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Abstract— The optimisation of the aircraft route taking into 

account wind and temperature uncertainties is addressed in this 

work. These uncertainties are obtained from ensemble weather 

forecasts. A structured airspace is considered, which is defined 

by a set of waypoints and a set of allowed connections between 

each pair of waypoints. The analysis is focused on a cruise flight 

composed of several segments connecting given waypoints. The 

optimal route is seen as a path in a graph. The optimal path is 

obtained by applying a Mixed-Integer Linear Programming 

algorithm. The objective is to perform a trade-off between 

efficiency (minimum average flight time) and predictability 

(minimum dispersion of the flight time). Results are presented for 

a given trans-oceanic route, considering a real ensemble weather 

forecast. 

 Keywords- probabilistic trajectory optimisation; weather 

uncertainty; ensemble weather forecasting 

I. INTRODUCTION

From the operational point of view, trajectory optimisation 

is a subject of great importance in Air Traffic Management 

(ATM). It aims at defining optimal flight procedures for a 

given aircraft mission that lead to cost-efficient flights. Aircraft 

trajectory optimisation is an important tool to improve the 

efficiency of operations and, therefore, it contributes to 

enhance the efficiency of the ATM system. 

A promising approach to improve the ATM system 

performance while maintaining high safety standards is to 

integrate uncertainty information. Among the various 

uncertainty sources that affect the ATM system, weather has 

perhaps the greatest impact. In particular, weather uncertainty 

has an important impact on the route planning process. Nilim et 

al. [1] develop a dynamic routing strategy for the en-route 

portion of flights subject to adverse weather; they minimise 

delays modelling the weather processes as stationary Markov 

chains. Grabbe et al. [2] design a sequential optimisation 

method for traffic flow management, accounting for imperfect 

weather information, with strategic and tactical control loops; 

at the tactical level, weather-avoidance rerouting is 

implemented using a deterministic Dijkstra's algorithm. Sauer 

et al. [3] analyse the uncertainty related to the displacement and 

growth of thunderstorm nowcasts to enhance an adverse 

weather avoidance model for aircraft routing. 

In this paper, the optimisation of the aircraft route taking 

into account wind and temperature uncertainties is addressed; 

adverse weather phenomena are not considered. The wind and 

the temperature uncertainties are obtained from ensemble 

weather forecasts, and the analysis is focused on the cruise 

flight. Girardet et al. [4] propose an algorithm for optimal path 

planning in the presence of a deterministic, static wind field, 

and develop an adaptation to spherical coordinates, especially 

suitable for long flights. The algorithm is applied to provide 

minimum-time trajectories, considering a kinematic model for 

the aircraft motion. An analysis of wind-optimal cruise 

trajectories using ensemble probabilistic forecasts together with 

a robust optimal control method is performed in Gonzalez-

Arribas et al. [5]; the objective is to provide free-flight 

trajectories that minimise a linear combination of the mean 

flight time, the mean fuel consumption and the difference 

between the maximum and the minimum values of the flight 

time; a dynamic model for the aircraft motion is considered, 

with a variable airspeed; the wind field considered for the case 

study is static, although the authors claim that the methodology 

is applicable to time-dependent wind fields. As a free-flight 

environment is far from being a reality, Rosenow et al. [6] 

develop an algorithm to adapt optimal free-route trajectories to 

the current navaids infrastructure.  By applying filtering and 

smoothing processes to the waypoints and airways, the authors 

come up with an adapted trajectory, which is claimed to be 

efficient for being close to the free-flight optimal one. 

The main objective of this work is to develop a 

methodology capable of finding stochastic optimal paths, 

within a structured airspace, in presence of uncertain winds and 

uncertain air temperatures. The wind and temperature fields are 

provided by an ensemble weather forecast, which is obtained 

for an intermediate lead time between departure and arrival. As 

in [5], both the mean flight time and the difference between the 

maximum and the minimum values of the flight time are 

included in the objective function; however the main 

contribution with respect to [5] and [6] is the explicit 

consideration of a structured airspace, which is a more 

appropriate assumption not only for the traditional air route 

network, but also for the new free-route airspace concept, 

because both make use of predefined waypoints. 
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Figure 1.  Methodology proposed for optimal path planning. 

 

II. PROBLEM FORMULATION AND METHODOLOGY 

In this Section, the optimisation of the aircraft route taking 

into account weather uncertainty is formulated, and the 

resolution methodology is explained. In particular, a stochastic 

trajectory optimiser has been developed, composed of several 

blocks depicted in Fig. 1.  

