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Abstract—We extend the new, efficient Path&Cycle formula-
tion for the Hotspot Problem with two methods for dealing with
windowed capacity constraints. We also discuss how to combine
constraints to allow two-level capacity restricions for peak and
average load respectively. Finally, we present computational
results for the sliding window capacity constraint.

I. INTRODUCTION

The Hotspot Problem in Air Traffic Management is the
problem of avoiding localized congestion in the controlled
airspace. The airspace is divided into sectors, each with a
capacity constraint. These constraints can limit the number
of flights simultaneously in a region, or the number of flights
entering a region in given time windows (see Figure 1). A
hotspot [1], [2] is a sector with a violated capacity constraint.
One common approach to eliminating hotspots is to limit the
number of flights in fixed time windows. However, this will
often result in bunching [3], where some of the flights in one
window are moved to the beginning of the next, causing the
beginnings of all windows to be crowded. In order to combat
bunching, we propose to use sliding capacity windows.

In practice, it is not enough to only look at short-term peak
capacity. Even when peak capacity is not violated, sustained
high load puts too much strain on controllers. We propose
combining capacity contraints to allow for both higher-load
short-time peak capacity constraints and lower-load long-time
capacity constraints. The ability to combine both short-term
and long-term of capacity constraints in one model makes for
more realistic hotspot resolution.

When checking for capacity violations, we count the number
of flights currently in each sector, i.e., occupancy count. When
using windowed constraints, another possibility is to count
only the entries into the sector during the given window, i.e.,
entry count. The entry can be a better option if the workload
associated with each flight is largely independent of the time
that flight spends in the sector. In this paper, we only use
occupancy counts, but our algorithms support the use of both
counts interchangeably.

The Path&Cycle formulation is a new, efficient formulation
for job-shop scheduling problems that was introduced in [4]
to tackle the Hotspot Problem in Air Traffic Management. It
does not have the disadvantages of time-indexed formulations
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Figure 1. Three types of capacity constraints, each with capacity at most 2.
Solid, blue lines represent flights present in this sector. Violations are shown
in red. Type 1A violations are instantaneous, Type 2 violations are in fixed
windows at 10 minute intervals, Type 1B violations are in any 10 minute
interval.

and big-M formulations, which are used in similar approaches.
In particular, time-indexed formulations struggle when the
number of time periods grow large, while big-M formulations
are slowed down due to weak bounds on optimality.

We briefly discuss the Path&Cycle model from [4] in
Section II. We also introduce a new generalization of the
Path&Cycle model which allows for sliding capacity windows.
We discuss how to add a layer of fixed-window capacity
constraints to the Path&Cycle model in Section III. Finally,
we present computational results for sliding capacity windows
in Section IV.

II. THE PATH&CYCLE MODEL FOR TYPE 1 CAPACITY
CONSTRAINTS

We are solving the Hotspot Problem for a set of sectors S
and a set of flights F , under a variety of capacity constraints.
A route node (f, s) is a pair of a flight and a sector, where
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the flight f passes through the sector s. Each flight f ∈ F has
an associated route, which is an ordered sequence of route
nodes ((f, s1), (f, s2), . . . , (f, sq)), where s1 is the departure
sector and sq is the arrival sector. We let (f, s+ 1) denote the
route node immediately following (f, s). Our goal is to find
a schedule t that specifies for each route node (f, s) the time
tsf when flight f will enter sector s.

For each route node (f, s), we are also given the time Λs
f

flight f takes to traverse sector s. For each departure node, we
are given the earliest departure time, and for some departure
nodes we are also given the latest departure time. In addition
to satisfying these time constraints, our schedule must also
satisfy the given capacity constraints.

A. Type 1 Capacity Constraints
Type 1 capacity constraints are constraints that apply to

any interval (or instant) of a given length. Type 1A capacity
constraints are violated if there is an instant where the capacity
of a sector is exceeded. Type 1B capacity constraints are
violated if there is an interval where the number of flights
in the sector during that interval is above the capacity of the
sector. (See Figure 1.)

