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Abstract—The aerodynamic properties of an aircraft determine
a crucial part of the aircraft performance model. Deriving
accurate aerodynamic coefficients requires detailed knowledge
of the aircraft’s design. These designs and parameters are well
protected by aircraft manufacturers. They rarely can be used
in public research. Very detailed aerodynamic models are often
not necessary in air traffic management related research, as they
often use a simplified point-mass aircraft performance model.
In these studies, a simple quadratic relation often assumed to
compute the drag of an aircraft based on the required lift.
This so-called drag polar describes an approximation of the
drag coefficient based on the total lift coefficient. The two key
parameters in the drag polar are the zero-lift drag coefficient and
the factor to calculate the lift-induced part of the drag coefficient.
Thanks to this simplification of the flight model together with
accurate flight data, we are able to estimate these aerodynamic
parameters based on flight data. In this paper, we estimate the
drag polar based on a novel stochastic total energy model using
Bayesian computing and Markov chain Monte Carlo sampling.
The method is based on the stochastic hierarchical modeling
approach. With sufficiently accurate flight data and some basic
knowledge of aircraft and their engines, the drag polar can be
estimated. We also analyze the results and compare them to the
commonly used Base of Aircraft Data model. The mean absolute
difference among 20 common aircraft for zero-lift drag coefficient
and lift-induced drag factor are 0.005 and 0.003 respectively. At
the end of this paper, the drag polar models in different flight
phases for these common commercial aircraft types are shared.

Keywords - aircraft performance, drag polar, aerodynamic coef-
ficient, Bayesian computing, MCMC

I. INTRODUCTION

Since the invention of aircraft, researchers have been study-
ing the aerodynamic properties of airfoils and aircraft. Exam-
ples of fundamental studies on aerodynamic drag are given
in [1], [2]. From the start, the goal has been to optimize the
lift over drag ratio for the cruise flight. Much effort has been
dedicated to creating designs that would reduce drag and thus
increase the lift efficiency of aircraft. While the zero drag
coefficient contains the parasitic drag of the whole aircraft,
the wing is mainly responsible for the lift-induced drag. Next,
to the chosen airfoil, the aspect ratio of the wing plays an
important role. The wing can be seen as a drag to lift converter,
of which the already high efficiency can be increased further.
This is an on-going effort: some examples of current research
are boundary layer suction, morphing wings, plasma control,
and blended wing-body aircraft shapes.

Aerodynamic lift and drag forces of an aircraft are com-
plicated and computationally intensive to compute. Lift and
drag are considered as functions of the wing area, dynamic

airspeed, and air density, and the remaining effects of the flow
for both the lift and drag are described with coefficients for
both forces. The most complicated part is to model these lift
and drag coefficients. These parameters depend on the Mach
number, the angle of attack, the boundary layer and ultimately
on the design of the aircraft shape. For fixed-wing aircraft,
these coefficients are presented as functions of the angle of
attack, i.e., the angle between the aircraft body axis and the
airspeed vector. In air traffic management (ATM) research,
however, simplified point-mass aircraft performance models
are mostly used. These point-mass models consider an aircraft
as a dimensionless point, where the angle of attack, as well
as the side-slip angle, and the effect of the angular rates are
not explicitly considered. Hence, the step of calculating these
is often skipped and the drag polar is used instead.

The relationship between drag coefficient and lift coeffi-
cient is the main factor determining the aircraft performance.
Knowledge of the drag polar is therefore essential for most
ATM research such as trajectory prediction, fuel optimization,
parameter estimation.

Many methods exist to explore the aircraft performance
during the preliminary design phase, often with a focus on
the modeling of the aerodynamics. Hence, one source of
open information regarding drag polar models comes from
textbooks [3], [4], [5], [6]. However, only older aircraft models
are available in the literature. In [7], an empirical model
for estimating zero-lift drag coefficients was proposed using
existing literature data based on several aircraft models. In
general, open data on drag polar model is rare, especially for
modern commercial aircraft.

The aircraft manufacturers who design the aircraft do have
accurate aerodynamic data. However, these data are rarely
publicly available due to commercial competition. The most
comprehensive collection of drag polar data is the Base
of Aircraft Data (BADA) developed by Eurocontrol [8]. It
contains the drag polars for nearly all common aircraft types.
BADA is the default “go-to” aircraft performance model for
current ATM researchers. However, it imposes a strict license
in terms of sharing and redistribution of the model data. The
project-based license for newer versions makes it even harder
for the same researcher to reuse the model, which will also
apply for new users of older versions.