First, ensemble weather forecasting is addressed in 

Section II.A, as it is the way used in this work to quantify wind 

and temperature uncertainties. Second, as the analysis is 

focused on the cruise flight, the airspace structure considered is 

described in Section II.B, and the procedure to obtain the flight 

time is developed in Section II.C; the resulting equations are 

the base of a deterministic trajectory predictor. Then, the 

ensemble trajectory prediction approach is explained in Section 

II.D. Finally, the methodology proposed for stochastic optimal 

path planning is described in Section II.E. 

A. Ensemble weather forecasting 

To model weather for strategic planning horizons, a 

probabilistic approach is the appropriate one, so that the 

inherent weather uncertainty can be taken into account. The use 

of probability forecasts is currently encouraged by 

meteorologists. For instance, the American Meteorological 

Society [7] recommends to substantially increase the use of 

probability forecasts, because they enable users to make 

decisions based on quantified weather uncertainty, what would 

lead to socio-economic benefits. 

Today's trend is to use Ensemble Prediction Systems (EPS), 

which attempt to characterise and quantify the inherent 

prediction uncertainty based on ensemble modelling. Ensemble 

forecasting is a prediction technique that consists in running an 

ensemble of weather forecasts by slightly altering the initial 

conditions and/or the parameters that model the atmospheric 

physical processes, and/or by considering time-lagged or multi-

model approaches (Arribas et al. [8]; Lu et al. [9]). Thus the 

EPS generated by this technique is a representative sample of 

the possible (deterministic) realisations of the potential weather 

outcome, as indicated by Steiner et al. [10]. 

An ensemble forecast is a collection of typically 10 to 50 

weather forecasts (referred to as members). Cheung et al. [11]  

review various EPSs: PEARP (from Météo France), consisting 

of 35 members; MOGREPS (from the UK Met Office), with 12 

members; the European ECMWF, with 51 members; and a 

multi-model ensemble (SUPER) constructed by combining the 

previous three forming a 98-member ensemble. Some 

examples of EPS from the US are MEPS (from the Air Force 

Weather Agency) with 10 members, and SREF (from the 

National Centers for Environmental Prediction) comprised of 

21 members. 

Ensemble forecasting has proved to be an effective way to 

quantify weather prediction uncertainty. The uncertainty 

information is on the spread of the solutions in the ensemble, 

and the hope is that this spread bracket the true weather 

outcome [10]. It is important to notice that for strategic 

planning the analysis of all the individual ensemble members 

must be included (rather than an ensemble mean), as remarked 

by Steiner et al. [12]. 

B. Airspace structure 

In optimal path planning, the aircraft can be considered to 

be flying within a free-flight airspace or within a structured 

airspace. On the one hand, in a free-flight airspace, an airspace 

user can freely plan a route going through any point between 

the origin and the destination. On the other hand, a structured 

airspace is defined by a set of waypoints and a set of allowed 

connections between each pair of waypoints, referred to as 

airways. 
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Dancila and Botez [13] address the selection of the 

geographical area within which the optimisation algorithm has 

to find the best route. They assert that it is an important issue in 

aircraft trajectory optimisation, because it affects both the 

optimality of the solution found and the computational 

efficiency of the algorithm. From the point of view of 

optimality, large searching areas are preferred, because it is not 

known in advance how far away from the great circle the 

weather will drift the optimal trajectory; on the other hand, 

from the computational effort point of view, small searching 

areas are advisable. Therefore, a trade-off between optimality 

and computational efficiency has to be reached. In particular, 

the authors propose an elliptical-like area, with the departure 

and destination airports not necessarily at the foci. 

In this work, a structured airspace is considered. The 

geographical area and the routing grid are defined based on 

[13], with slight modifications. In particular, the following 

procedure is applied. 

 First, a regular grid of waypoints is defined in the weather 

forecast retrieval area, with a step lat  in latitude and 

lon  in longitude. This area goes from min  to max  in 

latitude, and from min  to max  in longitude.  

 Then, the geographical search area is restricted to be 

inside a spherical ellipse with foci located at arrival and 

destination airports, and with major axis equal to 

(1 ) gck r , where gcr  is the great circle distance between 

the departure and destination airports, and k  is a tuning 

parameter that controls the extension of the search area. 

