runway
throughput. Currently, no human support system assists the
arrival manager (AMAN) and departure manager (DMAN) on
predicting runway exits and ROTs.

We propose the first steps towards a predictive analytics
tool that could help controllers deal with such complex and
high risk assessment tasks. This tool specifically identifies
the precursors causing higher than average ROTs, mostly by
assessing the chances of a flight not taking the procedural
exit. This paper presents a novel data-based approach: by using
predictive modelling techniques, key predictor variables can be
extracted from a set of observations. It is important to note that
the predictive model only uses information available before the
threshold to make the prediction and whole flight information
to train the model.

This paper falls under the scope of the H2020 ”Safe-
Clouds.eu” project that aims to increase safety levels by using
big data. This paper uses the SafeClouds platform called
DataBeacon. DataBeacon enables safe data sharing using de-
identification techniques called Secure Data Frames or SDFs.
Because of this, the model was trained using a rich variety
of data sources and the future plans include expanding over
more datasets - thus the relevance of ”SafeClouds.eu” and
DataBeacon.

The paper is organised as follows: Section II provides a de-
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TABLE I
AIP EXIT TAXIWAY DESIGN

Aircraft ICAO Category Procedural exit taxiway code Percentage

Heavy B4, B5 10%

Medium B5, B7 80%

Light B7, B9 10%

scription of the key characteristics of Vienna Airport (LOWW)
and the data available. In Section III, the predictive model is
presented with an efficient and powerful classification boosted
tree along with the problem tackled. In Section IV, variables
and potential precursors are explored and then extracted using
feature engineering techniques. These features are then used
in a statistical learning approach to predict the runway exit
in with a binary classification and ROT with a regression
in Section V, with a post-analysis of the results. Finally,
conclusions and directions for future work are presented in
Section VI.

II. VIENNA AIRPORT CHARACTERISTICS

The factors influencing actual runway occupancy times are
sometimes not obvious and difficult to assess, even for experts.
For example, some pilots familiar with an airport may take a
further exit in order to be closer to the assigned gate, especially
if they are already delayed. In order to successfully build a
machine learning model to predict ROT, it needs to be tuned
specifically for the target airport and its own characteristics
such as topology, layout, design of the runways and exits. In
our case, the model covers Vienna airport (LOWW), which has
2 runways used in both directions (R11/R29 and R16/R34 - see
Fig. 1). Runway R34 will be the main focus as it concentrates
46% of the traffic. Fortunately, because of the orientation of
this runway, certain aspects such as the distance to the gate
mentioned before are not that relevant. Future studies will
include runway R29 and test whether there is a difference
between the influence of the assigned gate in both runways.

Landing distance and ROT are known to be influenced
by airport characteristics such as runway length, slope, exit
taxiway angle with respect to the runway [4]. However, with
this unique airport, those parameters can be considered as
the same for all the landing aircrafts. From a statistical
point, the variables remain constantly distributed for every
sample in the dataset. Landing distance and ROT are also not
perfectly correlated. For example, the same landing distance
can correspond to different ROTs because of different break
profiles and velocities. The study does not take into account
specific engineering aircraft technologies such as ”brake-to-
vacate”, which could influence the ROT. In general terms,
those flights will be considered outliers. In spite of this,
some particular characteristics of the airport configuration are
relevant and will be confirmed by statistical analysis later on:

ATCOs use a mixed-operation configuration in R34 (i.e.
both departure and arrivals on the same runway) in HIRO situ-
ations. Obviously, the risk level of a higher runway utilisation
in such conditions might be higher because of the reduced

Figure 1. LOWW Runway Design

buffer between planes. Therefore, airport configuration should
be included as a potential precursor (or a proxy of it, as the
configuration was not available in the data and needed to be
engineered - see Section IV for more details).

