
The Semantic Container Approach
Techniques for ontology-based data description and discovery in a decentralized

SWIM knowledge base

Eduard Gringinger, Christoph Fabianek

Frequentis AG

Vienna, Austria

Audun Vennesland

SINTEF

Trondheim, Norway

Christoph G. Schuetz, Bernd Neumayr, Michael Schrefl

Johannes Kepler University Linz

Linz, Austria

Scott Wilson

EUROCONTROL

Brussels, Belgium

Abstract— System Wide Information Management (SWIM) in

Air Traffic Management (ATM) aims to facilitate access to ATM

information via information services, thereby fostering common

situational awareness among stakeholders. The development of

information services and applications with added value in SWIM

will comprise finding, selecting, filtering and composition of

data/information from different sources, which is also referred to

as ‘data logic’. Semantic containers are a means to encapsulate

the data logic and clearly separate it from business and

presentation logic. The provisioning of semantic containers for a

specific purpose encompasses the discovery of existing source

containers and often further value-adding processing steps such

as filtering and annotation. Common semantic web technologies

may serve to implement the semantic container approach.

Data Mediation; Data Aggregation; System Wide Information

Management; Air Traffic Management

I. INTRODUCTION

Achieving the BEnefits of SWIM by making smart use of

Semantic Technologies (BEST) was a SESAR Exploratory

Research project (TRL 1) [1] that investigated the use of

semantic technologies within a SWIM-enabled environment.

BEST addressed research questions about the use of semantic

technologies to handle metadata, achieving scalable solutions

for data management, realizing automated compliance

checking with the help of ontology matching techniques,

optimizing data distribution, and using automated

modularization – with implications for governance.

SWIM is one of the major results of the SESAR

programme, and the adoption of SWIM by the ATM

community will lead to dramatic changes in how ATM services

are provided. Traditional ATM information management was

based on point-to-point message transfer, meaning information

producers had to decide in advance who the target recipients

would be. SWIM will change all this because it is based on an

information sharing approach where information producers do

not need to know anything about who might use the

information, and where information consumers can access

information from different sources if they have permission.

Standardized exchange models such as the Aeronautical

Information Exchange Model (AIXM) [2], the Flight

Information Exchange Model (FIXM) [3], the ICAO Weather

Information Exchange Model (IWXXM) [4], or semantic

models such as the ATM Information Reference Model

(AIRM) [5] already affect software architecture and software

development in a positive manner.

Without a clear description of the information/data

semantics, applications and service implementations will rely

on hard-coded data logic – intertwined with business and

presentation logic – that deals with the information, thereby

hampering reuse of information between services and

applications. In this regard, SWIM serves different providers

for publishing information. Stakeholders then need to find the

relevant information for a specific task. Developers will likely

spend a significant amount of time with mastering the

complexities of the data logic for handling all the information

in SWIM, which holds developers back from developing

innovative applications and value-added services. The

separation of data logic from business and presentation logic is

a commonly accepted principle in software engineering.

“Semantic technologies” is an umbrella term comprising

modelling techniques, languages and tools that allow for the

development of software that can process and “understand”

information that was designed for human perception in the first

place. The basic premise of BEST is that such semantic

technologies could be used to complement what is provided in

SWIM to enable truly effective information management.

There is no tradition in ATM of using semantic technologies,

and perhaps even scepticism from parts of the community

concerning the usefulness of semantic technologies. The main

objective of the BEST project [1] was therefore to determine

how semantic technologies can be used effectively to maximize

the benefits of adopting SWIM. One of the sub-objectives was

to develop an ontology infrastructure for ATM, which is an

important cornerstone of the semantic container approach. The

outcome of these development efforts is described in this

paper, which includes excerpts from Deliverables D1.1 [6],

Eighth SESAR Innovation Days, 3rd – 7th December 2018

TABLE I. OVERVIEW OF TRANSFORMATIONS BETWEEN UML AND OWL

D3.2 [7], and D5.2 [8] of the BEST project; the paper thus

summarizes the project’s most important results.

