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Abstract—Traditional merging methodologies (e.g sort-join)
are not enough to match de-identified data from two (or more)
different datasets. Deterministic matching only works if the
records are perfect and present in all the databases linked,
e.g. there is a single unique identifier (key). This condition
rarely exists due to errors, typos or lack of convention, among
other reasons. This paper is a first step to adapt probabilistic
merging to aviation. The technique uses a wider range of potential
identifiers, computing weights for each identifier based on its
estimated ability to correctly identify a match or a non-match
and using these weights to calculate the probability that two
records on different databases actually correspond to the same
entity. We adapt several techniques to two sources of trajectories,
namely: radar and GPS. Results show not only the ability to link
more records than rule-based sort-join strategies, but also to link
the trajectories even when the key identifiers have been removed.
This work paves the way for a range of applications and allows
secure data merging of anonymised data in aviation.

Keywords—Probabilistic Record Linkage, CPR, ADS-B, DTW,
Hausdorff distance

I. INTRODUCTION

Aviation is a novel field for application of general Artificial
Intelligence (AI) methods and Machine Learning techniques
(ML) in particular. Most machine learning algorithms rely
heavily on available data - not just in volume, number of
samples on the data set, but also in variety, number of
parameters or features in the dataset. Intuitively, having a wide
variety of datasets makes it easier to find the most relevant
features simply because the search space is larger and therefore
more likely to be relevant, provided the volume is adequate
enough to ensure confidence on the models. However, due
to the independence of the different systems in aviation and
lack of consolidation, data that’s relevant to the same event or
object are often distributed among datasets. For instance, air
traffic controllers rarely have access to airline operators’ data
and vice versa. Any machine learning model derived from each
others’ data in isolation will be unavoidably biased and rarely
complete. This potentially limits the applicability of many AI
and ML techniques in aviation.

Full disclosure of datasets could allow the identification of
flights using traditional methods, e.g. sort-join exact methods.
However, in practice, this approach is not possible. For in-
stance, airline operators and ATC are reluctant to share identi-
fiable data to respect their personnel’s privacy, e.g. addressing

the EU General Data Protection Regulation (GDPR). In most
cases, the de-identification process consists in eliminating the
references required for exact matching between datasets; for
example, removing the flight date and callsign.

In this paper, we present a probabilistic methodology for
merging datasets without using identifiers. The method finds
the best linkage between elements of different radar sources.
Contrary to exact methods, any probabilistic linkage would
have false positives and negatives, which ultimately affects
the machine learning models trained with them. However, the
improvement on accuracy of a more varied dataset overcomes
the induced errors of probabilistic linkages.

This method would enable in the future a number of po-
tential data-driven AI applications in aviation. Datasets could
be shared with the research community, de-identified, and still
enable researchers to match records with enough confidence
to generate datasets with richer features distributions that
aid in training more robust Machine Learning algorithms.
This is the principle behind DataBeacon, the multi-sided, Big
Data platform for aviation. DataBeacon was born from the
Horizon 2020 safety research program SafeClouds.eu in which
airlines, ANSPS and airports shared data with researchers of
universities and private institutions to develop data analytics
and bridge the gap between Data Science and Aviation.

The aim of this paper is to match two data sources:
Correlation Position Reports (CPRs) and ADS-B captured
positions. We implemented, adapted and compared several
merging techniques. We used, as baseline, the result of a
naive inner join using date and callsign identifier. Then we
shifted to probabilistic merging strategies in which we showed
that matching (identified) callsigns is not as trivial as it
seems. Finally, we show that by using the Hausdorff distance
between trajectories, we can merge the two datasets without
using any identifier other than the premise that the flights
occurred on the same de-identified day. This premise is only
necessary because flights may repeat routes at the same time
in different dates. We show that Probabilistic Record Linkage
using trajectory distances may be the ultimate technique that
solves the problem of matching de-identified flight trajectory
data.