The algorithm for Type 1A capacity violations (see Fig-
ure 1) from [4] is presented in Section II-B. Type 1B is a
generalization of Type 1A, where each flights occupancy in
the sector is extended by the length of the desired capacity
constraint window (see Figure 2 and Lemma 1). Since Type 1A
is Type 1B with zero-width windows, we refer to the more
general Type 1B as Type 1.

Lemma 1. We have a Type 1B violation of capacity c and
window width ∆ if and only if we have a Type 1A violation
of capacity c where each flight occupancy has been extended
by ∆ after the original occupancy.

Proof: Suppose we have a Type 1B violation of capacity
c and window width ∆. Let t be the time at the end of the
window. Now extend the duration of each flight by ∆. Each
flight present in the window will now either be present at t, or
have its extension present at t, so we have a Type 1A violation
at time t.

Suppose, for the other direction, that we have extended the
durations of all flights by ∆, and that we have a Type 1A
violation of capacity c at time t. If we remove each extension,
then all the flights with an extension present at t must have
been present between t − ∆ and t, so we have a Type 1B
violation of capacity c and window width ∆.

B. The Path&Cycle Formulation for Type 1A
We first develop the algorithms and models needed to

solve for Type 1A capacity constraints. We then describe the
generalization to Type 1B in Section II-D.

Let tsf be the time flight f enters sector s, and let Λs
f be

the time flight f takes to traverse sector s. When the flight
is understood from context, we use s + 1 to denote the next
sector in the flight’s path. We get the equality

ts+1
f = tsf + Λs

f , (1)

1B

0min 10min 20min 30min 40min 50min 60min

Figure 2. By extending the duration of each flight’s occupation of the region,
we can turn 1B violations into 1A violations. We use dashed lines to represent
occupancy extensions.

o

(f, s1) (f, s) (f, s + 1) (f, sq)

(g, s′1) (g, s) (g, s + 1) (g, s′q)
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Λs
f

−Λs
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Λs
g

−Λs
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Figure 3. Route node graph. The black edges between route nodes of a single
flight represent departure constraints and sector traversal times. The red edges
between route nodes on different flights (conflict edges) represent scheduling
constraints between flights. In this example f has an earliest departure time,
while g has a fixed departure time.

which we will represent using the inequalities ts+1
f ≥ tsf +Λs

f

and tsf ≥ t
s+1
f − Λs

f .
The earliest departure time, relative to the reference time

to, of a flight f is denoted Γf . Thus

ts1f ≥ to + Γf . (2)

If the flight must depart on schedule, then we also add the
reverse inequality to make an equality. In our problem, we
assume flights cannot be delayed in the air. Therefore, flights
arriving from outside the managed area, and flights already in
the air, are accounted for using fixed departure times.

We represent (1) and (2) using a weighted, directed graph
where the nodes are route nodes, and the weighted, directed
edges represent inequalities. Figure 3 shows the resulting
graph.

When there is an edge from (f, s) to (f ′, s′), with weight w,
this means that ts

′

f ′ ≥ tsf +w. The red, diagonal edges between
route nodes of different flights in Figure 3 represent possible
conflict edges. The dashed edges (going left to right) together
represent a meeting of f and g in s. The two constraints
together require that both flights enter s before either leaves.
The dotted edges (right to left) each represent a precedence
constraint. In each case, one flight has to leave s before the
other enters. See [5] for more details on disjunctive graphs.
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Associated to the conflict edges, we introduce the variables

xsfg =

{
1 if f and g meet in s,
0 otherwise,

(3)

ysfg =

{
1 if f precedes g in s,
0 otherwise.

(4)

Note that for any pair of flights f, g, and for any region s, we
must have

ysfg + ysgf + xsfg = 1. (5)

We let G(y,x) be the route node graph with added conflict
edges such that x and y are incidence matrices. We divide
the set K of all conflict edges into the two sets Kx and Ky .
Note that K, Kx, and Ky contains all conflict edges of the
matching type, not only those currently selected.

If ysfg = 1, we add the inequality

ts+1
f ≤ tsg, (6)

that is, f leaves s before g enters. If xsfg = 1, we add the pair
of inequalities

ts+1
f ≥ tsg (7)

ts+1
g ≥ tsf , (8)

that is, neither may leave s before both have arrived.