II. ATM INFORMATION REFERENCE ONTOLOGY

The ontology infrastructure includes ontologies developed

from the AIRM UML model and a set of ontologies, each

representing different domains of ATM information exchange,

namely AIXM [2] and IWXXM [4]. All ontologies are

formalized in the Web Ontology Language (OWL) as

standardized by the World Wide Web Consortium. The

ontologies are used as the vocabulary for describing and

supporting retrieval of relevant information by applications

developed in the project. Furthermore, the ontologies form a

baseline for the establishment of guidelines describing how

semantic technologies can be applied to support information

exchange in a SWIM environment.

The ontology development basically included three sub-

processes:

1. Transformation from UML to OWL, since the AIRM

is defined in UML

2. Semi-automated extraction of modules

3. Automated extraction of modules

Figure 1 serves to illustrate these processes. The

development of the ontologies followed different paths,

primarily due to different complexity in the UML structures of

the different models, but also for the sake of experimenting

with different techniques.

Figure 1. Ontology development approach [6]

A. Transformation from UML to OWL

The first step was to generate an XML Metadata

Interchange (XMI) representation of the UML models. In the

next step, we applied a set of transformation rules to transform

from XMI to OWL. The transformation rules are developed

with support from the (non-normative) guidelines for mapping

between UML and OWL in the OMG ODM specification (see

Appendix A of [6]). Table I provides an overview of the

transformations performed and a more detailed explanation of

each transformation and its resulting OWL entity is provided in

[6]. The XSLT scripts used in the transformation are available

online (http://project-

best.eu/downloads/ontologies/xslt/xslt.zip).

UML Construct OWL Construct

UML Class OWL Class

UML Generalization OWL SubClassOf

UML Boolean attribute OWL Class

UML Attribute with complex
data type

OWL Object Property

UML Association OWL Object Property

UML Aggregation (AIRM only) OWL Object Property

UML Composition (AIXM and
IWXXM)

OWL Object Property

UML Attribute with simple
data type

OWL Data Property

B. Semi-automated extraction of modules

The IWWXM and AIXM UML exchange models include

many package interdependencies, intricate data typing, and

other modelling conventions (e.g. XOR relationships and

association classes) that makes it challenging to completely

automate a transformation from UML to OWL. Therefore, the

development of the ontology modules from IWXXM and

AIXM has been performed semi-automatically in the sense that

much of the class and property axioms in OWL are established

automatically using XSLT and the same set of rules as for

AIRM.

After this there was a need to enhance and structure the

content manually in ontology editor Protégé [9]. In principle,

the same XSLT transformation rules used for the AIRM could

be applied for exchange models to get to a monolithic ontology

but as already mentioned there are some differences in

modelling techniques that prevent a completely generic

approach among the models. Therefore, in the case of the

exchange models the XSLT transformation results in an

intermediate OWL representation. The intermediate ontologies

consist of most entities present in the UML models, however

quite a bit of manual engineering was still required to organize

the proper relationship between classes, object properties, data

properties and individuals, before the ontology modules are

complete.

C. Automated extraction of modules

Monolithic ontologies can be characterized as large-sized and

complex, often spanning several different topics and

knowledge domains. Developing and maintaining such

monolithic ontologies is a cumbersome and sometimes

overwhelming task due to their size and complexity [10].

Eighth SESAR Innovation Days, 3rd – 7th December 2018

2

http://project-best.eu/downloads/ontologies/xslt/xslt.zip
http://project-best.eu/downloads/ontologies/xslt/xslt.zip

TABLE II. MODULES GENERATED FROM AIRM

Advantages of ontology modules on the other hand include that

they promote use, re-use, more efficient processing, and simple

maintenance (to name a few).

The task of automatically decomposing a monolithic

ontology into a set of sub parts (modules) is called ontology

modularization. There is no single approach to ontology

modularization that works for all situations, it depends on the

application requirements. There are however two overall

strategies, namely 1) ontology partitioning and 2) ontology

module extraction. Ontology partitioning consists of

decomposing the full set of axioms in an ontology into a set of

modules (partitions) and the union of all modules should in

principle be equivalent to the original ontology.

 For example, Stuckenschmidt and Schlicht [11] applied

structural characteristics such as target module size and number

of target modules to determine suitable partitions of an input

ontology. Ontology Module Extraction extracts modules from

an ontology based on a definition of a sub-vocabulary, also

called a seed signature. This signature consists of a set of

entities (classes and/or properties and/or individuals) from

which the technique recursively traverses through the ontology

to gather related entities to be included in the module [10].