The goal of this paper is to propose an alternative path to
estimate the drag polar models for modern fixed-wing com-
mercial aircraft, as well as share the drag polar models that we
have obtained. We approach this estimation problem using a
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novel stochastic total energy (STE) model. The STE approach
treats the parameters of the standard total energy model as
random variables. Then, we try to solve the parameter esti-
mation using Bayesian computing, specifically, Markov chain
Monte Carlo (MCMC) approximations. Finally, a database of
drag polar models for different common commercial aircraft,
which were produced using this method, is provided.

The structure of this paper is as follows. In section two,
the fundamentals of the point-mass drag polar model are
introduced. In section three, we focus on the hierarchical
model approach. In section four, experiments are conducted to
examine and obtain drag polar data of multiple aircraft types
based on this method. Section five and six are dedicated to
the discussions and conclusions of this research.

II. THEORY OF AERODYNAMIC MODELING

A. Drag polar in point-mass models

While an aircraft flies, the drag force is produced by the
airflow interacting with the aircraft body. The lift force is
produced due to the pressure difference between the upper
and lower surface of the lifting devices (wings). With the same
airspeed and altitude conditions, control of lift is performed
by re-configuring the aircraft angle of attack and/or modifying
the surface shape of lifting devices. By changing the elevator
settings, the pitch angle and the angle of attack can be
controlled. On the other hand, a change of the lifting device
surface is primarily performed by re-configuring flaps.

In general, the lift and drag forces of an aircraft that is
traveling in the free stream can be computed as:

L = CL
1

2
ρV 2S

D = CD
1

2
ρV 2S

(1)

where CL and CD are lift and drag coefficients, respectively. ρ,
V , and S are air density, true airspeed, and the lifting surface
area of the aircraft. In practice, CL and CD can be modeled
as functions of the angle of attack (α), Mach number(M ) and
flap deflection(δf ):

CL = fcl(α,M, δf )

CD = fcd(α,M, δf )
(2)

In aerodynamic models, multi-dimensional table interpolation
or higher order polynomials are used. However, in many ATM
studies, the six-degree of freedom of aircraft flight dynamic is
simplified to the three-degree of freedom point-mass model.
Leaving out the aerodynamic angles and pitch, yaw, and roll
rates means the aerodynamic models also need to be adapted.
In point-mass models, the relation between the aerodynamic
coefficients CD and CL is simplified to the drag polar. It is
commonly represented using a quadratic function in one of
the two forms below:

CD = CD0 +
C2
L

πAe
(3)

where A is the aspect ratio of the wing (span divided by the
average chord) and where e is the Oswald factor, which lies
typically in the range 0.70-0.90. This equation is often written
as:

CD = CD0 + kC2
L (4)

with:

k =
1

πAe
(5)

These two parameters, CD0 and k are the zero-lift drag
coefficient and lift-induced drag coefficient factor respectively.
The values of both parameters are considered as constants
under a specific aerodynamic configuration of the aircraft. Fig.
1 illustrates an example of drag polar by using a computational
fluid dynamics (CFD) simulation for an aircraft with a clean
(no flaps or extended landing gear) configuration.
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Figure 1. Drag polar (B747-400 simulated, clean configuration, α < 10◦)

B. Aircraft aerodynamic configurations
Besides the angle of attack that affects the values of the lift

and drag coefficients, the change in the shape of the aircraft
can alter these values. The most notable change in aircraft is
flaps (and slats), speed brakes and landing gear. Each structural
setting also has its own corresponding drag polar model.