This paper is organised as follows: in section II, we gather
past research on probabilistic record linkage, and discuss why
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probabilistic record linkage methodologies provide a good
solution for the flight matching problem. Then, we will review
some well-used distance metrics for measuring trajectories
similarities. This kind of metrics are often used in clustering
problems, but we will innovate by incorporating them as a
cost function for a linkage algorithm. In sections III and IV,
we present the datasets and detail the methodology followed,
with the explanation of some considerations taken during the
implementation. Section V presents the results and compares
different linkage methodologies. Finally, we summarize and
identify some ideas for future work and potential applications.

II. STATE OF THE ART

A. Deterministic (rule based) vs probabilistic record linkage

Record linkage is a solution to the problem of recognizing
records in two files which represent identical persons, objects,
or events [2]. Deterministic (rule based) linkage is the simplest
method of matching as it consists of a sort-merge operation
that finds an exact match [4]. It works best with a single unique
identifier (key) and when the identifiers have equal importance.
Rule based linkage works well if the keys do not contain errors
and are always present in all datasets to link.

A new approach to record linkage was introduced by
Newcombe and Kennedy (1962) [1] and formally presented
by Fellegi and Sunter (1969) [2]: probabilistic record linkage.
Also known as fuzzy matching, this approach allows a wider
range of potential identifiers by computing weights for each
identifier based on its estimated ability to correctly identify a
match or a non-match. Then these weights are used to calculate
the probability that two given records refer to the same entity.

While deterministic record linkage requires a series of po-
tentially complex rules (e.g. SQL queries) to be programmed
ahead of time, probabilistic record linkage methods can be
”trained” to perform well with little human intervention [3].

B. Review on probabilistic record linkage

The principal idea of probabilistic linkage is that two prob-
abilities are estimated: the M-probability as the prospect that a
field agrees given that the pair of records is a true match; and
the U-probability as the prospect that a field agrees given that
the pair of records is not a true match. Following the definition
of Felligni and Sunter [2], given two sets of records denoted
as A and B, with each record belonging to each set as a ∈ A
and b ∈ B. The available information regarding one record is
denoted with α(a) and β(b). The comparison set A × B is
partitioned into two subsets M = {(a, b) ∈ A × B|a = b}
of matching pairs and U = {(a, b) ∈ A × B|a 6= b} of un-
matching pairs [2].

Then, two datasets are compared by means of a com-
parison vector γ which is a vector function of the record
pairs. From a probabilistic point of view, is an event, and
as a result a conditional probability can be attached to the
vector as m(γ) = P (γ|(a, b) ∈ M) = P (γ|M) and
u(γ) = P (γ|(a, b) ∈ U) = P (γ|U), that are respectively,
the probability of observing the event given a match and
giving a non-match. The algorithm labels record pairs as A1,

if they match, A2, if they do not match, and A3 if they
possibly match. Hence, a linkage rule is a decision function
d(γ) = {P (A1|γ), P (A3|γ), P (A2|γ)} and it is such that
P (A1|γ) + P (A3|γ) + P (A2|γ) = 1. Finally, the decision
rule is defined as R = m(γ)

u(γ) , then when R ≥ tl a match is
found and R ≤ tu when a non-match is found, being tl and
tu thresholds to be set.

Modern improvements upon the classical probability link-
age methodology include the application of the expectation-
maximisation (EM) algorithm for parameter estimation [18],
the use of approximate string comparisons to calculate partial
agreement weights when string based values are expected
to contain typographical errors [7], and the application of
Bayesian Networks [14]. In recent years, researchers have
started to explore Machine Learning (ML) based approaches,
such as supervised learning based on a training dataset with
known linkage [13]. Also some interesting studies that borrow
ideas from the Natural Language Processing (NLP) field sug-
gest representing records as document vectors and computing
the cosine distance between them [12]. Although ML-based
approaches seem very promising, this paper will not focus on
them, mainly due to the lack of validated linkage techniques
for radar data that are required to conform a reliable training
dataset.