In BEST, we employed the latter strategy and more

specifically a technique called Syntactic Locality

Modularisation [12], [11] for extracting ontology modules from

the AIRM, AIXM and IWXXM monolithic ontologies. The

reason for this choice was primarily based on the use cases we

had in the BEST project. First, all the three original models

were structured according to topicality. For example, the

AIRM model is organized into different subject fields, where

each subject field is responsible for describing semantics about

a certain topic, for example “Aircraft” or “Meteorology”.

Secondly, the semantic containers are described in detail in

section III.

The BEST project developed a set of prototype applications to

support different steps of the modularization process. The

module extraction functionality was implemented in Java using

the OWL API library (version 4.1.2). It is important to realize

that ontology modularization is not just about extracting

isolated modules from a monolithic representation. To have a

consistent set of modules in the end (i.e. a network of

modules), one must capture and maintain dependencies among

the extracted modules and resolve any redundancy that might

exist. For this reason, a set of prototype ontology

modularization applications were developed

(https://github.com/sju-best-project/ontology-modules).

III. SEMANTIC CONTAINER: DEFINITION

We introduce semantic containers to encapsulate the data logic

of SWIM services [13] and clearly separate it from business

and presentation logic. A semantic container allows developers

to organize and make sense of the provided ATM information.

A semantic container provides a SWIM application or service

with all the relevant ATM information, hiding the complexities

of compiling the information package. Semantic containers

come with ontology-based metadata that allow users, services,

and applications to know what the content of the container is

and assess the freshness as well as the quality of the data.

The provisioning of semantic containers for a specific purpose

encompasses the discovery of existing source containers and

often further value-adding processing steps such as filtering

and annotating [14]. These tasks are supported by matching of

information need and available data containers and services.

Based on a formal ontology-based specification – employing

the ontology infrastructure – of the information needed for an

operational scenario, the semantic container management

system should find existing data containers that most closely

fulfil the specified information need and identify missing

processing steps. Note that the implementation of the

corresponding algorithms of identifying missing processing

steps to obtain a full match is left to future work. More

information about the definition of a semantic container can be

found in [15] and [16].

IV. SEMANTIC CONTAINER DISTRIBUTION AND SWIM

Effective use of the semantic container approach developed in

BEST depends on the existence of a Semantic Container

Management System (SCMS) controlling the replication,

distribution and consistency of containers. In the field of

distributed databases, there are many existing techniques for

distribution, replication and consistency management, mostly

based on a single generic data model. In BEST, we refine

existing techniques using different types of models for different

kinds of information [17].

High availability of information and low network load are

key goals for the success of the SWIM approach. Semantic

containers, supported by an SCMS, can contribute significantly

to these goals. The semantic container approach distinguishes

between logical and physical containers to indicate which

containers are allocated at which nodes. The semantic

container approach also allows for the definition of different

versions of containers, supporting consistency management

and different forms of synchronization. Finally, semantic

containers allow for traceability of data provenance, and

definition of composite containers that gather data from lower-

level elementary containers. We stress that the semantic

container approach applies to various types of ATM

information as well.

In SWIM, different applications require different types of

ATM information at various degrees of freshness and

availability. An aircraft pilot may, for example, request current

weather data. For availability’s sake, consistency may be

Ontology Module Classes Object properties Data properties Individuals
Aircraft 71 84 32 182
AerodromeInfrastructure 117 345 69 0
NavigationInfrastructure 34 70 39 0
SurveillanceInfrastructure 34 21 17 0
Obstacle 12 27 8 0
BaseInfrastructureCodelists 100 0 0 1574

Meteorology 74 69 15 97
Stakeholders 148 131 40 316
Common 78 44 19 396

Eighth SESAR Innovation Days, 3rd – 7th December 2018

3

sacrificed: Slightly outdated weather information is better for a

pilot than none. With respect to notifications about runway

closures, on the other hand, pilots require fresh data because

wrong information would entail potentially disastrous

consequences. Semantic containers allow us to make the

inherent trade-off between freshness and high availability

tangible for the consumer of ATM information: A semantic

container packages ATM information and the resulting

packages can be redundantly stored at multiple locations for

high availability; administrative metadata indicate freshness

and data quality.