Flaps are common aircraft surfaces deployed in order to
provide an increase in the maximum lift coefficient. They are
deployed to be able to fly at lower speeds, typically at low
altitudes (for example, during takeoff, initial climb, and ap-
proach). Different aircraft types have different configurations
of flaps and flap settings. An increase in flap angle leads to an
increase in the lift coefficient under the same angle of attack, at
the expense of a higher drag. Slats are similar to flaps, but on
the leading edge of the wing and they increase the maximum
lift coefficient by increasing the stall angle of attack. Slats are
automatically extended when selecting a flap setting and are
considered as part of this configuration. Different flap designs
have been adopted by aircraft manufacturers. In Table I, a list
of common flap options on airfoils and their approximated
maximum lift coefficients are listed. These values are produced
by [9, p.107]. It is worth noting that the CL,max values of an
airfoil are larger than the values of the aircraft with the same
shaped wing, especially for swept wings [3, p.263].
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TABLE I
EXAMPLE FLAP SETTINGS (AIRFOILS)

Flap types CL,max Illustration

airfoil only 1.5
leading-edge slat 2.4
plain flap 2.5

split flap 2.6

Fowler single-slotted flap 2.9

Fowler multi-slotted flap 3.0

with leading-edge slat 3.3

with boundary layer suction 3.9

In this paper, based on the data from [6, p.253], the increase
in lift coefficient due to flap deployment is modeled. These
values are shown in Table II, where TO and LD represent the
take-off and landing configuration respectively. Extended flaps
also increase the drag. The increase of drag coefficient due to
flaps can be computed using the model proposed by [10]

∆CD,flap = 0.9
(cfp
c

)1.38
(
Sfp
S

)
sin2 δ (6)

where cfp/c and Sf/S are flap to wing chord ratio and
surface ratio. δ is the flap deflection angle. When these aircraft
characteristics are not available, simplified empirical values
from [6, p.253] can be used, which are listed in Table III.

TABLE II
INCREASE OF LIFT COEFFICIENT WITH FLAPS

Trailing Leading αTO αLD CTOL,max C
LD
L,max

plain flap 20◦ 60◦ 1.60 2.00
single-slotted flap 20◦ 40◦ 1.70 2.20
Flower single-slotted flap 15◦ 40◦ 2.20 2.90
Flower double-slotted flap 20◦ 50◦ 1.95 2.70
Flower double-slotted flap w/ slat 20◦ 50◦ 2.60 3.20
Flower triple-slotted flap w/ slat 20◦ 40◦ 2.70 3.50

TABLE III
INCREASE OF DRAG COEFFICIENT WITH FLAPS

∆CD,flap Typical flap angle Flight phase

0.02 10◦ ∼ 20◦ take-off
0.04 20◦ ∼ 30◦ take-off
0.08 30◦ ∼ 40◦ landing
0.12 40◦ ∼ 50◦ landing

The landing gear adds a significant amount of drag to the
aircraft when it is extended. The landing gear is retracted
as soon as the aircraft becomes airborne and only extended
shortly before landing. There is limited research data that
quantifies the drag coefficient of aircraft landing gears. An
empirical model proposed by [11] formulates the increased
drag coefficient by landing gears as:

∆CD,gear =
W

S
Kuc m

−0.215
max (7)

where W/S is the wing loading, mmax refers to the maximum
mass of an airplane, and Kuc is a factor depending on the flap
deflection. The value of Kuc is lower when more deflection is
applied. This is because the flow velocity along the bottom of
the wing decreases when flaps are deployed, thus leading to
a lower drag on the landing gear. The values of Kuc during
different flight phases are shown in Table IV.

TABLE IV
VALUE OF Kuc

Kuc flap deflection flight phase

5.8 × 10−5 none taxing
4.5 × 10−5 medium * take-off
3.16 × 10−5 full landing

* interpolated based on existing values

Considering these structural variations, we can model the
zero-lift drag coefficient C∗

D0 as:

C∗
D0 = CD0 + ∆CD,flap + ∆CD,gear (8)

A different flap setting causes a less significant change to
k than to CD0. Hence in this paper, we assume k remains
constant for all different flap settings.

III. ESTIMATING DRAG POLAR WITH A STOCHASTIC TOTAL
ENERGY MODEL

Although it is simple to explain the drag polar that is
described in the previous section, existing performance models
that rely on manufacturer data generally come with restricting
licenses (for example, BADA 3 and BADA 4). Open data on
models included in textbooks and literature are often based on
old models. In order to construct an open aerodynamic model,
we intentionally refrain from using manufacturer data (unless
they are publicly available) and search for an alternative path
to model the drag polar.

In this section, we first explore the principle of a novel
hierarchical model that describes the total energy model in
stochastic fashion, where the model parameters are considered
as random variables. Using Bayesian computing, we then try
to infer the drag polar based on open flight data from ADS-B
and Enhanced Mode-S surveillance communications. The clear
benefit of this stochastic total energy (STE) model is that the
process can be applied to any aircraft, as long as enough flight
data and the basic performance parameters of the aircraft are
known. The following part of the section describes the process
in detail.