Hence, the waypoints whose sum of orthodromic 

distances to the departure airport and to the destination 

airport is greater than (1 ) gck r are discarded. An 

example of the searching area for a Madrid-Mexico flight 

with 0.04k   and 1ºlat lon    is shown in Fig. 2; the 

great circle trajectory between the origin and the 

destination is also represented as a reference. 

Furthermore, each waypoint inside the search area is 

connected to some of its neighbours in a 7x7-waypoint square 

centred at the waypoint of interest, provided that the 

neighbours are inside the search area as well. A sketch of the 

connections of a waypoint is depicted in Fig. 3; the waypoint of 

interest is represented as a solid triangle; the neighbours to 

which it is connected are depicted as solid squares, whereas the 

neighbours to which it is not connected are depicted as 

circumferences. 

Finally, the arrival and destination airports are considered 

to be connected to those surrounding waypoints with a 

difference in latitude of less than 2 lat  and a difference in 

longitude of less than 2 lon , provided that those waypoints are 

inside the search area. The scheme of connections considered 

provides a great flexibility to the aircraft route, because it 

allows for a large variety of courses and segment lengths. 

Note that this approach can be adapted to the current Air 

Traffic Services route network; in that case, the set of 

waypoints (which may be based on the navaids location) and 

the airways would be given, thus replacing the uniform grid 

previously presented. The consideration of an elliptical-like 

restricted geographical search area would still be beneficial.   

 

 

Figure 2.  Search area and waypoint grid. Origin and destination airports (red dots); waypoints (blue circles); great circle trajectory (black solid line).   
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Figure 3.  Sketch of connections of a waypoint. Waypoint (black filled 

triangle); connections (black segments); connected neighbours (black filled 

squares); not connected neighbours (black circumferences). 

C. Flight time in cruise flight 

As already indicated, in this paper the flight time in cruise 

flight is studied. In accordance with the airspace structure 

defined in Section II.B, the cruise is considered to be formed 

by p  cruise segments, each one of them defined by a constant 

course, and flown at constant Mach number and constant 

pressure-altitude, as required by Air Traffic Control (ATC) 

practices. The Earth is assumed to be spherical, with mean 

radius 6371 kmER  . Time-invariant wind and temperature 

fields are considered, which are provided by an EPS obtained 

for an intermediate lead time between departure and arrival. In 

this work, constant pressure altitude is assumed to coincide 

with constant geopotential altitude, h ; although this may not 

be true for a non-standard atmosphere, this is a common 

assumption in aircraft path planning (see, for instance, [4] and 

[5]), as the equations of motion correspond to a horizontal 

cruise flight. 

Let the longitude and latitude of the waypoints that define 

the cruise segment j  be denoted as 1j  , j , 1j  , and j , 

respectively. Then, the course j  and the segment length 

( )f jr  can be computed from the navigation equations, as 

follows  
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Sketches of a multi-segment cruise and a generic cruise 

segment can be found in Fig. 4 and Fig. 5, respectively. In 

cruise segment j  , the flight is subject to along-track winds, 

( )
jATw r , crosswinds, ( )

jXTw r , and a non-standard air 

temperature ( )T r , which vary along the cruise ( r  represents 

the distance flown by the aircraft). The effects of the 

crosswinds are analysed by taking them into account in the 

kinematic equations, ignoring the lateral dynamics, and 

translating the crosswind into an equivalent headwind. This 

leads to a reduced ground speed, which for cruise segment j  

is given by 


2 2

( ) ( ) ) (( )
j j jXg g T ATV r R T r rM w w r    

where 1.4   is ratio of specific heats of the air, 

287.053 J/(k  K) ggR   is the gas constant of the air, and M is 

the Mach number. 

 

Figure 4.  Sketch of a multi-segment cruise. 

 

 

Figure 5.  Sketch of a generic cruise segment.  

 

 

 

 

 
Eighth SESAR Innovation Days, 3rd – 7th December 2018 

 

 

 

 

 

 

4



The kinematic equation of motion for cruise flight, for 

segment j , can be written as (see [14]):  


d

)d (

1

jgV

t

r r
  

The time to fly the segment j , namely ( ) jt , is obtained from 

the numerical integration of Eq. (4). In this work, the length of 

each cruise segment ( )f jr  and the initial time 1( )i it t  are 

given, and the continuity of the flight time enforces that 

1( ) ( ) ,  2i j f jt t j p   . Therefore, for each cruise 

segment, Eq. (4) is to be solved from 0r  , with initial 

condition (0) ( )i jt t , to the given length of the segment, 

( )f jr r , which provides  ( ) (( ) )f j f jt t r , and then 

( ) ( ) ( )j f j i jt t t   . 