Probabilistic linkage is heavily limited by dimensionality of
the data, with d databases of n records each, since brute force
approaches, using all-to-all comparisons, require comparisons
O(nd) [18]. Blocking methodologies attempt to restrict com-
parisons by reducing the number of records using one or more
discriminating identifiers [9]. Since blocking strategies can
influence linkage success, Christen and Goiser recommended
that researchers report the specific steps of their blocking
strategy [17]. While simple blocking strategies [9] compares
all the pairs that ”hash” to the same value, there are more
advanced methodologies that involve unsupervised clustering,
e.g. form clusters around certain key values (canopies method)
[18]. An alternative to standard blocking and clustering is the
sorted neighbourhood approach [11], where records are sorted
by a blocking variable before a sliding window is moved
over the sorted set, enabling comparisons between the records
within the window.

Probabilistic linkage has been successful for matching
records using string-based identifiers such as names, addresses
or postal codes. As showed by Jaro (1989) [10], the problem
can be approached through string matching with typographical
errors as a cost-based linkage problem. Winkler (1993) [7]
formally defined and extended this similarity metric as an edit-
distance that uses an EM algorithm to estimate the parameters.
This is known as the Jaro-Winkler distance.

Taking into account the maturity of the record linkage
research, we believe that a cost-based methodology using
trajectories similarities can be implemented in order to solve
the problem of flight matching with radar data.
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C. Review on trajectory distance measures

Euclidean distance, Manhattan distance and other Lp-norms
are the most used metrics for measuring distance between
points in two time series. They compare discrete series and
can only be used if the two time series are of equal length,
or if some length normalisation technique is applied. In the
context of comparing radar data, these distances are normally
used to compare sub-trajectories of fixed length and can’t be
used to compare entire trajectories.

Warping distances try to overcome the Lp-norm limitations.
They are especially designed to compare locations from dif-
ferent trajectories and different indices. The main idea is to
find the optimal alignment between two trajectories by using
a given cost between a matched location. The most used
algorithm is Dynamic Time Warping (DTW) [16]. DTW is
a time-normalisation algorithm initially designed to eliminate
timing differences between two time series. It does not require
the two series to be of the same length, and allows for time
shifting between the two time series by repeating elements.The
DTW normalisation is done by warping the time axis of one
time series to match the other, an example of this technique
can be appreciated in figure 1.

Figure 1. DTW distance calculation

DTW relies on dynamic programming and requires each
element of one time series be compared with each element
of the other; this evaluation is slow and has a minimum
computational complexity of O(n2). However, recent studies
propose FastDTW [20] as an alternative to the cost-intensive
standard DTW algorithm. The authors claim that FastDTW
yields a computational complexity of O(n).

There are important limitations on the applicability of
warping methodologies. They are based on one-to-one com-
parisons between sequences meaning that sequences need to be
balanced (e.g. similar number of points) in order to correctly
capture the similarity between trajectories. Another limitation
is that these methodologies do not perform correctly when
a large amount of noise and outliers are present. Normally,
the solution to these problems is to correct the time index
or have the effect of time removed from the trajectory study.
These limitations are very influential in applying the metrics
to aviation-related trajectories.

As an alternative to wrapping distances, we meet shape-
based distances. The Hausdorff distance [21] is a well-known
metric for expressing the spatial similarity between two curves.
Informally, two sets are close in the Hausdorff distance if every

TABLE I
CPR DATASET DESCRIPTION

Field Description Sample

2 TACT: unique flight identifier.
(De-Identified). ec16fcae3ac614385d73412f89a03114

9 Callsign. XGV410
10 Departure airport. EBBR
11 Destination airport. LFSB

time

Time of the samples formated
as seconds per day.
Extracted from field 4 (timestamp)
before de-identification.

[17082, 17099, ...]

lat Latitude point per time sample.
Extracted from field 13 (position). [50.903055555555554, ...]

lon Longitude point per time sample.
Extracted from field 13 (position). [4.471388888888889, ...]

14 Flight level (FL). [4, 9, 16, 16, ...]

TABLE II
ADS-B DATASET DESCRIPTION

Field Description Sample

id Unique flight identifier.
(De-Identified). ea5b899291d9b19bff76a9cb2d1b2744

aircraft id
Callsign extracted from
the id before the
de-identification.