Lemma 2. If G(y,x) contains a strictly positive directed
cycle, then the set of inequalities corresponding to the edges
of the cycle is inconsistent (infeasible).

Proof: If G(y,x) contains a directed cycle visiting node
(f, s), and the sum total weight of the edges in the cycle is
W > 0, then

tsf ≥ tsf +W > tsf .

From Lemma 2, it follows that G(y,x) cannot contain
strictly positive directed cycles. This restricts the possible
values of x and y.

Given a G with no strictly positive directed cycles, we can
always find a longest path from o to any route node u = (f, s).
We label this distance L∗(y,x, u).

Lemma 3. Let x and y be such that G(y,x) does not contain
any strictly positive directed cycles, let f be a flight, and s be
a sector. Minimizing tsf subject to the instances of (6), (7), and
(8) corresponding to conflict edges in G(y,x) is equivalent to
minimizing L∗(y,x, (f, s)).

Proof: By the same argument as in the proof of Lemma 2,
we have that

tu ≥ to + L∗(y,x, u).

This inequality is most restricting, since L∗ is the longest
path. Therefore, when minimizing tsf , we can instead minimize
L∗(y,x, (f, s)).

Lemma 3 is the key to building a model with no direct
reference to the scheduling variables. All connections to time
are coded into the edge weights of the route node graph.

C. The Mixed-Integer Linear Programming Model

The variables for our model are x and y, introduced in
Section II-B. For each sector, these variables encode meetings
of flights, and precedence between flights that do not meet.

Lemmas 2 and 3 give us most of what we need to build our
model. All the scheduling and conflict inequalities are encoded
in the graph G(y,x). The only thing missing is the encoding
of capacity constraints.

Lemma 4. Let F be the set of all flights, s a sector, and cs
the capacity of s. The capacity constraint cs is at all times
respected if and only if for all F̄ ⊆ F where |F̄ | = cs + 1, we
have ∑

{f,g}⊆F̄

xsfg ≤
(
|F̄ |
2

)
− 1. (9)

Proof: Suppose the capacity is violated at some point in
time. At that time, at least cs + 1 flights must be in s. Let F̄
contain any cs + 1 of these flights. The number of pairs in F̄
is
(|F̄ |

2

)
. Since each pair is meeting, the sum in (9) is

(|F̄ |
2

)
,

and so the inequality is violated.
Conversely, suppose (9) is violated. Then there is a set F̄

of cs + 1 flights with at least
(|F̄ |

2

)
pairwise meetings. Since

this is the total number of possible meetings, the flights must
all meet. Since they all meet, none may leave s before all
have entered, and so there is a point in time when they are all
present, and the capacity is violated.

Lemma 5. Let C be the set of all strictly positive directed cy-
cles in G(1,1). G(y,x) contains the strictly positive directed
cycle C ∈ C if and only if∑

e∈C∩Ky

ye +
∑

e∈C∩Kx

xe = |C ∩K|.

Proof: C is a subgraph of G(y,x) exactly when all
conflict edges in C, numbering |C ∩K|, are selected.

One typical objective is to minimize the sum of delays of
all flights. This is equivalent to minimizing the sum of arrival
times, since our scheduling constraints make it impossible to
schedule early arrivals. If we let A be the set of arrival nodes,
then our goal is to minimize

∑
u∈A tu. Using the results of

Section II-B and Lemmas 4 and 5, we get the following Linear
Programming model.

min
∑

u∈A L
∗(y,x, u)

s.t.
(i) ysfg + ysgf + xsfg = 1, {f, g} ⊆ F, s ∈ S,

(ii)
∑

e∈C∩Ky
ye +

∑
e∈C∩Kx

xe ≤ |C ∩K| − 1,

C ∈ C,

(iii)
∑
{f,g}⊆F̄ x

s
fg ≤

(|F̄ |
2

)
− 1,

s ∈ S, F̄ ⊆ F, |F̄ | = cs + 1,

y ∈ {0, 1}|Ky|,x ∈ {0, 1}|Kx|.
(10)
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D. Generalization to Type 1B

By Lemma 1 (see also Figure 2), we know that we model
Type 1B constraints by modifying (6), (7), and (8). We use
∆ to denote the width of our Type 1B capacity windows. For
ysfg = 1, we get

ts+1
f + ∆ ≤ tsg, (11)

and for xsfg we get

ts+1
f + ∆ ≥ tsg (12)

ts+1
g + ∆ ≥ tsf . (13)

The only required change is modification of weights in the
route node graph G.