Adding the solutions for all cruise segments, one can easily 

obtain the total flight time ft  given by 

  
1

p

f j
j

t t


  .             (5) 

D. Ensemble trajectory prediction 

Ensemble trajectory prediction is one of the main 

approaches commonly used for trajectory prediction subject to 

uncertainty provided by an EPS, as described in [11, 15]. In 

this approach, for each member of the ensemble, a 

deterministic trajectory predictor (TP) is used, leading to an 

ensemble of trajectories from which probability distributions 

can be derived. 

In particular, for the ensemble member k , the procedure 

described in Section II.C for the computation of the flight time 

can be applied, obtaining 
[ ]k

ft  from the time to fly the 

segments, namely  
[ ]

   1,
k

jt j p   . Therefore, for a given 

cruise path compatible with the airspace structure, the final 

result is a set of flight times (
[1]

ft , …, 
[ ]n

ft ), where n  is the 

number of weather ensemble members. Moreover, this set can 

be statistically characterised by defining the mean and some 

quantification of the spread, such as the difference between the 

maximum and the minimum values. 

E. Methodology for stochastic optimal path planning  

Because the cruise flight is composed of several segments 

connecting given waypoints (including the origin and the 

destination), the aircraft route can be seen as a path in a graph. 

Therefore, the optimisation of the aircraft route with respect to 

a given objective function becomes a shortest path problem in 

the sense of graph theory, which is defined by a set of m nodes 

(the waypoints), a set of l  links (the constant-course 

segments) and a set of link costs (the increments of the 

objective function experienced at the segments). 

However, as the problem is affected by uncertainty, it is 

indeed a stochastic shortest path problem. According to Gabrel 

et al. [16], when the uncertainty is not described by a 

probability distribution, it can be described with a model based 

on a discrete set of scenarios or with an interval model. In this 

work, the model based on a discrete set of scenarios is 

considered; each scenario is characterised by different wind 

and temperature fields, as defined by an ensemble member; and 

all the possible scenarios are taken into account in the 

optimisation. The problem is stated as selecting the unique 

route to be followed that minimises some function of the 

possible realisations of a given objective. 

In this work, the stochastic approach is applied to find the 

route that minimises a combination of the average value of the 

total flight time (which is a good measure of the efficiency of 

the route) and a measurement of the spread of the trajectories, 

for instance, the difference between the largest flight time and 

the smallest one (which has an inverse relationship with the 

predictability); in this way, one can perform a trade-off 

between efficiency and predictability when addressing aircraft 

path planning. Hence, the following cost function is considered 


1

[ ] [ ] [ ]1
max( m )n) (i

k k k

f f f

n

kk
k

t tJ dp
n

t


   
   

where dp  is the dispersion parameter, which controls the 

trade-off between efficiency and predictability; high values of 

dp  lead to more predictable trajectories, but with larger 

average flight time (and, therefore, less efficient). Introducing 

the spread term in the objective function reduces the dispersion 

of the flight times; hence, the resulting route can be considered 

as a robust route, in the sense that it is highly efficient and 

yields similar values of the flight time for each weather 

scenario. 

For time-invariant wind and temperature fields, the time to 

fly an allowed connection in the presence of every possible 

scenario does not depend on the time to reach the beginning of 

that connection; therefore, the times to fly all the possible 

connections under the weather scenario k  can be a priori 

computed and stored in the vector 
[ ]k

c  of length l . Assuming 

that the optimal path does not contain cycles, it can be 

characterised by a vector x  of length l  with binary 

components, which are either 1, if the corresponding segment 

belongs to the path, or 0 otherwise; thus, 
[ ] [ ]k k T

ft c x . 

Furthermore, for a vector x  to represent an admissible path, its 

non-zero components must correspond to a set of links 

connecting the origin to the destination without any 

interruption. To state this constraint, let eqA  be the node-arcs 
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incidence matrix of the graph, i.e., an m l  matrix, whose 

,i j -component is 1 if the segment j  begins with node i ,  -1 

if segment j  ends at node i , or 0 otherwise. Let also d  be a 

vector of length m , whose components take the values 1, -1 or 

0, depending on whether the corresponding node is the origin, 

the destination, or any other one, respectively. Then, x  must 

satisfy eqA x d . 