XGV041

time Time of the samples
formated as seconds per day. [17096, 17115, ...]

lat Latitude point
per time sample. [50.89705, 50.89243, ...]

lon Longitude point
per time sample. [4.45221, 4.43714, ...]

alt Altitude in ft. [900, 1600, 2200, ...]

point of either set is close to some point of the other set.
The Hausdorff distance between two sets of metric spaces is
mathematically defined as

dH(A,B) = max

{
sup
a∈A

inf
b∈B
||ab||2, sup

b∈B
inf
a∈A
||ab||2

}
This formula is roughly translated to the largest distance

from any point in one of the sets, to the closest point
in the other set, and can be computed in a computational
time. However, the main problem with Hausdorff distance is
that the largest distance in the set might be an outlier and
not representative of the ”real” trajectory. Furthermore, data
imprecision is a phenomenon that has existed as long as data
is being collected. In practice, data is often sensed from the
real world and as a result has a certain error region, making
the Hausdorff algorithm unreliable for real-world trajectories.
Because of this, in our case, it makes more sense to use the
Hausdorff distance as a measure of dissimilarity between two
point sets.

Recent research suggests using early break and random
sampling techniques to reduce the complexity of the algorithm
that computes the Hausdorff distance between two trajectories
[22]. The best case performance is O(n), which is satisfied by
selecting an inner loop distance that leads to an early break as
often as possible. The authors have formally shown that the
average runtime is also closer to linear complexity.

III. DATASETS

The datasets to be matched are Correlated Position Re-
port (CPR) and Automatic Dependent Surveillance-Broadcast
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(ADS-B) data. The scope of the study has been limited to
one day of flights over the ECAC (European Civil Aviation
Conference) area. Both datasets have been de-identified in
order preserve privacy. Dates and the unique identifiers (e.g.
flight id, TACT, etc.) have been de-identified by hashing
the string values using the same format. For the sake of
experimentation and validation, the callsigns have been left as
plaintext. Production environments would also expect to work
with them as hashed fields. The size of the data is considerable.
For one day, CPR presents 32.484 flights and ADS-B 32.673
flights.

Regarding the quality of the data, and due to the nature of
the source, CPR is expected to be cleaner than ADS-B. As
ADS-B is a broadcast signal captured over different receptors,
it is expected to present missing segments and considerable
inconsistencies on the sampling. One of the advantages of
ADS-B, as opposed to CPR, is that its position determination
can be more accurate. Also, it is important to remark that
position samples will be irregularly distributed along the
trajectory.

We present a brief description of the datasets in tables I and
II.

IV. METHODOLOGY

Figure 2. Linkage methodology

A. Cleaning and Standarization

The main purpose of data cleaning and standardisation is the
conversion of raw input radar data into well-defined signals,
eliminating all the possible inconsistencies in the way the data
is represented or encoded.

We define a trajectory Tr as a finite sequence
of geo-locations with timestamps, i.e., Tr =
(p1, t1), (p2, t2), ..., (pn, tn) with ti < ti+1 for i = 1, 2, ..., n1.
Being pi a sampling point observed at time ti. In this paper,
each sampling point is represented by a pair (x, y), denoting
longitude and latitude respectively.

When working with coordinates, normalization is recom-
mended so that the distance between two time series is
invariant to amplitude scaling and (global) shifting of the time
series. In this paper, all data is normalized as follows: for Tr of
length n, let the mean of the data in dimension d be µd and let
the standard deviation be σd. Then, to obtain the normalized
data N(Tr), we can evaluate ∀i ∈ ti,d =

ti,d−µd

σd
on all

elements of Tr. This process is repeated for all dimensions.

When working with aviation trajectories it is very common
to apply complex interpolations such as the Piecewise Cubic
Hermite Interpolating Polynomial (PCHI) [25]. In this paper,
we do not perform any interpolation because the distance
metrics that are applied do not require the same number of
points and they are well. Another common pre-processing step
for aviation data is to use the Ramer-Douglas-Peucker (RDP)
[23] algorithm to remove redundant trajectory information
[25]. We noted no benefit of following this methodology, and
it was not relevant in the merging results.