The Aeronautical Information Publication (AIP) of LOWW
stipulates that ”To minimise the runway occupancy time, pilots
should make use of the following procedures: (a) In general,
an exit taxiway should be planned which is used after landing
under normal circumstances. Missing an earlier exit taxiway
and continuing slowly to the next exit taxiway should be
avoided; and (b) If possible, the runway should be vacated via
the defined exit taxiway for each aircraft category”. In other
words, there are advised, but not obligatory, exits depending
on the aircraft category (Heavy, Light, Medium, etc). One
particular problem is the imbalanced distribution of categories
for arrivals at LOWW airport, which is estimated at 80%
Medium, 10% Heavy and 10% Light.

III. PROBLEM ASSESSMENT

To develop a reliable pattern recognition algorithm, not only
does the exit and/or the runway occupancy time of a aircraft
need to be predicted, but a precursors analysis must also be
performed in order to ensure that the ATCOs have relevant,
reliable and detailed information before the actual landing
when it is still useful. Experts from AUSTROCONTROL
(ATCOs of the Vienna airport) have mentioned the potential
benefits, stress-wise and risk-wise, of ATCOs getting access to
robust predictions of a flight not taking the recommended exit.
These predictions can cover aircraft spending additional time
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on the runway and help identify situations that could force a
”go-around” if the runway is not vacated as expected.

Taking into consideration the ATCOs requirements and
goals, the problem can be summarised into two research
questions:

• With what accuracy can we predict flights bypassing the
exit taxiway defined in the AIP when the aircraft is 2NM
away from threshold?

• What is the error related to the forecast of the runway
occupancy time (from threshold to complete exit taxiway)
when the landing aircraft is 2NM away from threshold?

From the Machine Learning perspective, the first question
corresponds to a binary classification problem, i.e. ’0’ for the
cases in which the aircraft took the defined exit and ’1’ for
the cases in which it didn’t. The second question corresponds
to a regression problem, i.e. the ’prediction’ of a continuous
value.

The instant in which the prediction is made has been initially
set to 2NM before threshold. As stated by ATCO experts,
2NM before threshold represents an approximation of their
time-window of focus. Indeed, ATCOs usually focus their
attention on the flights close to landing and do not rely as
much on previous information. The controllers involved in
SafeClouds.eu have decided that 2NM should be the reference
distance; just enough time to react but narrow enough of a
window to reduce the number of possible unwanted alerts.

In the dataset, 74% of the flights exit through the expected
taxiway. Therefore, 26% of the flights behave ”abnormally”
by not taking the expected exit. This means that the data
is ”imbalanced”. As an initial study, the Machine Learning
problem presented in this section has been tackled as a
balanced problem, further work is envisaged using specific
imbalanced-class mathematical machinery.

IV. METHODOLOGY
A. Data

The data was provided by AUSTROCONTROL and covers
the whole 2015 and segments of 2014 and 2016. It contains:

A radar track database - a concatenation of 4D trajecto-
ries for flights defined by their callsign, date, aircraft reg-
istration and ICAO category. Each trajectory is defined as
P ∗
i = [t∗i , X

∗
i , Y

∗
i , Z

∗
i , R

∗
i , V

∗
i ] where each line of Pi accounts

for a new timestamp ti; (Xi, Yi, Zi) stands for the latitude,
longitude (in degrees) and Flight Level of the flight; Vi records
the velocity of the flight and Ri is a boolean that values 1
whenever the position of the aircraft is between the runway
threshold and an exit taxiway. The resulting matrix is of
size (ni, 6), ni being the number of observations of that
particular flight i. The overall radar track database is therefore
a concatenation of all the Pi of size (

∑
i ni, 6).

An airport information database which returns the callsign
and date of the flights along with some planned information as
the Estimated Time of Arrival (ETA), departure and arriving
airports, runway and gates assigned.

Different meteorological databases such as METAR,
SNOWTAM or WMA. The information can be redundant

among the different datasets, but of relevance, wind speed,
visibility and QNH were available.

Radar Track and Airport information databases are merged
together using callsigns and dates as unique keys, which filters
the data as such: (a) flight trajectories spotted by the radar but
not landing or departing from the airport are automatically
discarded; (b) Matching uncertainties (e.g. redundant callsign
over a same day) are also discarded. Note that, in this
deliverable, only landings are taken into consideration and
only those that correspond to the studied runway. This final
part of the data consists of 59.369 flights.