E. Row and Column Generation

Model (10) is well suited to delay row and column gen-
eration. First, we need only generate ysfg, y

s
gf , x

s
fg and the

associated row of type (10.i) if f and g are violating a capacity
constraint.

Of the constraints of type (10.ii) and (10.iii), most rows will
not be relevant. Further, in the relevant rows, we do not need
to worry about ungenerated variables, as we always generate
the x’s that may take value 1, i.e., those that represent flights
that may meet in the given sector.

Dealing with the objective function is the challenging aspect
of delayed row and column generation in this model. This is
because the longest path from o to any u ∈ A will depend on
the choice of x and y through G(y,x).

Let H be the set off all G(y,x), such that x and y satisfy
(10.i), (10.ii), and (10.iii). We use Pu(H) to denote (the set of
edges of) a longest path from o to u in H for u ∈ A and H ∈
H. Lu(H) is the length of Pu(H). If all the conflict edges in H
are chosen by the current solution, then Lu(H) = L∗(y,x, u).

If all the conflict edges of H are selected, then∑
e∈Pu(H)∩Kx

xe +
∑

e∈Pu(H)∩Ky

ye = |K ∩ Pu(H)|. (14)

That is, the set of inequalities

Lu(H)

( ∑
e∈Pu(H)∩Kx

xe +
∑

e∈Pu(H)∩Ky

ye

− |K ∩ Pu(H)|+ 1

)
≤ µu, H ∈ H, (15)

is equivalent to

L∗(y,x, u) ≤ µu. (16)

Thus, by expressing the objective of (10) in terms of µu

and adding the inequalities (15), we obtain the Path&Cycle
formulation. When solving this model, we can start with
H = C = ∅, and only add inequalities for longest paths (H)
and cycles (C) when they become relevant. The steps of the
delayed row and column generation algorithm are described
in detail in [4].

o

(f, s1) (f, s) (f, s + 1) (f, sq)

(w1, s) (wk, s) (wk+1, s) (wm, s)

Γf

0

0

Λs
f

−Λs
f

∆

−∆

Figure 4. The figure shows how we can adapt the route node graph to
model Type 2 capacity constraints. The lower line of nodes represent capacity
windows for a single sector s, which is visited by flight f .

III. MODELLING TYPE 2 CAPACITY WINDOWS

We now present a way to add Type 2 capacity constraints
to our current model. This allows us to use two different,
simultaneous capacity constraints.

We adapt existing methods in order to model Type 2
capacity constraints. Figure 4 shows how we modify the route
node graph in order to account for capacity windows. We can
make a further simplification by linking the window nodes
directly to the origin o (see Figure 5).

For each sector s and each time window w, we introduce a
new window node (w, s). We extend x and y by thinking of
each w as a flight. This means that

xsfw =

{
1 f is in s in window w,
0 otherwise,

(17)

ysfw =

{
1 f leaves s before window w begins,
0 otherwise,

(18)

yswf =

{
1 f enters s after window w ends,
0 otherwise.

(19)

We use tw to denote the start time of window w, the end
time is then tw +∆. We let m be the number of windows, and
label the windows w1, . . . , wm. For each i ≤ m and for each
sector s, we add the window node (wi, s) to the route node
graph G. We also add, for each i ≤ m, edges corresponding
to the pair of inequalities

tswi
= to + (i− 1)∆. (20)

That is, and edge from o to (wi, s) with weight (i− 1)∆, and
an edge from (wi, s) to o with weight −(i− 1)∆.