B. Blocking

Without using a blocking technique, when performing a
record linkage between ADS-B and CPR data, the number
of comparisons equals the product of the number of flights in
the two datasets |A| × |B|. For only one day of flights, CPR
presents 32.484 flights and ADS-B 32.673 flights, therefore
making more than 1 billion possible combinations, a number
computationally infeasible.

The aim of the blocking methodology is to cheaply remove
as many record pairs from the subset of non-matches U =
{(a, b) ∈ A×B|a 6= b} that are obvious non-matches without
removing any records pairs from the subset of matches M =
{(a, b) ∈ A × B|a = b}. Due to the nature of our datasets,
applying a sort-based blocking technique makes sense, as radar
data is naturally indexed by the time dimension.

Sorted neighbourhood is one of the most common indexing
methodologies when working with sortable records. It follows
the idea of sorting tuples in a way in which similar entries are
close to each other, enabling comparisons of tuples within a
small window (neighbourhood).

The method consists of three steps. First, a key for each
record is created. For our problem, we select the time of the
first point registered. Note that the choice of this key is not
as trivial as it seems, because the samples from two different
radar sources that correspond to the same flight may not be
registered at the same time or the case might be that the
beginning of the flight is missing. Further techniques can be
applied for inferring the real starting time of the flight (e.g.
filtering by flight level and interpolating), but they are out of
the scope of this research. Next, the data is sorted based on
the selected key - in our case, the flights will be sorted in time.
Finally, a fixed size window is moved through the sequential
list of records in order to limit the comparisons.

In order to validate the blocking technique, there are two
complexity measures useful for quantifying the efficiency and
quality of the blocking strategy [24]:
• The reduction ratio is defined as rr = 1 − Nb

|A|×|B| with
Nb ≤ |A| × |B| being the number of record pairs not
removed by blocking. This is a metric of the relative
reduction of the comparison space, but without taking
into account the quality of the reduction.

• The pairs completeness is measured as pc = Nm

|M | with
Nm the total number of correctly classified true matched
record pairs within the window and |M | the total number
of matches.
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Normally there exist a trade-off between these two metrics,
similar to the precision-recall trade-off in classification prob-
lems. Usually, it is desirable to achieve the highest reduction
ratio at the highest pairs completeness [24]. To test influence of
this trade-off in our blocking methodology, we ran the linkage
algorithm for different sizes of the window.

In windows from 5 minutes to 2 hours, the rr was constant
at 0.99. the pc raised from 0.92 to 0.95 for window sizes of 5
minutes to 1 hour (testing larger windows is difficult, manual
review is mandatory to count true positives). Therefore, the
trade-off is irrelevant in this case study and the only limitation
to the window size is the computational time desired for the
algorithm.

The length of the window has been fixed to 2 hours in
order to capture all the relevant flights with a reasonable
computational time.

C. Cost-based probabilistic linkage

To perform the linkage, we will follow the standard layout
for generic probabilistic record linkage algorithms [26]:

1) Cost function estimation: The estimator should be able
to measure trajectories with similar shape and physically close
to each other. Also, the distance function should be able to
differentiate curves that are similar as a whole with more
than just similar sub-parts. Note that, because of the previous
blocking step, time indexing should not be an issue. We will
approach our linkage probability as a ”cost based model”.
Instead of directly using directly probability of matching
to each record, we assign a misclassification cost to each
pair of trajectories. This means that we can use a similar
metric between 2-dimensional series to measure the difference
between the trajectories as a cost that should minimised.

As we have presented in the state-of-the-art, there are
two main methodologies to measuring similarity: warping or
shape-based. Warping methods, such as DTW, are based on
one-to-one comparisons between sequences. Hence, it often
requires the choice of a particular series as a reference, onto
which all other sequences will be matched. The indexes of
two sequences that are compared should be well-balanced in
order to best capture the variability. For instance, to detect if
there are accelerations and decelerations during the measure-
ment of the time series, making the choice of the reference
sequence is very relevant. Also, the computation of all these
comparisons, even after the sorted neighbourhood, can be too
computationally demanding.