The parameter Zi is an altitude with respect runway. This
altitude is seen as a ”flight level” that is normally below the
transition altitude, and as a result depends on an isobaric
pressure reference that may change. Also, the distance to
arrival is absent from the data, therefore making it difficult
to identify the point of prediction (2NM) as described in
our forecasting problem. Thus, it is necessary to format
and complete the original data. The dataset incorporates the
following modifications:

Distance from arrival The vector of distances of the
flight (at each time stamp) D∗

i from the reference point T,
which indicates the threshold of runway 34, is added. The
threshold T coordinates are defined as (Xthres, Ythres, Zthres)
as (48.092222, 16.596667, 597). For each trajectory point, Di

is calculated as the great-circle distance from T, using the
Haversine formula:

A = sin2(
Xi −Xthres

2
)+cos(Yi)cos(Ythres)sin

2(
Yi − Ythres

2
)

D = 2.H.atan2(
√
a,
√
1a)

with coordinates in radian and H = R + ELOWW , R being
the mean radius of the earth and ELOWW = 597ft being the
elevation of the runway 34.

Flight Level to Altitude Merging the data has also al-
lowed to link all flights with a specific atmospheric pressure
measured and reported in the METAR as the QNH (Query:
Nautical Height). It is possible to approximate the altitude
from the flight level using the following formula:

Zi(NM) = Zi(FL)∗100++
288.15

0.0065 ∗ 0.3048
(
QNH

1013.25

0.0065∗287
9.81

−1)

Angle to runway The angle, with respect with direction
of the runway, has been computed. It shows the variation
in trajectory with respect to the direction of the runway and
indirectly to the ILS. The angle, in radians, is calculated with
respect to the threshold coordinates as:

φi = arctan(
Xi −Xthres

Yi − Ythres
)

Energy The energy of the flight might also seem a value
interesting to manufacture. However, the kinetic energy of a
flight depends on its mass. One solution around the problem
is to compute the amount of energy per unit of mass. Another
column has been added:
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KEi = Zi − ELOWW +
V 2
i

2.g
)

Zi being in NM and g being the acceleration of gravity on the
surface of the earth at sea level.

B. Feature Engineering

Table II presents the most promising list of features ex-
tracted from a preliminary data mining exercise. Note that,
though not all of them are going to be relevant precursors,
it is necessary to calculate them from the raw data in order
to assess their relevance. Table II presents both engineered
features and available data within the databases. Also, please
note that some features are static information related to the
flights and sometimes to the weather; others are extracted
from dynamic characteristics of the flights (trajectories time
series, distances and angles, etc.). Static information does not
convey problems and consists of unique information per flight
(e.g. type of aircraft, state of the runway, etc.). Dynamic
information, such as position, velocity, etc. are much more
complex to understand physically in a model and to process
in a learning algorithm as the amount of observations per flight
is too high (>100), therefore increasing over-fitting (curse of
dimensionality [11]). Unless specific dynamic models are used
(such as state space models, LTSM etc.), a strategy is needed
to handle all the input time series. A two-step approach has
been used:

1) Time-Series are sub-sampled. This is the process of
reducing the number of samples of each series without losing
significant information for the case study. In this particular
case, only the information at [10, 9.5, . . . , 2.5, 2]NM has been
considered instead of the whole time series using the already
computed value Di. The sub-sampling granularity normally
reduces the computational requisites of the pre-processing
steps as the expense of losing some information. In our case,
similar results are expected independent of the granularity of
the sampling.

2) Then features extraction is performed based on a pre-
liminary data inspection and on domain-experts (pilots and
ATCOs) experience. The extraction was also performed using
a non-supervised clustering of the time series in order to
recognise patterns. However, the results of the clustering were
not satisfactory, partially due to mediocre tuning of the hyper-
parameters.