If xsfw = 1, we add the inequalities (and corresponding
edges)

tsf ≤ tsw + ∆ (21)

ts+1
f ≥ tsw, (22)

if ysfw = 1, we add the inequality

ts+1
f ≤ tsw, (23)

4
 

 
Eighth SESAR Innovation Days, 3rd – 7th December 2018 

 

 

 

 

 

 



o (wk, s)

(f, s) (f, s + 1)

(k − 1)∆

−(k − 1)∆

Λs
f

−Λs
f

−∆ 0

Figure 5. Sub graph of the route node graph. This subgraph encodes the
fact that flight f is in sector s in window wk .

and if yswf = 1, we add

tsf ≥ tsw + ∆. (24)

We are assuming, without loss of generality, a fixed window
size ∆. In order to use a variable window size ∆s

w, simply
modify (20) as follows

tswi
= to +

i−1∑
j=1

∆s
wj
, (25)

and replace ∆ with ∆s
w in (21) and (24). Note that ∆s

w is free
to vary by window and sector, so that each sector can use its
own set of windows.

Figure 5 shows the edges added to the route node graph
when flight f is in region s in window wk. The edges between
o and (wk, s) represent (20), the edges between the window
node and the route nodes represent (21) and (22).

So far, we have extended the route node graph G(y,x) in
order to account for the scheduling constraints for capacity
windows. What remains is to define proper constraints on the
new variables in x and y. We let W be the set of windows.
As before, we have

ysfw + yswf + xsfw = 1, f ∈ F,w ∈W, s ∈ S. (26)

The added capacity constraint is simpler, since we now only
need to count the number of flights that appear in each window.
We let cws be the capacity for window w and sector s, then

∑
f∈F

xsfw ≤ cws , s ∈ S,w ∈W. (27)

By adding these new inequalities to (10), we get the
following model.

min
∑

u∈A L
∗(y,x, u)

s.t.
(i.a) ysfg + ysgf + xsfg = 1, {f, g} ⊆ F, s ∈ S,

(i.b) ysfw + yswf + xsfw = 1, f ∈ F,w ∈W, s ∈ S,

(ii)
∑

e∈C∩Ky
ye +

∑
e∈C∩Kx

xe ≤ |C ∩K| − 1,

C ∈ C,

(iii.a)
∑
{f,g}⊆F̄ x

s
fg ≤

(|F̄ |
2

)
− 1,

s ∈ S, F̄ ⊆ F, |F̄ | = cs + 1,

(iii.b)
∑

f∈F x
s
fw ≤ cws s ∈ S,w ∈W,

y ∈ {0, 1}|Ky|,x ∈ {0, 1}|Kx|.
(28)

This model is suited for the same delayed row and column
generation as in Section II-E.

IV. COMPUTATIONAL RESULTS

Tables I and II show the results of our experiments with
Type 1 capacity constraints, based on simulated data. The first
columns of Table I shows the performance of our Type 1A
algorithm. The running times are longer in the cases with
Type 1B capacity windows of 10 seconds and 1 minute, but
this is expected; there are more hotspots when we use time
windows, as shown in Figure 1. The data in Table I also
confirms that the algorithms have to resolve more hotspots
for the wider windows.

In our experiments, the Path&Cycle formulation solves
all test instances within a few seconds, while the standard
Big-M formulation times out at 10 minutes on some of the
more difficult instances, especially with the longer 1 minute
windows.

In Table II, we show results from the same instances as in
Table I with the same capacity (left-most colums), but using 10
minute Type 1B windows. In this case, the number of hotspots
grew too large and almost all of the computations timed out
at 10 minute limit. In the worst instances, over 100 hotspots
were resolved before time ran out.

We have designed our instances to have a reasonable amount
of hotspots with Type 1A capacity constraints. For a proper test
of the Type 1B constraints, we need to increase the capacity
or change the instances to reduce the number of hotspots. In
Table II, we also show the effect of increasing the capacity of
the sectors. As the capacity increases, the number of hotspots
go down, and many more instances are solved within the time
limit.

Our experiments were done with a C# implementation using
CPLEX 12.8. CPLEX was set to default parameters, except the
number of available threads were set to 1, the advanced start
switch was set to 0, and both dual reduction and dynamic
search were disabled. The code was run on an Intel i7-7700
HQ 2.8 GHz CPU, with 32 GB of RAM.
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TABLE I
COMPUTATIONAL RESULTS FOR TYPE 1A AND TYPE 1B CAPACITY CONSTRAINTS. PATH&CYCLE RESULTS ARE LABELED PC, BIG-M FORMULATION

RESULTS ARE LABELED BM. TIME LIMIT WAS SET TO 600 SECONDS, AND SOME BM COMPUTATIONS TIMED OUT. THE NUMBER OF HOTSPOTS
INCREASES WITH THE WIDTH OF THE CAPACITY WINDOWS, THIS IN TURN INCREASES COMPUTATION TIME. THE “NODES” COLUMNS SHOW HOW MANY

NODES WERE VISITED BY THE BRANCH AND BOUND ALGORITHM USED BY THE MILP SOLVER IN CPLEX.