For this particular case, we will show in further sections
that the Hausdorff distance is the best metric. However, for
the sake of experimentation, we will implement the linkage
algorithm using both the DTW distance and the Hausdorff
distance.

2) Weight computation: As stated, a distance will be the
cost-based estimator used to calculate statistics associated to
three pairs of 2-dimensional series: Longitude-Latitude, Time-
Latitude and Time-Longitude. Another approach would have
been to directly use the 3-D trajectory or even a 4-D trajectory
including altitude/FL. The problem with this approach is that

the shape-based distance is better measured in a plane. Also for
the 4-dimensional case we find different units (altitude in feet
and FL) between the two sources, making an approximated
unit conversion necessary.

We define the test statistic as w(γ) = w1 +w2 +w3, which
represent the weights used to define the cost of misclassifica-
tion. Given the CPR flight a ∈ A, the of ADS-B flight b ∈ B
and a similarity metric dm, each weight is defined as

w1(a, b) = dm(a(lon, lat), b(lon, lat))

w2(a, b) = dm(a(t, lat), b(t, lat))

w3(a, b) = dm(a(t, lon), b(t, lon))

with the two possible similarity metrics being the Hausdorff
distance dH and the DTW distance dDTW .

3) Weight aggregation: A composite for the misclassifi-
cation cost of the flights pair (a, b) is computed using an
aggregation function which takes all the weights as input:

cab = i1 · w1(a, b) + i2 · w2(a, b) + i3 · w3(a, b)

i1 + i2 + i3 = 1

The distribution of weights is purely empirical, and for
the results presented in this paper, we have defined the
importances as i1 = 0.7, i2 = 0.15 and i3 = 0.15. The
reasoning behind this is that because we are already forcing
a time constraint with the sorted neighbourhood methodology,
most of the flights will be close ”time-wise”. Therefore, the
contribution of the misclassification cost of the purely spatial
series is considerably more important than the contribution
of the spatial-temporal series. We cannot leave out the time
dimension as some flights may be present the same trajectory
but have a gap in time. However, the distributions of the
importances vector is not fixed and in future work the impact
of the weight can be studied further.

4) Threshold selection: Each record pair is classified into
either set M or U according to the value of the score and
the threshold level chosen. Note that we have not considered
the Following the definition of Fellini et al., the threshold is
R = P ((a,b)∈A×B|M)

P ((a,b)∈A×B|U) .
In our case, the threshold could be estimated by minimising

the probability of making an incorrect decision when deciding
a marching status of a flight pair. But in practice, a simple
minimisation of the probability of error is not the best criterion
to use in designing a decision rule due to different wrong
decisions that may have different origins and consequences.
For example, because not every flight of a dataset is included
in the other dataset.

As suggested in [8], misclassification costs can be stored
into a cost matrix C. Then, given n×m matching candidates
after the blocking strategy, each element of C cij represents
the cost of matching or un-matching j ∈ {U,M} the flight
pair (ai, bj). In this model, each cost value is two-fold, the
first part takes into account the cost of the decision itself and
the other part takes into account the cost of the consequences
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in making such decision. Finally, we can calculate the average
cost as
c̄ = c(a1,b1),MP ((a1, b1)|M) + c(a1,b1),UP ((a1, b1)|U) +
+ ...+ c(an,bm),MP ((an, bm)|M) + c(an,bm),UP ((an, bm)|U)
Mathematically, this is correct approach for estimating the
threshold in our case, but the main issue with this cost
is that we need to know prior probabilities πM = P (M)
and πU = P (U), this are the probabilities that trajectories
match/not-match given the distances between them. This es-
timation could be done using a baseline dataset of trusted
known matches and performing a EM approach. Because
obtaining a reasonable set of trusted match is unfeasible, we
decided to estimate an approximate threshold empirically. For
estimating the threshold, we used a sorted neighbourhood with
a window of 2 hours of flights in which we calculated the
cost for all of the possible pairs of trajectories and plotted
the distribution of costs. Using the distance distributions for
matched and unmatched data, we could graphically estimate
a possible decision threshold. In figure 3 we present the
threshold definition for the Hausdorff case.