In Table II, the features that have been extracted from
the data or engineered are presented. An additional column
differentiates between original features (raw information pre-
sented the dataset) or engineered features (calculated during
the analysis). Notice that the model is being trained with 26
engineered features and only 4 ”original” features . This is in-
tended as, apart from reducing the dimensionality of the time-
series, the nature of the machine learning algorithm used also
influences that decision. While a powerful enough algorithm
can identify how using QNH to transform the Flight Level
into altitudes helps improve predictions, many processing steps
are too complex for an algorithm to automatically learn the

patterns without some guidance. Note that some studies like
to use data reduction techniques, eg. Principal Component
Analysis (PCA), for those situations. However, the features
extracted using this methodology are not easily interpretable
and not useful in the precursor analysis.

The final dataset defined to the learning algorithm is of
shape (59369, 34), with 59.369 being the number of flights
and 34 the number of features used to train the model.

C. Machine learning algorithm

Gradient Boosting (GB) Frameworks (also known as Gra-
dient Boosting Machines, GBM) [12] are powerful techniques
for building predictive models. They select an arbitrary dif-
ferentiable loss as the objective function and uses an additive
model of many weak learners - typically regression trees - to
minimize this loss. The parameters of the additional decision
trees are tuned by a gradient descent algorithm. This method-
ology has gained popularity recently alongside continuous
development of the well-established Random Forest algorithm
[13]. The main advantage of using GBMs over other ML
algorithms is that the model is iteratively trained. For each
new round, the model uses data samples that were ”difficult”
to learn in previous iterations. This is perfect behaviour for
this particular problem in addressing the 26% of flights that
are not taking the AIP exit.

There are two iwdely-used GBMs in the data science
community: XGBoost [14] and LightGBM [15], [16]. The
former is very popular among Kaggle community and has
been used for many competitions. The latter is a newcomer
with several improved features and has already been applied
successfully to fields like genomics [17] or acoustics [18]. All
these methods can be used both as a classifiers or as regressors.
Specifically, LightGBM:

• Uses histogram based algorithms, which aggregates con-
tinuous features into discrete bins to speed up training
and reduce memory usage.

• Grows the tree leaf-wise, which can reduce even more
the loss than a level-wise algorithm.

They are very similar in practice and when comparing
results of using Random Forest, XGBoost and LightGBM.
However, LightGBM had slightly better overall classification
accuracy. As a result, LightGBM was chosen as the Machine
Learning algorithm (for both classification and regression)
used in all the presented experiments.

D. Cross-validation

When evaluating the performance of a binary classification
using Machine Learning algorithms, classical performance
metrics, such as plain accuracy, are usually not enough. False
positives and false negatives are usually overlooked when only
accuracy is used to understand the classifier. In this case
study, a higher rate of false-negatives has arguably bigger
consequences than a higher rate of false-positives. A false
positive alert would only trigger the attention of the controller
to a trivial situation (potentially distracting her from a riskier
situation requesting attention). However, false negatives might
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Name Source O/E Description
aircraftRegistration x Radar track O Registration tail of the aircraft
ICAOCategory x Radar track O ICAO category of the aircraft, i.e. Light, Medium or Heavy
arrivalGate Airport information O Expected Gate in the Flight Plan

mixedOperation Airport information E
Computed from airport information. Mixed Operation is fixed
as True when at least one departure and one arrival are
detected in the runway in the preceding 15 minutes.

groundVisibility m METAR O Visibility measured by METAR

isRunwayWet METAR E Binary feature indicating if there is information on abnormal
friction on runways R88, R34 or R16 in the METAR report.

windGust METAR E Binary feature indicating if there is a wind gust value in the
METAR report or not.

windSpeed trans kts METAR E

Wind values reported by METAR are directed to the true
north, a simple trigonometric correction has been applied to
extract the perpendicular projection of the wind with respect
to the runway: vwind.cos(αwind − 250) being vwind the
reported wind speed (kts) and αwind the reported wind
direction (degrees).

windSpeed parallel kts METAR E

Wind values reported by METAR are directed to the true
north, a simple trigonometric correction has been applied to
extract the parallel projection of the wind with respect to the
runway: vwind.sin(αwind−250) being vwind the reported
wind speed (kts) and αwind the reported wind direction
(degrees).

badVisibility METAR E
Binary Feature indicating if cloud layer opacity reported by
METAR is higher than 5 okt and if the cloud layer height is
less than 1500 ft.