Type 1A Type 1B, 10 seconds time window Type 1B, 1 minute time window

|F | cs Hotspots Nodes Time (s) Hotspots Nodes Time (s) Hotspots Nodes Time (s)

PC BM PC BM PC BM PC BM PC BM PC BM PC BM PC BM PC BM

122 3 16 15 1e+3 9e+4 1.24 10.99 17 16 2e+3 9e+5 1.45 168.4 20 20 2e+4 3e+6 4.16 449.3
137 3 21 21 5e+3 2e+6 2.24 117.9 21 21 7e+3 1e+7 2.17 494.3 19 15 7e+3 3e+6 2.22 —
131 3 12 12 3e+2 3e+4 0.48 2.99 12 12 3e+2 5e+4 0.49 4.79 13 13 1e+3 3e+4 0.62 2.97
142 3 13 13 5e+2 1e+5 0.53 29.93 13 13 9e+2 1e+5 0.8 26.34 17 17 3e+3 8e+5 1.99 118.5
110 3 12 12 5e+2 4e+4 0.29 9.82 12 12 5e+2 5e+4 0.4 11.55 16 16 9e+3 8e+5 1.58 113.7
127 3 11 11 2e+2 1e+4 0.35 1.04 12 12 3e+2 9e+3 0.52 0.89 18 18 2e+3 2e+4 1.09 1.87
115 3 1 1 0e+0 7e+0 0.05 0.04 1 1 0e+0 6e+0 0.04 0.04 1 1 0e+0 7e+0 0.04 0.04
120 3 4 4 8e+0 1e+1 0.04 0.07 4 4 3e+0 5e+1 0.04 0.06 5 5 9e+0 5e+1 0.04 0.07
131 3 7 7 3e+1 2e+3 0.12 0.36 7 7 3e+1 2e+3 0.13 0.34 8 8 5e+1 5e+3 0.12 0.78
143 3 8 8 6e+1 2e+3 0.14 0.46 8 8 2e+1 2e+3 0.14 0.75 10 10 2e+2 3e+4 0.2 6.42
136 3 15 15 5e+2 6e+4 0.29 17.21 17 17 4e+2 2e+6 0.28 — 20 20 2e+3 2e+6 0.63 —
142 3 9 9 2e+2 6e+3 0.1 1.68 9 9 3e+2 5e+3 0.16 1.41 12 12 1e+3 1e+5 0.45 14.18
139 3 14 14 1e+2 2e+4 0.27 4.42 14 14 1e+2 7e+4 0.29 8.83 20 20 8e+2 6e+5 0.73 76.77
126 3 10 10 2e+2 7e+3 0.24 1.38 11 11 4e+2 1e+4 0.33 1.9 15 14 2e+3 3e+5 0.77 49.75
139 3 19 19 1e+4 2e+5 2.16 31.16 19 19 1e+4 1e+6 1.99 266.7 24 24 3e+4 1e+6 5.29 134.9
288 5 8 8 8e+1 7e+3 0.54 1.52 8 8 7e+1 5e+3 0.51 1.24 12 12 6e+2 1e+5 1.32 18.41
289 5 9 9 3e+1 2e+4 0.23 7.31 10 10 7e+1 2e+4 0.26 9.41 14 14 3e+3 2e+6 1.95 —
278 5 10 10 4e+2 4e+4 0.92 9.88 11 11 5e+2 5e+4 1 12.29 16 14 7e+3 2e+6 3.74 —
259 5 3 3 0e+0 5e+2 0.1 0.23 3 3 0e+0 4e+2 0.11 0.2 6 6 2e+1 8e+2 0.15 0.44
254 5 8 8 7e+1 7e+3 0.31 2.09 8 8 7e+1 8e+3 0.41 2.1 9 9 6e+2 1e+5 0.58 22.85
279 5 9 9 5e+2 4e+4 0.66 8.37 9 9 8e+2 1e+4 0.82 3.91 14 14 5e+3 2e+6 2.38 —
287 5 3 3 0e+0 4e+2 0.12 0.24 6 6 0e+0 2e+3 0.33 0.57 10 10 6e+1 4e+3 0.36 1.78
259 5 11 11 8e+1 1e+4 0.59 2.52 14 14 1e+2 4e+4 0.86 8.96 16 16 7e+2 7e+5 1.63 136.3
281 5 8 8 2e+2 9e+3 0.75 1.85 9 9 2e+2 2e+4 0.83 3.83 12 12 5e+2 8e+4 1.28 23.86
296 5 4 4 4e+1 1e+3 0.16 0.67 4 4 4e+1 2e+3 0.16 0.93 6 6 2e+2 8e+3 0.5 1.8
275 5 7 7 2e+1 8e+2 0.24 0.69 7 7 2e+1 3e+3 0.25 1.46 8 8 2e+2 5e+4 0.39 16.78
256 5 5 5 2e+2 3e+3 0.37 0.83 5 5 2e+2 3e+3 0.4 0.78 7 7 7e+2 3e+3 0.7 1
273 5 9 9 2e+2 1e+4 0.6 3.14 9 9 3e+2 4e+4 0.69 12.37 12 12 2e+3 2e+5 1.92 32.34
274 5 9 9 7e+1 2e+4 0.67 4 9 9 5e+2 2e+4 0.84 4.77 16 16 5e+3 3e+6 3.37 —
287 5 11 11 1e+3 2e+4 0.89 5.34 12 12 1e+3 4e+4 1.48 9.93 16 16 5e+3 1e+6 4.18 193.5