Figure 3. Threshold definition for the Hausdorff distance

The difference between the distribution matched trajectories
and non-matches trajectories based on distance is clear. The
threshold can be set as R : dH(a, b) < 0.085 for the
Hausdorff distance. Using the same methodology for the DTW
distance, R : dDTW (a, b) < 50000. These values are not
final, and they just represent sufficiently reliable thresholds
so experimentation can be done.

In further research, this approach could be improved by
proposing methods for estimating the missing prior probabil-
ities. For now, and because of the lacking of a more reliable
methodology for estimating the thresholds in a formal way,
we will use these values as sufficiently reliable thresholds so
experimentation can be done.

V. RESULTS AND VALIDATION

A. Comparison between different strategies

We will use, as baseline, a simple sort-join using the
PySpark’s ”spark.sql” module. The identifiers selected for the
rules are date and callsign. Note that several flights during a
day can present the same callsign. Theoretically, this problem
should be solved by the sorted neighbourhood since two flights

TABLE III
COMPARISON BETWEEN LINKAGE METHODOLOGIES

Methodology / Classifier Match
CPR ADS-B

Naive Inner Join using callsign as identifier. 39.5% 41.5%
Probabilistic record linkage using the Jaro-
Winkler distance for callsigns. 44.3% 46.3%

Cost-Based probabilistic record linkage:
DTW for temporal series. 57.3% 59.3%

Cost-Based probabilistic record linkage:
Haussdorff distance for temporal series. 63.7% 66.7%

with the same callsign would not fly at the same time. But
this strategy presents obvious flaws for these datasets due
to callsigns containing errors - e.g. the CPR flight ”DLH74”
expressed in ADS-B as ”DLH074”. Also, note that if callsign
de-identification is mandatory, there is no virtual form of
validation, as you don’t have any reference for the ”right”
matches.

To improve the baseline, and for the sake of trying out
a non distance-based linkage method, we used the Jaro-
Winkler algorithm to identify those flights with ”similar”
callsigns. The matched percentage improved over a 5% though
some obvious problems were noticed. For example, callsigns
may present similar codes that make the algorithm produce
similar scores, e.g. ”DLH423”-”DLH243” present the same
distance as ”DLH74”-”DLH074”. Obviously, callsigns for the
same flight may not be the same, e.g. IATA-ICAO codes
mismatching or de-identified data.

Finally, we compare the two of the most popular strategies
of measuring trajectories similarity: DTW and Hausdorff dis-
tance. Showing that, due to the nature of the aviation flight
rules, shape-based distances are the superior metric in this
case. The main issue with DTW is that different trajectories
may present the same ”signal wrapping” over time but be
parallel in latitude-longitude, even after applying the right
weight scoring. In both cases, setting a threshold is not trivial.
We used the Python Scipy implementation [27] for calculating
directed Hausdorff distances and the FastDTW [20] library for
computing DTW distances.

In table III, we present the matched percentage per strategy.
By looking at the results, we can state that, the Hausdorff
distance is the best performing algorithm. Additionally, when
computing the percentage of matched data that were also
matched by the sort-join linkage using the callsign as key,
it scored an outstanding 79%. This means that only 21% of
the total flights are missed by the algorithm. Also, we can
use this metric as validation for the performance of the record
linkage, taking into account that flights with the same callsign
within a day are often a record match.

B. False negative cases

False negative cases occur when two trajectories classify as
non-matches but actually correspond to the same flight. This
cases are normally linked with missing data and errors in ADS-
B. These quality changes are normally linked with range and
frequency congestion of the antenna.
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Figure 4. False negative pair of flights

Figure 5. False positive pair of flights

In figure 4, a very common case of false negative is
presented, the Hausdorff misclassification cost for this case is
1.53, which is actually 18 times above the threshold. But, we
know that the flights match due to callsign and time inspection.
The distance between the trajectories is actually significant
because half of the trajectory of ADS-B data is missing,
making the distance of the last points of CPR contribute to
a high cost of misclassification.