Throughput Airport information E

Based on Estimated Times of Arrivals available on the airport
information database, the calculated estimated throughput of
arrivals within the hour (i.e. 30 minutes before to 30 minutes
after the ETA of the observed flight)

aircraftRegistration y Airport information E
The following aircraft is extracted from the airport informa-
tion, based on the ETAs. See discussion on the possible noise
this introduce.

ICAOCategory y Airport information E The following aircraft category (i.e Light, Medium or Heavy)

Distance next flight Radar track E The following flight distance from arrival when the observed
aircraft is at distance of prediction (e.g. 2NM)

velocity next flight Radar track E The following flight velocity when the observed aircraft is at
distance of prediction (e.g. 2NM)

number breaks Radar track E

The number of significant decelerations that the aircraft
performed during landing phase up until the distance of
prediction. The threshold for significance has been chosen
manually.

max break Radar track E The value of the highest deceleration.

max break distance Radar track E The distance from arrival at which the highest deceleration
happened.

number acceleration Radar track E The number significant accelerations the aircraft performed
during landing phase up until the distance of prediction.

max acceleration Radar track E The value of the highest acceleration.

max acceleration distance Radar track E The distance from arrival at which the highest acceleration
happened.

mean slope Radar track E The mean slope of speed during landing phase over the
subsampled trajectory.

large angle Radar track E The angle between aircraft position at 10NM and the direction
of the runway.

adherence distance Radar track E The distance at which the aircraft angle with respect to the
direction of the runway is inferior to 1

num flat intervals Radar track E The number of 0.5NM intervals in which the flight remained
at the same altitude.

last energy Radar track E Normalised Energy at 2NM.
mean slope energy Radar track E Slope of energy over the subsampled trajectory.
last speed Radar track E Speed at the moment of prediction.
last FL Radar track E Altitude (feet) at the moment of prediction.

last angle Radar track E Angle of the aircraft position with respect the the runway at
the moment of prediction.

delay Radar track + Airport information E

Delay is approximated computing the difference between
the moment of the prediction and the ETA. Positive values
indicate that the aircraft is already behind schedule (i.e. actual
delay).

diff speed Radar track E Difference between speed at the moment of prediction and
0.5NM before.

diff alt Radar track E Difference between altitude at the moment of prediction and
0.5NM before.

TABLE II
POTENTIAL PRECURSORS, O/E STANDS FOR ORIGINAL/ENGINEERED
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be riskier as the algorithm falsely leads the ATCOs to ex-
pect normal behaviour from the incoming plane, therefore
augmenting the risk of the situation (e.g. if the following
flight has been given the authorisation to fly closer with the
expectation of the first plane to behave normally). To take such
information into account, we compute the Receive Operating
Characteristics (ROC) curves: ROC curves are created by
plotting the true positive rate against the false positive rate.
The most widely used metric for performance is Area Under
the Curve (AUC) which equals the probability that a classifier
will rank a randomly chosen positive instance higher than a
randomly chosen negative one. In other words, the higher the
AUC, the better the classifier [19].

Although these algorithms have been trained with adequate
validation functions to measure how the Machine Learning
model fit training data, its stability needs to be validated.
This is based on the assessment of how well the learner will
generalise an independent/unseen dataset in the future, other-
wise known as cross-validation. Cross-Validation is crucial to
avoid problems such as overfitting (the model contains more
parameters that can be justified by the data) or selection bias
(the selection of training data not being properly randomised).
Cross-validation can be performed using different strategies.
In thiscase, the K-Fold Cross-Validation was used: the data
is divided in k subsets and the holdout method is repeated k
times. Each time, one of the k subsets is used as the test dataset
and the other k-1 subsets are used as the train dataset. The error
estimation is averaged over all k trials to calculate the total
effectiveness of the model. This methodology is particularly
useful because it reduces bias by using most of the data for
fitting. It also reduces the variance because most of the data is
also used in the test dataset. For the experiments, the number
of folds K were fixed at 8.