Semantic containers also increase availability of the overall

system by considering multiple sources of ATM information

which semantic containers may be derived from. The semantic

container metamodel [14] allows for the representation of

multiple data sources for the same semantic container. An

SCMS may switch dynamically and transparently between

different sources. Different sources may provide the same data

with different quality to ensure that the consumer is alert to any

reduction in quality of service. A primary source is a source

with the highest data quality among the sources of the

container. Secondary sources of lesser quality are only used

when no primary source is available at the expected freshness.

An advantage of packaging ATM information in semantic

containers is the possibility to allocate relevant information

directly in the aircraft that operates a specific flight. The

semantic container can be created a couple of days prior to the

date the actual flight takes place, being filled with relevant

information in advance. Shortly before the flight, at the

departure airport with high bandwidth, the container can be

uploaded onto the plane, and during the flight updated with

only the critical information or information that requires low

bandwidth.

ATM information is inherently dynamic: Government

authorities and authoritative sources, e.g., GroupEAD, push

new data and updates to existing data. Hence, the semantic

container approach requires a mechanism to keep the contained

ATM information up to date. The proposed semantic container

approach paves the way for both push- and pull-based handling

of updates.

Multiple service consumers may request the same ATM

information from a remote entity. Typically, each request for

ATM information is processed individually, thereby putting

stress on the available bandwidth. With a SCMS in place,

SWIM services may cache frequently requested ATM

information (e.g. weather data) as semantic containers. They

can even store the semantic containers at locations where they

are frequently needed, thereby reducing the bandwidth and

computation effort. For example, a NOTAM filtering service

may cache relevant NOTAMs for the most important flight

routes as semantic containers. When concrete requests for

specific flights come in, rather than sifting through the whole

body of NOTAMs currently in place, the service may use the

pre-filtered semantic containers as a starting point for further

filtering.

V. SEMANTIC CONTAINER MANAGEMENT SYSTEM:

ARCHITECTURE

In this section we introduce a possible architecture for a

SCMS. The semantic container approach as introduced in

BEST Deliverable D2.1 [15], and the language for container

management – basically a UML metamodel – may be

implemented in many different forms; the semantic container

approach is independent of a concrete software and data

distribution architecture. Other and maybe more adequate

architectures may be developed in the future based on the vast

literature on distributed systems (e.g., [18], [19]). The proposed

architecture as described in this paper serves two purposes:

 to give a more complete picture of a globally distributed

SCMS, and

 to serve as a starting point for the development of more

advanced software and data distribution architectures.

An SCMS is distributed over multiple server locations and

multiple client locations. Locations are connected over the

internet. Container content and metadata are allocated

redundantly at multiple locations. Centrally-provided software

is run independently at the different locations which cooperate

to provide globally-distributed semantic container

management. Container content and metadata are allocated

redundantly at multiple locations. A semantic container

consists of location-independent metadata (represented by the

logical semantic container), location-dependent metadata

(represented by the physical semantic container) and content

(also referred to as data/information, e.g., a set of AIXM

Digital NOTAMs).

The container metadata can be represented as RDF

triples [7]. All container metadata can thus be collected into an

RDF graph. This RDF graph of all semantic containers is fully

replicated at every server location and partially replicated at

client locations. Each location runs an RDF database

management system (a.k.a. graph store) and SPARQL query

engine for storing, modifying and querying (parts of) the RDF

graph. Modifications of metadata at some location are

replicated in an asynchronous manner to other locations to

provide for redundancy of metadata in case of connection or

network failures. Replica consistency of metadata is

maintained by giving priority to most recent writes.

Container contents remain in their original form (XML

documents according to AIXM, IWXXM, or FIXM). Each

location runs an XML database management system (a.k.a.

document store) for storing and querying the contents of its

allocated containers.

Each server location independently runs a software package

which makes available functionality for managing and

querying data and metadata via RESTful web services. A client

location (or sink), e.g., an electronic flight bag on board of an

aircraft, may run a client variant of the software package which

provides a subset of this functionality. The software package

(in its server and client variants) is distributed from a central

software repository.