The problem with this case is that there is no methodology
for determining if the trajectory has actually ended because the
flight may have arrived at the destination. We can’t verify this
because the ETA and ATA is missing from the dataset. The
only solution for these cases would be to match them using
a deterministic linkage with the callsign as identifier. This
solution is sometimes not feasible due to callsigns requiring
de-identification.

C. False positive cases

This case is harder than the detection of false negatives
because the same flight callsigns may not match and the
recordings might experience some latency. This means that
flights require manual verification using flight tracking web-
sites to make the verification based on additional information
such as departure/arrival airport and departure/arrival time for
both flights.

In figure 5, we can appreciate an interesting example of
wrong match. The trajectories correspond to two flights that
perform the same exact route between the same airports, but
differ almost four minutes in time. They are operated by two
different airlines that do not have partnership agreements. This
means some flights can present the same spatial trajectory

with very similar time-spatial trajectories. As we exposed in
section IV, we distributed the weights in a way that purely
spatial series have more influence when deciding the cost
of misclassification as we didn’t want radar delays to be a
problem when determining the matches. Although this case is
rare, it is presents a system flaw and the cost function requires
attention and further testing.

VI. CONCLUSIONS AND FURTHER WORK

This paper explains and applies established Probabilistic
Record Linkage (PRL) algorithms to match trajectories from
two de-identified sources. We introduce a brand new method-
ology that uses trajectory similarities as a cost function. We
have introduced a well-known blocking methodology based
on a rolling window that enables a tractable computational
complexity, even in Big Data environments. This means that
the methodology is ready to be applied in production environ-
ments and using real-time batches.

As shown in the results section, the Probabilistic
Record Linkage technique is promising when dealing with
anonymised datasets, but it applicability goes beyond simply
matching. It can help to merge not standardised heterogeneous
datasets, eg. ”DLH74” vs ”DLH074”. We achieved almost
80% in relation with a rule-based linkage. By using the
Hausdorff distance as cost function, we achieve more than
65% of matching for one day of radar data, which is 20% more
than matching achieved by deterministic linkage almost 50%
relative increase. DTW distances didn’t perform well enough
due to problems with parallel trajectories. We also learned that
trying to solve the problem by matching similar callsigns using
an edit-distance is not a good solution.
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Because the algorithm does not impose a format for the
samples or sampling restrictions any radar source can be used,
enabling unlimited possibilities for generalization: different
radar sourced, different regions or even more . Even when
working with low quality data, as long as the trajectories are
well defined, the algorithm could be generalized.

As future work, supervised machine learning (ML) tech-
niques could be applied to estimate the prior probabilities de-
fined by Fellegi and Sunter. For this particular methodology, a
ML-based approach would be perfect to estimate the threshold
of decision, as a binary classification problem. The main issue
is in acquiring or creating a matched dataset with verified true
positives.

Still the techniques need further work in two directions:
optimization and generalization. The algorithms are still run-
ning slow, due to the lack of optimized frameworks. Second
generalization to arbitrary aviation datasets although possible
will require specific work to adapt the techniques.

In any case their applicability is unquestioned. Many Multi-
Party data Processing (MSP) platforms are been developed for
aviation, all of them face the same challenge: in most cases
data is too sensitive to be shared without performing prior
de-identification, such as crew and passenger information,
airlines procedures and, obviously, radar sets. Despite of the
restrictive limitations, the data owners may be interested to
share and even merge their datasets for their own profit. This
is already a present problem in the industry when implement-
ing applications such as cross-platform predictive analytics
or blind-benchmarking. Therefore, to promote sharing data
between stakeholders for its own benefits, we need ensure
safety standards when managing and processing the data.

DataBeacon, the MSP platform developed under the Hori-
zon 2020 safety research program SafeClouds.eu would be
the first MSP to implement PRL techniques to fuse data from
airlines, ANSPs and airports into a Smart Fused Dataframe
(SDF). The SDF represents a standardised, secure data struc-
ture ready to be consumed by AI and ML models, or even
full-stack applications.
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