In the dataset, and due to the problem with the imbalance
in the flights taking the AIP exit, the algorithm will tend to
predict the output of the most numerous class. To contrast this
statistical effect, the stratified form of K-Fold cross validation
was used where all the folds are made by preserving the
percentage of samples for each class. This methodology,
in combination with the Gradient Boosting framework, will
almost completely tackle the problem of having imbalanced
classes.

V. RESULTS

A. Binary classification case

The results of the classification return an accuracy of
0.772 and an AUC of 0.784. These results are represented
as a confusion matrix in Figure 3, where 92% of the flights
shown taking the expected exit (i.e. stipulated in the AIP)
are classified correctly. However, it also shows that other
flights are only correctly classified 34% of times. We strongly
believe that very little improvement can be achieved through
mathematical optimisation (i.e. improving the tuning of the
algorithms or the validation strategies). The test performed by
the authors (e.g. change of number of estimates of the trees,
improve the number of folds of the validation, etc.) did not

Figure 2. Normalised Confusion matrix of the classification

improve the prediction in a significant way. This implies that
there is information about the flight that is not accounted for
and relevant to the exit deviation from the AIP.

Figure 3 offers a look at the relevant features that have been
used by the lightGBM algorithm to perform the classification.
Delay can be seen as the most important value. A delayed
flight might be more prone to take an exit close to its assigned
gate even though it is not the one stipulated by the AIP.
Hence the fact that the gate assigned is the second in line
followed by the type of aircraft. One potential reason is that
ATCOs grant pilots later exits if traffic situation permits and
it reduces the taxi-time needed for the aircraft concerned. The
alignment of the flight with the ILS glide slope as the velocity
of the aircraft remains important features. Of course, the
velocity of the following flight (i.e. next to land) is important.
AUSTROCONTROL ATCOs confirmed the importance of
such a feature as depending on the distance between both
flights and their respective velocities. If needed, they can ask
the pilot to exit early, if possible. Radio communication is
absent from accessible data, yet this particular feature might
account for situations in which ATCOs might contact the pilot
to request an early exit. (This does not account for ATCO
experiences or nature, such as being more cautious than normal
for example.)

Several questions are present at this stage: What information
can we be missing? Is it present in the data at hand at least
in an approximated way? Is it present later in time?

The same analysis was performed with all the data until
reaching threshold to find out whether something specific hap-
pens between 2NM and threshold. The results were improved
very slightly (AUC of 0.793) with the speed at threshold being
registered as the most important feature for classification (see
Fig. 4). Although such a tool (i.e. prediction at threshold)
would be useless for ATCOs, it shows that, except for value of
the speed at threshold, few things change from a prediction at
2NM. Actually, Figure 5 shows how the performances hardly
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Figure 3. Feature importance when the prediction is performed at 2NM from
threshold.

decrease even when predictions are made 5NM from threshold.
Such behaviour is two-fold: (a) the several static features

(i.e. does not change during the course of a flight, such as the
aircraft registration number) are highly ranked in the feature
importance of the classification; (b) the values of the features
(e.g. last speed) vary depending on distance of prediction.
In this scenario, variability across all flights may stay equal
given the low effect of said values on prediction, therefore
providing an equally satisfactory classification. To push this
further, all the features were discarded that have been extracted
from dynamic parameters of the flight, restraining the model
to a set of much reduced features (11 static features present
in Table 2). The result of AUC of 0.718 is surprising. In other
words, the addition of dynamic features only improves the
prediction by 9%. Figure 7. shows how the model is still able
to predict 96% of the flights following the AIP, but reduced
its precision in the other class of flights by identifying only
14% of them in comparison to 35% found in Figure 2. The
effect of dynamics features is much more appreciable this way
but still too negligible to fully cover unexpected cases. Please
refer to the discussion section for possible ways to improve
this prediction.

B. Continuous case

Here, we wanted to directly forecast the runway Occupancy
Time of the flight using the same features as before. light-

Figure 4. Feature Importance when prediction performed at threshold.