A. Stochastic model
Commonly, the total energy model describes the change of

energy by multiplying each force with speeds in the same
direction. This results in the following equation:

(Tt −Dt) Vt = mtatVt +mtgVSt (9)
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where T and D are the thrust and drag of the aircraft. m is the
aircraft mass. Parameters a, V , and VS are the acceleration,
airspeed, and vertical speed respectively. These are three
variables that can be derived from aircraft surveillance data.
Subscript t indicates the data is a time series. In general, thrust
can be modeled as a function of velocity and altitude (h).
In this research, we use the model proposed by [12]. Let f
represent the set of functions that compute the thrust:

Tt = f(Vt, ht) (10)

Combining the previous two equations, we can compute
the drag and the drag coefficient based on trajectory data as
follows:

Dt = f(Vt, ht)−mtat −mtgVSt/Vt

CD,t =
Dt

1
2ρtV

2
t S

(11)

where ρ and S are the air density and the aircraft wing surface.
From the equilibrium of forces in the direction perpen-

dicular to the airspeed, we find the relation between the lift
coefficient and the mass:

CL,t =
Lt

1
2ρtV

2
t S

=
mtg cos γt

1
2ρtV

2
t S

(12)

On the other hand, we can also derive the drag coefficient
(denoted as C∗

D) using the drag polar equation:

C∗
D,t = CD0 + kC2

L,t = CD0 +
k(mtg cos γt)

2(
1
2ρtV

2
t S
)2 (13)

Here γ is the path angle, which can be computed using
the time derivative of the altitude and the ground speed. In
Equation 5, the coefficient k is defined as a function of aspect
ratio (AR) and span efficiency factor (e, close to one). The
density of the air can be computed based on the temperature
and barometric altitude under ISA conditions up to 36,090 ft
using the constants in Table V:

ρt = ρ0

(
1− λht
τ0

)− g
λR−1

(14)

TABLE V
LIST OF ISA CONSTANTS

Parameter Value Unit Description

ρ0 1.225 kg/m3 air density at sea level
τ0 288.15 K temperature at sea level
g 9.80665 m/s2 sea level gravity acceleration
λ -0.0065 K/m troposphere temperature gradient
R 287.05 J/(kg · K) gas constant at sea level

Assuming a perfect system and perfect observations, the
two drag coefficients, CD and C∗

D, obtained in two different
ways should be the same at each time step, with the following
relationship:

∆CD,t = CD,t − C∗
D,t = 0 (15)

Although noise is inevitably present, Equation 15 should be
the condition that we want our estimator to approach. In other
words, if we consider the goal as an optimization process, we
would try to minimize the ∆C2

D,t, which could have been a
possible approach. However, this approach is too ambitious
since there are too many unknown system parameters.

Three unknown parameters occur in this system, which are
CD0, k, and mt. In order to have a good estimation of CD0 and
k, we need to have more knowledge on the aircraft mass m.
Unfortunately, it is not available directly from the surveillance
data. In our previous paper [13], we were able to estimate
the mass and thrust setting, but it was based on drag polar
provided by the BADA model. In order to derive the drag
polar independently, the new method also needs to address
the uncertainty of other parameters.

Similar to in [13], we try to solve the estimation problem
from a Bayesian point of view. The difference is that now we
can use multiple flights of each aircraft. Even though we don’t
know the exact mass and thrust setting of each flight, there are
some hypotheses that we are confident about:

1) The values for CD0 and k are constant and the same for
all flights that belong to the same aircraft model, under
clean configuration.

2) Based on aerodynamic theory, it is possible to know the
value ranges of CD0 and k.

3) We have some knowledge on possible distributions for
aircraft mass and thrust setting.

4) We are able to obtain accurate surveillance data for
a sufficient number of flights, including trajectories,
velocity, temperature, and wind conditions.