Eighth SESAR Innovation Days, 3rd – 7th December 2018

4

A client location provides functionality for:

 Allocating an existing semantic container

 Provisioning of semantic containers including content and

metadata

 Keeping data and metadata of allocated semantic

containers up-to-date via push and/or pull from their

primary sources

 Keeping semantic containers up-to-date from alternative

sources in case of unavailability of primary sources

A server location additionally provides functionality for:

 Creating a semantic container, storing its primary copy,

deriving locations for secondary copies

 Calling services to derive/update the contents of semantic

containers

 Forwarding modifications of semantic containers to client

containers via push and pull

 Creating, updating and deleting semantic containers

 Discovery of semantic containers

VI. SEMANTIC CONTAINER PROOF-OF-CONCEPT

In this section a proof-of-concept prototype is described in

which the semantic container approach is integrated into a

SWIM environment. Figure 2 gives an overview about the

various systems involved in this scenario. The goal of the

scenario is to give an idea how the TRL1 concept can be used

in a complete SWIM lifecycle. For the scenario the Frequentis

SWIM Registry was integrated to provide not only information

about SWIM services but also about semantic containers via

SWIM. The SCMS is used to define and create containers that

are then visible through the SWIM registry. On an

organizational level the Frequentis SWIM integration platform

– called MosaiX – serves to configure organization internal the

SWIM information for the specific SWIM applications. The

information is ultimately accessed by a SWIM application. For

the BEST integration we used an existing SESAR 1

prototype [20], namely the Integrated Digital Briefing from that

project’s WP13.2.2.

A. Integration: SWIM Registry

As a starting point to demonstrate setup and use of semantic

containers, a SWIM service registry is introduced. This registry

provides a list of available SWIM services and semantic

containers. It also allows to query information about this

service providers, e.g., source, content, freshness. For the

current use case a dedicated Frequentis Semantic Container

Service Registry was adapted. A list of available SWIM

services and semantic containers is available under “Entities” >

“Instances” together with the functionality to show details

about the services or edit entries (see Figure 3).

Figure 2. Proof-of concept overview [7]

Figure 3. Instances in the Frequentis Service Registry [7]

Besides showing the content of existing semantic

containers, it is also possible to create new containers in the

“Containers” section of the SCMS. Opening the SCMS allows

showing further details about the semantic containers.

B. Prototype: Semantic Container Management System

The SCMS is used to create and maintain semantic containers.

In the section “Containers”, a new container can be created.

The user can either create a new container and select an XML

file to be used as payload, or copy an existing container to

create compound containers. It is also possible to already create

a semantic container restricted to a specific aircraft type. Figure

4 is a screenshot showing the creation of a new container based

on a tailored NOTAM container for the specific aircraft type.

After creating the container, the container hierarchy can be

explored in the SCMS (Figure 4).

Eighth SESAR Innovation Days, 3rd – 7th December 2018

5

Figure 4. Creating a new Semantic Container [7]

C. Integration: SWIM Integration Platform

To configure available data sources for an organization the

Frequentis MosaiX SWIM Management Console is used – see

Figure 5. There it is possible to establish, manage and monitor

relevant data sources for an organization to provide access for

those entities with legal permission.

Figure 5. Frequentis MosaiX SWIM Management Console [7]

D. Integration: SWIM Integrated Digital Briefing

Based on the described use cases [16] Figure 2 shows the

components of the SWIM application with integrated semantic

containers. In red one can see the SWIM services that are used

to fill the semantic containers needed for the digitally enhanced

Pre-flight Information Bulletin (ePIB).

The SWIM application is managed by the organizational

SWIM integration platform (see Figure 3), which is responsible

for the service management, data mediation and other

configuration options. Since the SWIM Integration Platform is

also used as the access point to the SWIM Registry all

registered SWIM services and semantic container services are

available. For SWIM applications it is completely transparent

to connect to either a SWIM service or a semantic container.

However, to benefit from additional functionality provided in

semantic containers (i.e., requesting a defined data quality like

freshness or locality) also SWIM applications must be adapted

for that purpose.

The prototype has been integrated to use the BEST

semantic container concept and is able to retrieve containerized

information to be used and save calculation time the

application normally would need. The integration of the

semantic container concept into an existing SWIM application

showed that it can be used without any changes and only little

integration is necessary to visualize the added value provided

by the semantic containers.