Figure 5. AUC as a function of prediction distance.

GBM and other tree decision-based algorithms also propose
a solution for that. The forecast of a continuous variable
involved performing not only the splitting of each feature, but
a regression for each new sub-sample created. Based on that,
a prediction has been obtained with a mean absolute error of 8
seconds. Taking into account that the mean ROT in LOWW is
of 49.66 seconds with a standard deviation of 14.4, the results
can seem satisfactory at first. Figure 8. shows how slightly
more than 80% of the ROTs are predicted with less than 14
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Figure 6. Cumulative Probability of Occupancy time prediction Error

Figure 7. Absolute Error distributions

seconds of error, which is the standard deviation of the real
ROT.

However, a closer look shows that this model suffers from
the same limitations as the binary classification presented
before. In post-analysis, dividing the flights into those that
actually followed the AIP and those that didn’t, the MAE
passes from 5.7 seconds to 15 seconds for, respectively, a
mean ROT of 45 and 62 seconds. In other words, the ratio
error to value passes from 12.5% to 24%, underlining once
again how the models struggle to correctly identify the flights
not following the norm.

VI. DISCUSSION

Within this contribution we pave the way towards a machine
learning tool that would provide ATCOs a more accurate
forecast of the behaviour of the landing flights. In the future,
such a tool could help ATCOs confidently reduce the sepa-
ration between consecutive flights and maximise the runway
occupancy while keeping or improving its safety.

The first step consists of a quantitative assessment of the
knowledge present in the data available to ATCOs. Based on
their operational data, we have been able to train a model that
accurately predicts (96%) when a flight will take an expected
exit. However, the model can only spot 36% of flights that
behave against the AIP specifications. When the same problem
is formulated in a continuous way, the model is able to predict
the ROT of the landing flight with an average absolute error
of 8 seconds, which is reduced to an average absolute error of

5.7 seconds when the flight behaves as expected by the AIP
and 15 seconds otherwise.

In light of the results, three improvements are to be devel-
oped further:

First, considering that the landing procedures are three-
fold : a) the flare manoeuvre, b) the point of the main gear
touchdown to the point where the nosewheel touches down,
and c) the ground braking distance and roll. ROT depends on
the aircraft braking capability and on the pilots technique and
preference, but ATCOs have no information regarding braking
technique. The next step in SafeClouds.eu is to take advan-
tage of the presence of Flight Data Monitoring information
in order to complete the features with specific information
regarding the pilot braking plans (e.g. AUTOBREAK status,
whether spoilers have been armed before 2NM, etc.). If such
information helps improve the prediction, the next step would
be to find a proxy for these elements (e.g. if weight, available
in FDM, is an important parameter for the model, data mining
techniques can infer them from trajectories [20]). If such proxy
is not possible, this will emphasize the need of more data
sharing to the ATM/ATC community.

Second, it is still possible to improve the model presented
in this contribution. We suspect a considerable amount of
noise to be present in the data. For example, the filtering done
(i.e. matching irregularities) might cause information such as
the identification of the next landing flight to be spurious. In
addition, the actual tool uses the estimated time of arrivals to
spot the next landing flight. While such a solution helped limit
the computer requirements of the pre-processing steps, such
a gain comes at a cost as next flight identification might be
erroneous. A searching algorithm should be added in order to
ensure the next landing flight in real-time.

Finally, the data processed here do not reflect the reality of
the operational environment of the ATCOs. ATCOs can request
early exits from the pilots through radio communication with-
out any recording of the event. The presented work has tried
to create features that would identify such events (e.g. sudden
and strong deceleration), however, the results are mitigated.
FDM presents a specific feature which states the status of the
radio communication that may help in that sense, but from
the ATC perspective, new features should be found in order
to better cover those cases.

These results and the rest of SafeClouds.eu project will
hopefully pave the way towards a complete understanding of
runway occupancy precursors and how to forecast them using
available data. More airports are joining SafeClouds.eu to help
improve the tool presented in this study. Such tools might be a
good addition to the TBS protocol already tested and validated
in several airports in Europe, such as Heathrow.
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