The optimal path planning problem can be formulated 

according to a combinatorial optimisation approach (as in 

[16]). Let 
[

1

]1
ˆ

k
n

k

cc
n 

   be a vector containing the average 

value (among the weather scenarios) of the time to fly each 

segment; then, the problem of finding the path that minimises 

the objective in Eq. (4) can be formulated as a Mixed-Integer 

Linear Programming (MILP) problem as follows:  

  

 

 
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where y  and z  are real-valued, auxiliary decision variables, 

introduced to maintain the linearity of the cost function. 

The methodology proposed in this paper is based on the 

application of GUROBI’s MILP solver within a MATLAB 

interface. This solver implements a linear-programming based 

branch-and-bound algorithm, along with additional features 

such as pre-solving tasks, the addition of cutting planes, the 

application of heuristics to provide feasible solutions, and 

parellisation. 

III. RESULTS 

In this section, the application considered in the paper is 
defined and the results are presented. In this work, 
Philadelphia International Airport (KPHL) and Barcelona–El 
Prat Airport (LEBL) have been selected as origin-destination 
pair, leading to a trans-oceanic route commonly flown. Both 
eastbound and westbound optimal routes are analysed. The 
coordinates of the airports are included in Table 1. 

TABLE I.  COORDINATES OF DEPARTURE AND ARRIVAL AIRPORTS 

 KPHL LEBL 

Latitude 39º 52.2’ N 41º 17.8’ N 

Longitude 75º 14.7’ W 2º 4.7’ E 

ECMWF EPS has been chosen. The weather forecast have 
been retrieved from the TIGGE dataset, available at ECMWF 
portal. It was released 1 March 2017 at 00:00 with a look-
ahead time of 24 hours, and it corresponds to a pressure 

altitude 200 hPa. The retrieval area goes from min 0º   to 

max 60º  N  , and from min 120º  W   to max 30º  E  , 

with a retrieval step of 0.25º in latitude and longitude. The 

tuning parameter for the search area is set to 0.08k  , and the 

steps in latitude and longitude are 0.5ºlat  and 2ºlon  , 

respectively; it leads to 2060m   nodes and 

49398l  linksIn the following, results are presented for a 

cruise flight performed at Mach number 0.82M  , at a 

pressure altitude 200 hPap  ( 11784 mh   in the 

International Standard Atmosphere, which is in the 
stratosphere), and departing 1 March 2017 at 20:00h. The 
computational time spent to obtain the vectors and matrices 
involved in Eq. (7) has been around 14 s, whereas the elapsed 
time to obtain a solution has been under 370 s in all cases. The 
computations have been performed using a PC with an Intel 
Core i7-6700, under a Windows 10 operating system. 

The optimal east- and westbound routes are presented in 

Fig. 6, for several values of dp  (0, 3 and 6, for the eastbound 

flight, and 0, 0.6 and 4, for the westbound flight) along with the 

route of minimum distance as a reference, a representative 

wind field (the average along the EPS members), and the wind 

uncertainty field, which is defined as the square root of the sum 

of the zonal wind variance, 
2

u ,  and the meridional wind 

variance, 
2

v . For this weather forecast and for 0dp  , one 

can see that the route from KPHL to LEBL (blue solid line in 

Fig. 6) is somehow shifted to the south, in order to take more 

advantage of the predominant tailwinds, whereas the route 

from LEBL to KPHL (blue dashed line in Fig. 6) is deviated 

far to the north, to avoid encountering strong headwinds. 

Nevertheless, both routes cross areas with higher wind 

uncertainty (with a darker background colour in Fig. 6); these 

areas cover the northeast coast of North America, including 

Philadelphia Airport, and have their epicentre off the south 

coast of Nova Scotia. Therefore, as dp  increases, the 

trajectories (both eastbound and westbound) are deviated to the 

north in order to avoid these areas with higher wind 

uncertainty, and to spend more time within areas with lower 

wind uncertainty (with a lighter background colour in Fig. 6); 

the higher the dp  value considered, the larger the deviations 

with respect to the optimal route for 0dp  . 