VII. INFORMATION ANALYSES: SEMANTIC CONTAINER

To demonstrate characteristics and benefits of semantic

containers in the SWIM environment, an information analysis

was performed for different usage scenarios. Storage and

bandwidth requirements were compared between current

settings and the envisioned use of semantic containers. The

usage scenarios include a pilot briefing, information needs for a

fuelling service at an airport, an airline managing its fleet,

flight data for an international flight, as well as running the

Network Manager operations centre. In these scenarios, three

general benefits could be identified:

 Decoupling of services: Semantic containers decouple

information consumers from information service

providers and in this way, make it easier to replace and

maintain SWIM components.

 Optimization for message distribution: Data provider in

the SWIM context process many requests from different

applications. With semantic containers providers can

package and compress those usually small messages to a

single response and deliver the necessary data in a more

efficient way, improve reliability of the overall network,

and increases response times for SWIM applications.

 Easier testing and monitoring of end-to-end workflows in

SWIM networks: Semantic containers can act as black

boxes in a SWIM network and allow shielding

functionalities behind. When testing a new data provider

or consumer a semantic container act as a single interface

with defined behaviour and thus allow a wide range of

tests in a realistic environment. It would also be possible

to record data traffic over a time and then replay this

traffic in a test scenario. Additionally, semantic containers

occupy critical nodes in a SWIM network and allow

therefore monitoring data traffic at the relevant points.

CONCLUSION AND FUTURE WORK

The implementation of the SWIM concept enables direct ATM

business benefits to be generated by assuring the provision of

commonly understood quality information delivered to the

right people at the right time [21]. Semantic containers as

described in the BEST project build on this concept and

establish additional patterns in such an information network.

However, considering that as of today still only a limited

number of SWIM services is operational we need to

acknowledge that any service on top – like semantic containers

– will require even more time before they become operational.

Nevertheless, more and more SWIM services will become

operational over time and it makes sense to already think now

Eighth SESAR Innovation Days, 3rd – 7th December 2018

6

about addressing foreseeable bottlenecks that can be solved

with semantic containers.

A replication mechanism for the redundant storage of

semantic containers promises higher availability of mission-

critical data within SWIM while at the same time reducing the

network load of SWIM. By packaging ATM information in

semantic containers, SWIM information services may cache

often used information and thus avoid frequent calls to other

SWIM services. Furthermore, semantic containers are a

mechanism to retain provenance information when packaging

ATM information from different SWIM information services.

Thus, when a composite SWIM information service returns a

composite semantic container based upon information from

various other SWIM services, provenance information about

the semantic container’s components is preserved, which is

important for auditability purposes.

An SCMS providing mission-critical data and metadata

requires special consideration of trustful communication to

ensure authentication, integrity, and non-repudiation of data

and metadata. In a decentralized system, trust can only be

provided based on cryptographic protocols [22]. This was

clearly out of scope of the BEST project. Future research needs

to investigate how semantic containers can leverage

cryptographic protocols (e.g., using blockchain technology) to

provide trustful semantic container management and secure

SWIM.

The proof-of-concept scenario has shown that the semantic

container approach can extend the SWIM concept and add

value to it by facilitating data discovery through semantic

annotation, thus leveraging necessary benefits in SWIM

networks. Since BEST was a TRL 1 project, future work will

improve the semantic container concept and validate the SWIM

integration in a comprehensive manner. This should include

more scenarios, including data from an airline, an airport, and

ANSPs and SWIM components such as the SESAR 2020

SWIM registry.

Further details, including the full text of project

deliverables (and summaries thereof), information about how

to access technical results of the project (software and

ontologies), and a short video explaining some technical details

of parts of the work, are available on the project website

(https://project-best.eu/).

ACKNOWLEDGMENT

This research has received funding from the SESAR Joint

Undertaking under grant agreement No 699298 under the

European Union’s Horizon 2020 research and innovation

program. The views expressed in this paper are those of the

authors.

REFERENCES

[1] A. Vennesland, J. Gorman, “BEST D6.3 Final Report,” 2018.
http://www.project-best.eu/publications.html

[2] Aeronautical Information Exchange Model 5.1.1, 2016 [online]
Available: http://www.aixm.aero/.