In the proposed STE model, we consider all parameters as
random variables. The observable parameters are defined as
follows:

Vt ∼ N (Ṽt, σ
2
v)

at ∼ N (ãt, σ
2
a)

VSt ∼ N (ṼSt, σ
2
vs)

τt ∼ N (τ̃t, σ
2
τ )

ht ∼ N (h̃t, σ
2
h)

γt ∼ N (γ̃t, σ
2
γ)

(16)

where each parameter is assumed to be drawn from a normal
distribution. Ṽt, ãt, ṼSt, τ̃t, h̃t, and γ̃t are the observed values
at each time step respectively. σ2

v , σ2
a, σ2

vs, σ
2
τ , σ2

h, and σ2
γ are

variances for each variable.
The models for the three unknown system parameters can

be constructed similarly:

CD0 ∼ N (µcd0, σ
2
cd0)

e ∼ U(emin, emax)

mt ∼ N (µm, σ
2
m)

(17)
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where CD0 and mt are defined with a normal prior. e is
defined with a uniform prior, which can be translated to k
using Equation 5. Random variable mt is defined for the mass
at time step t. For each time step, a different random variable
with the same mean and variance is constructed.

With these variables defined, we convert the deterministic
total energy model to a stochastic model. The hierarchical STE
model considers each parameter as random variables, and, at
the same time, preserves the underlying structure among the
observable parameters (a, V, VS, τ, h, γ), forces (T , D) and
system parameters (m, CD0, e) as defined in total energy
model. In Fig. 2, the dependencies among all those parameters
are visualized. This hierarchical model includes eleven random
variables, which are indicated in gray.

N (ãt, σ
2
a)

N (ṼSt, σ
2
vs)

N (τ̃t, σ
2
τ )

N (h̃t, σ
2
h)

N (Ṽt, σ
2
V )

N (µm, σ
2
m)

N (µγ , σ
2
γ)

N (µcd0, σ
2
cd0)

U(emin, emax)

at

VSt

τt

ht

Vt

mt

γt

CD0

e

CD,t

C∗
D,t

∆CD,t N (0, σ2
∆)

Figure 2. Hierarchical relationships of model parameters

B. Bayesian computation
Instead of estimating the drag polar (CD0 and k) directly,

we have converted the original estimation to a Bayesian
optimization problem. That is, given the prior probability of
all model parameters, how can we compute the posterior
probabilities based on the constraints in Equation 15? To
simplify the expression, let us define θ (a common way to
express the parameters) and y (a common way to express the
observations) as follows:

θ =
{
CD0, e, [mt], [Vt], [at], [VSt], [τt], [ht], [γt]

}
y =

{
[∆CD,t]

} (18)

where parameters in brackets are with multiple dimensions.
The goal is to compute the joint posterior probability p(θ|y). It
is difficult (and impractical) to compute the analytical solution
of the target distribution p(θ|y) in such a high-dimensional
space. Instead, we use a Markov Chain Monte Carlo (MCMC)
simulation to compute this numerically.

The MCMC method uses sequential sampling, drawing a
large number of values of θ from approximate distributions

and then correcting these draws based on the distribution
constructed from previous values drawn. p(θ|y) will be ob-
tained once the Markov chain converges to a unique stationary
distribution.

The simplest and most popular form of the MCMC sampling
method is the Metropolis algorithm [14]. It can be applied
to almost any Bayesian computation problem. The algorithm
can be explained in simple steps, which also demonstrates the
principles of MCMC sampling. These steps are as follows:

1) Choose a initial set of θ as θ0.
2) for iteration i = 1, 2, · · · :

a) Sample a proposal θ∗ from a jumping distribution
J(θ∗|θt−1), which is a conditional probability
dependent on the current set of values. It is usually
chosen as a normal distribution.

b) Calculate the ratio using the Bayes’ rule:

r =
P (θ∗|y)

P (θi−1|y)
=

P (θ∗)P (y|θ∗)

P (θi−1)P (y|θi−1)
(19)

c) set θi as θ∗ with probability of min(r, 1), other-
wise keep as θi−1

When the MCMC sampling process reaches the desired
number of iterations, it is stopped. The values from each
iteration stored in the Markov Chain are used to construct
the posterior distributions of the model parameters.

The metropolis sampler is simple to implement and can
be applied to both continuous and discrete probability dis-
tributions. The drawback is that it can lead to a very long
convergence runtime. This is due to the random-walk behav-
ior. When model parameters are continuous, the Hamiltonian
Monte Carlo (HMC) method [15] can be used to suppress
the random-walk. It converts the sampling problem into a
simulation of Hamiltonian dynamics. In this paper, a new
sampler called No-U-Turn Sampler (NUTS) [16] is used. The
NUTS sampler is able to converge quickly and requires fewer
sampling iterations.