The values of the optimal total flight time corresponding to 

these trajectories are presented in Table 2. The average ][ fE t  

is computed along the EPS members, and the spread ][ ft  is 

defined as the difference between the largest value and the 

smallest one. Note that  [ ][]f fdpE t t  is the minimum 

value of J . 
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Figure 6.  Optimal routes from KPHL to LEBL: 0dp  (blue solid), 3dp  (magenta solid),  and 6dp  (green solid); 

optimal routes from LEBL to KPHL: 0dp  (blue dashed), 0.6dp  (magenta dashed),  and 4dp  (green dashed); 

route of minimum distance (black); average wind field (blue arrows). Background: wind uncertainty field. 

 

TABLE II.  AVERAGE VALUE AND SPREAD OF THE TOTAL FLIGHT 

TIME FOR EASTBOUND AND WESTBOUND OPTIMAL TRAJECTORIES, AND 

FOR DIFFERENT VALUES OF  dp  

 KPHL to LEBL LEBL to KPHL 

dp  0 3 6 0 0.6 4 

][ ,
f

E t min 383.09 384.61 391.58 502.03 503.02 504.27 

,[ ]
f

t min 5.60 4.47 3.00 11.41 8.28 6.97 

 

First, these results show that for the westbound optimised 

cruise one has larger values of the mean than for the 

eastbound optimised cruise (as expected, because in the latter 

case one can take advantage of the jet stream), and also 

larger values of the spread. 

As previously mentioned, the stochastic optimal path 

planning is not only capable of providing more efficient and 

more predictable trajectories, but also it allows one to 

perform a trade-off analysis between efficiency and 

predictability. Results of this analysis show, as expected, that 

the higher the value of dp , the lower the dispersion in the 

total flight time, but the higher the average total flight time. 

In particular, for dp  3 as compared to dp  0, one can 

have a decrease of 1.13 min in ][ ft  (that is, 20%) at a cost 

of an increase of 1.52 min in ][ fE t  (that is, 0.40%) when 

flying from KPHL to LEBL. Analogously, for dp  0.6 as 

compared to dp  0, one can have a decrease of 3.13 min in 

][ ft  (that is, 27%) at a cost of an increase of 0.99 min in 

][ fE t  (that is, 0.20%) when flying from LEBL to KPHL. In 

both cases, for the weather forecast considered, a substantial 

gain in predictability can be achieved at a very low cost in 

terms of efficiency, just by choosing an appropriate route. 

From a multi-objective optimisation point of view, the 

optimal pair of values ],[ [ ]( )f fE t t  obtained for different 

values of dp  describe a curve that can be interpreted as the 

Pareto frontier corresponding to the conflicting objectives 

][ fE t  and ][ ft . The aircraft paths that lead to the pair of 

values ],[ [ ]( )f fE t t  are Pareto optimal because no other 

path can improve neither of the objectives without degrading 

the other one. In Fig. 7, the Pareto frontiers for eastbound 

and westbound trajectories are depicted; they have been 

restricted to an interval of dp  ranging from 0 to 10, and the 

values corresponding to the optimal routes shown in Fig. 6 

are also depicted as coloured dots. These curves are very 

useful to present the results of the optimisation to the 

Airspace Users (AUs) in a clear and condensed form, and 

have the main advantage that the AUs can make a decision 

without revealing their cost structure. 
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Figure 7.  Trade-off analysis between efficiency and predictability. 

Eastbound trajectory (top), westbound trajectory (bottom). 

IV. FINAL REMARKS 

The general framework for this paper is the development 

of a methodology to manage weather uncertainty suitable to 

be integrated into the trajectory planning process. In 

particular, a stochastic methodology has been implemented, 

which is capable of finding the optimal aircraft path, 

considering a structured airspace, in the presence of 

uncertain winds and uncertain temperature provided by an 

EPS. Furthermore, the advantages of applying this 

methodology to obtain efficient and more predictable routes 

have been quantified, which show that, for certain weather 

forecasts, important enhancements in predictability can be 

achieved with a very low impact on efficiency. It is 

noteworthy that the advantages of the approach strongly 

depend on the weather affecting the flight. 

The extension of this methodology to consider a time-

dependent wind field is left for future work. The main 

associated change is that the time to fly a cruise segment 

under a time-variant wind scenario depends on the time to 

reach the beginning of the segment. Thus, the time to fly a 

path under any scenario is no longer linear on vector x , 

which leads to a non-linear cost function and non-linear 

inequality constraints. The problem would become a Mixed-

Integer Non-Linear Programming (MINLP) problem, which 

increases its complexity. 
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