[3] Flight Information Exchange Model 4.1.0 2017 [online] Available:
http://www.fixm.aero.

[4] ICAO Weather Information Exchange Model 2.1.1, 2017 [online]
Available: https://github.com/wmo-im/iwxxm.

[5] ATM Information Reference Model 4.1.0, 2017 [online] Available:
http://www.airm.aero.

[6] A. Vennesland, B. Neumayr and C. Schuetz, “BEST D1.1 Experimental
ontology modules formalising concept definition of ATM data,” 2017.
http://www.project-best.eu/publications.html

[7] E. Gringinger, C. Fabianek, C. G. Schuetz, “BEST D3.2 Prototype
SWIM-enabled Applications,” 2018. http://www.project-
best.eu/publications.html

[8] A. Vennesland, E. Gringinger and A. Kocsis “BEST D5.2 Ontology
Modularisation Guidelines,” 2017.

[9] M. A. Musen, “Protégé Ontology Editor,” 2015. [Online]. Available:
http://protege.stanford.edu/

[10] M. D’Aquin, A. Schlicht, H. Stuckenschmidt, and M. Sabou, “Criteria
and evaluation for ontology modularization techniques,” in Modular
ontologies, 2009, pp. 67–89.

[11] A. Schlicht and H. Stuckenschmidt, “Towards structural criteria for
ontology modularization,” in Proceedings of the 1st International
Conference on Modular Ontologies-Volume 232, 2006, pp. 85–97.

[12] B. C. Grau, B. Parsia, E. Sirin, and A. Kalyanpur, “Modularity and Web
Ontologies,” in KR, 2006, pp. 198–209.

[13] B. Neumayr, E. Gringinger, C. G. Schuetz, M. Schrefl, S. Wilson and A.
Vennesland, “Semantic data containers for realizing the full potential of
system wide information management,” IEEE/AIAA 36th Digital
Avionics Systems Conference (DASC), St. Petersburg, FL, USA, 2017,
pp. 1-10.

[14] E. Gringinger, C. G. Schuetz, B. Neumayr, M. Schrefl and S. Wilson,
“Towards a value-added information layer for SWIM: The semantic
container approach,” IEEE 18th Integrated Communications Navigation
Surveillance Conference (ICNS), Herndon, VA, USA, 2018, pp. 3G1-1-
3G1-14.

[15] C. Schuetz, B. Neumayr, M. Schrefl and E. Gringinger, “D2.1
Techniques for ontology-based data description and discovery in a
decentralized SWIM knowledge base,” 2018. http://www.project-
best.eu/publications.html

[16] E. Gringinger, C. Fabianek, B. Neumayr and A. Savulov, “BEST D3.1
Prototype Use Case Scenarios,” 2018. http://www.project-
best.eu/publications.html

[17] C. Schuetz, B. Neumayr, M. Schrefl and E. Gringinger, “BEST D2.2
Ontology-based techniques for data distribution and consistency
management in a SWIM environment,” 2018. http://www.project-
best.eu/publications.html

[18] A. S. Tanenbaum and M. van Steen, Distributed systems: Principles and
paradigms: Prentice-Hall, 2007.

[19] M. T. Özsu and P. Valduriez, Principles of distributed database systems:
Springer Science & Business Media, 2011.

[20] C. G. Schuetz, B. Neumayr, M. Schrefl, E. Gringinger and S. Wilson,
“Semantics-Based Summarization of ATM Information to Manage
Information Overload in Pilot Briefings,” 31st Congress of the
International Council of Aeronautical Sciences (ICAS), Belo Horizonte,
Brazil, 2018.

[21] A. Vennesland, J. Gorman, S. Wilson, B. Neumayr and C. G. Schuetz,
“Automated Compliance Verification in ATM using Principles from
Ontology Matching,” 10th International Conference on Knowledge
Engineering and Ontology Development (KEOD), Seville. Spain, 2018

[22] B. Schneier, Applied Cryptography, 2nd ed.: John Wiley and Sons,
1996.

Eighth SESAR Innovation Days, 3rd – 7th December 2018

7

https://project-best.eu/