IV. EXPERIMENTS AND RESULTS

The experiment consists of three parts. The first part uses
a Boeing 747-400 aircraft as an example and describes the
process of MCMC sampling with the STE model. The second
part applies the method to common aircraft types. Coefficients
CD0 and k for all these aircraft types are constructed based on
a large number of flights. The results obtained are compared
with the existing BADA 3 model. Finally, combining the drag
polar under non-clean settings, the final table consisting of
drag polar for all flight phases is given in part three.

A. Estimate drag polar using STE model and MCMC sampling

A data-set consisting of around 100 flights per aircraft type
is gathered. These are climbing flights from 3,000 ft to 10,000
ft. All data are collected using the Mode-S receiver setup
in the Delft University of Technology. The flights observed
were taking off from Amsterdam Schiphol airport. In figure 3,
the ground tracks and vertical profiles of the Boeing 747-400
flights are illustrated.
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Fig. 3. Boeing 747-400 flights

Besides the ground speed obtained from ADS-B, the meteo-
particle model is used to generate real-time wind data [17],
[18]. Combining ground speed and accurate wind information,
the airspeed of the aircraft is computed. This allows us to
describe the performance more accurately.

For each flight, we apply MCMC sampling with the STE
model to obtain the posterior probability distribution of the
parameters CD0 and k. The parameter values of the prior
distributions defined in Equation 16 and 17 (also by Fig. 2)
are listed in Table VI.

Using the MCMC implementation in the PyMC3 [19]
library, we can conveniently perform the sampling of the
STE model with the defined prior distributions. To ensure the
consistent convergence, we utilize four independent chains,
which are sampled in parallel. When the maximum of 2,500
iterations is reached, the last 2,000 iterations are kept for
analysis.

First, the results of one example flight are shown. In Fig.
4, the trace of four chains (on the right-hand side) and the
estimated posterior density (on the left-hand side) are shown.
Each chain is marked with a distinct color. The stable con-
vergence can be observed by comparing the posterior density
of all four chains. Combining all chains, we can obtain the
mean value CD0 and k from the posterior distribution, which
is shown in Fig. 5.
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Figure 4. MCMC sampling of a Boeing 747-400 flight
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Figure 5. Posterior distribution of CD0 and k from MCMC sampling

B. Multiple aircraft types
In this part, we extend the experiment from one flight

example to a multiple flight scenario. Based on a one-month
data set containing flights for 20 aircraft types, we are able to
obtain the drag polar parameters for these common commer-
cial aircraft types. In Fig. 6, the distributions of CD0 and k
are shown in box plots.
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Figure 6. Drag polar of common aircraft models based on multiple flights

We can observe that most of the CD0 values are between 
0.02 and 0.04. These values are close to values obtained 
from empirical data that is described in [7]. Lift-induced drag 
coefficient k  h as s maller v ariations t han t he z ero-lift drag 
coefficient CD0 in each aircraft model. This is due to the small 
range of e as defined in Equation 5. In our model, the primary 
influential factor for k  is the aspect ratio of the aircraft, which 
is assumed to be constant.

Due to the restriction of the BADA license, exposure 
of specific B ADA c oefficients is  no t pe rmitted. In stead of 
showing the exact difference between BADA and our model 
for each aircraft type, the overall statistics for all available 
aircraft are shown in Fig. 7. The mean absolute difference for 
all CD0 and k are found to be 0.005 and 0.003 respectively.

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

CD0

k

Figure 7. Absolute difference of drag polar between BADA (version 3.12) 
and model derived in this paper under clean configuration. (Note: A359, 
B789, E75L, and E195 are not presented in BADA model)

C. Drag polar under non-clean configurations
In Section II-B, we explained the theoretical models that

define the additional drag caused by structural changes (flaps
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TABLE VI
STE MODEL HIERARCHICAL PARAMETERS

Parameter σv σa σvs στ σh σγ µcd0 σcd0 emin emax µm σm
Value 5 0.5 2 2 20 2 0.02 0.1 0.85 0.99 289600 107200
Unit m/s m/s2 m/s K m deg - - - - kg kg

and land gears). For the increase of CD0 due to flap deploy-
ment, a generic flight phase dependent ∆CD0 is used. The
values for take-off, initial climb, approach, and landing are
0.03, 0.02, 0.03, and 0.08 respectively.

The increase of CD0 due to extension of landing gear is
computed using Equation 7. The results are shown in Table
VII. The increase of CD0 due to flaps and landing gears are
incorporated with drag polar under clean configurations using
Equation 8. The final drag polar models for all 20 aircraft
types in different flight phase are also derived. They are listed
in Table VIII.

TABLE VII
INCREASE OF ZERO-LIFT DRAG COEFFICIENT DUE TO LANDING GEAR

Aircraft Aircraft model taxing take-off landing

A319 Airbus A319 0.031 0.024 0.017
A320 Airbus A320 0.032 0.025 0.017
A321 Airbus A321 0.037 0.029 0.020
A332 Airbus A330-200 0.025 0.020 0.014
A333 Airbus A330-300 0.025 0.020 0.014
A359 Airbus A350-900 0.024 0.019 0.013
A388 Airbus A380-800 0.022 0.017 0.012
B734 Boeing 737-400 0.034 0.026 0.018
B737 Boeing 737-700 0.029 0.023 0.016
B738 Boeing 737-800 0.032 0.025 0.017
B739 Boeing 737-900 0.034 0.026 0.018
B744 Boeing 747-400 0.027 0.021 0.015
B748 Boeing 747-8 0.028 0.022 0.015
B772 Boeing 777-200ER 0.026 0.020 0.014
B77W Boeing 777-300ER 0.029 0.023 0.016
B788 Boeing 787-8 0.024 0.019 0.013
B789 Boeing 787-9 0.026 0.020 0.014
E75L Embraer E175 (LR) 0.031 0.024 0.017
E190 Embraer E190 (LR) 0.030 0.023 0.016
E195 Embraer E195 (LR) 0.030 0.024 0.017

TABLE VIII
DRAG POLAR COEFFICIENTS

Aircraft CD0,clean CD0,taxi CD0,to CD0,ic CD0,ap CD0,ld k e

A319 0.020 0.051 0.074 0.040 0.050 0.116 0.0334 0.9222
A320 0.023 0.055 0.078 0.043 0.053 0.120 0.0334 0.9220
A321 0.033 0.069 0.091 0.053 0.063 0.133 0.0344 0.9244
A332 0.024 0.049 0.074 0.044 0.054 0.118 0.0343 0.9230
A333 0.026 0.051 0.075 0.046 0.056 0.120 0.0344 0.9199
A359 0.027 0.051 0.075 0.047 0.057 0.120 0.0364 0.9210
A388 0.012 0.034 0.059 0.032 0.042 0.104 0.0456 0.9269
B734 0.021 0.060 0.081 0.041 0.051 0.122 0.0372 0.9339
B737 0.024 0.053 0.077 0.044 0.054 0.120 0.0366 0.9213
B738 0.021 0.053 0.076 0.041 0.051 0.119 0.0365 0.9231
B739 0.024 0.057 0.080 0.044 0.054 0.122 0.0365 0.9233
B744 0.025 0.052 0.076 0.045 0.055 0.119 0.0435 0.9271
B748 0.028 0.056 0.079 0.048 0.058 0.123 0.0408 0.9237
B772 0.033 0.059 0.083 0.053 0.063 0.127 0.0396 0.9269
B77W 0.033 0.062 0.085 0.053 0.063 0.129 0.0396 0.9269
B788 0.022 0.046 0.071 0.042 0.052 0.115 0.0361 0.9202
B789 0.024 0.050 0.074 0.044 0.054 0.118 0.0359 0.9241
E75L 0.022 0.053 0.076 0.042 0.052 0.119 0.0371 0.9223
E190 0.020 0.050 0.073 0.040 0.050 0.116 0.0387 0.9219
E195 0.032 0.062 0.085 0.052 0.062 0.128 0.0389 0.9183

V. DISCUSSION

In this section, experimental results are further analyzed.
Assumptions that were made to simplify the problem are
reflected upon. Finally, we also address the limitations and
uncertainties in the proposed methods.

A. The lift-induced drag coefficient

For different flap settings, we assume a constant lift-induced
drag coefficient (k) in our model. Theoretically, the wet surface
of the aircraft increases when flaps are deployed, which, in
turn, changes the aspect ration (AR) slightly. At the same time,
the Oswald factor (e) may also differ. However, the magnitude
of the change to k due to flap deployment is small compared to
CD0. When computing the aircraft drag using the drag polar,
the influence of k is also much smaller than CD0. Considering
all these factors, the model for k in this paper is simplified.

In Fig. 6, it can be observed that the variances for k are
much smaller than CD0. This is an expected result. Based on
Equation 5, the only varying parameter for the STE model is
the span efficiency e. The change caused by e is much smaller
than the aspect ration (AR) for different aircraft types.

B. The STE model, MCMC sampling, and uncertainties

It is important to understand that in the proposed hierarchi-
cal model, all parameters are considered as random variables
(described by probability density functions) instead of scalar
values. Most parameters (except CD0 and k) are also expressed
as time-varying random variables. The time series variables are
constructed as multi-dimensional probability density functions.
The solution of this hierarchical stochastic model is only
possible thanks to numerical approximation using the Markov
chain Monte Carlo (MCMC) techniques.

We discussed the principles of the MCMC in Section III-B.
The application of this Bayesian data approach is slowly being
brought to the engineering domain. In [20], we can see the
application of the Bayesian hierarchical model and the use
of the MCMC method for inverse problems in the aerospace
domain. The STE model and solutions proposed in this paper
relate closely to this line of research.

In the proposed STE aircraft performance model, two major
sources of uncertainty exist, which are aircraft mass and thrust.
We cannot estimate the mass using the method from [13]
since accurate estimation would require knowledge of the
aircraft drag polar. Instead, we consider the mass as a bounded
normal distribution. This means that all possible masses are
considered, while sampled together with all other parameters.
When evaluating the sampling results, we can illustrate the
mass posterior distribution at different flight time steps, as
shown in Fig. 8. Similarly, the uncertainties can also be
illustrated in a box plot as shown in Fig. 9.
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Figure 8. The kernel density approximation of mass at different flight time step
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Figure 9. The distributions of mass at different flight time step

The distributions show the probabilities of mass at different 
flight t ime s tep. T he g oal i s t o e stimate t he d rag polar 
coefficients C D0 a nd k , n ot t he m ass o f a n a ircraft. The 
posterior distributions can be thought of as the results that 
optimize all different parameters at all time steps.

The aircraft thrust model is the factor that influences the 
results the most while using the STE model, as the thrust is 
strongly correlated to the drag of the aircraft. An increase in 
the uncertainty of the thrust could directly lead to a higher 
uncertainty of CD0. When there is more than one possible 
engine configuration f or a  s pecific ai rcraft ty pe, we  selected 
the one with the highest thrust. It can be observed that the 
uncertainty of CD0 increases with the number of engine 
options, as shown in Fig. 6. For example, Airbus A320 and 
Boeing B737 series have the most number of engine options. 
On the contrary, aircraft that have only one or two engine 
options have shown less CD0 uncertainty in general, for 
example, A350, A380, and B787.

In the STE model, we implement the thrust model based 
on two-shaft turbofan engines [12], which is one of the most 
accurate open models to the best of our knowledge. The thrust 
model has an uncertainty of 4.5% on computing thrust when 
compared to engine performance data. This uncertainty in 
thrust model undoubtedly passes on to the final uncertainty 
of the drag polar estimates.

VI. CONCLUSIONS

In this paper, we propose a method to construct point-mass 
drag polar models, offering a solution to the current lack of an 
open aerodynamic model for air traffic research. The proposed 
stochastic total energy (STE) model is able to infer the aircraft 
drag polar using ADS-B and Mode-S surveillance data. The 
STE model requires basic information about the aircraft, which 
is publicly available. Thanks to Bayesian computing (MCMC

sampling), the STE method can generate a drag polar for
almost any fixed-wing aircraft (with turbofan engine), as long
as sufficient flight data is available.

The methods and results of this paper are not without their
own limitations. The level of model fidelity depends greatly
on the level of uncertainty in the thrust model. In this paper,
we used an open thrust model proposed in the literature. It
is a generalized empirical model based on existing engine
performance data. The implications of different uncertainties
are discussed in the paper.

Finally, as one of the main contributions of this paper, we
produced a comprehensive list of drag polar models for the
20 most common commercial aircraft types. To the best of
our knowledge, this is the first time such models have been
derived and shared publicly with the research community.
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