V. CONCLUSIONS

We have shown (see Section IV) that our algorithm for
Type 1A (see [4]) also efficiently solves for Type 1B capacity
constraints with short time windows, and that it performs well
compared to the standard Big-M formulation on almost all our
instances.

With a large number of flights, low capacities, and long
capacity windows, the number of hotspots becomes too large
to handle. However, according to the results in Tables I
and II, the Path&Cycle formulation can easily handle up to
20–30 hotspots (including those introduced by intermediate
solutions).

In order to further prove our model, we need access to real
instances. While we have shown that our model performs well
compared to one established approach, we still need to confirm
that it performs well in real life.

VI. FUTURE WORK

Our next step is to integrate Type 2 constraints into our
model, so that we can solve the Hotspot Problem with layered

capacity constraints. This will allow us to restrict, simultane-
ously, peak and average load. By tuning window sizes, it is
possible to approximate a wide range of capacity constraint
schemes. We will also introduce entry counts as an alternative
to occupancy counts for defining capacity constraints.

Using this model in practice would allow for more realistic
modeling of the air traffic controller’s workload capacity
contraints, and therefore result in a more achievable work load.
Also, the use of sliding windows have the added benefit of
reducing the drive towards bunching.

Furthermore, our experiments have indicated that the
Path&Cycle algorithm is well suited to reoptimization with
slight variations in the model. This makes the algorithm ideal
for the approach to inter-airline scheduling fairness presented
by Jacquillat and Vaze [6]. We will include this approach
to fairness in our future models, so that we can evaluate
the fairness criteria themselves in terms of performance and
effectiveness.
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TABLE II
COMPUTATIONAL RESULTS FOR TYPE 1B CAPACITY CONSTRAINTS WITH 10 MINUTE WINDOWS. PATH&CYCLE RESULTS ARE LABELED PC, BIG-M
FORMULATION RESULTS ARE LABELED BM. TIME LIMIT WAS SET TO 600 SECONDS. AT THE LOWER CAPACITIES, THE NUMBER OF HOTSPOTS GROW

VERY LARGE, AND ALMOST ALL COMPUTATIONS TIME OUT. AS THE CAPACITY INCREASES, THE NUMBER OF HOTSPOTS BECOMES MANAGEABLE.

Type 1B, 10 minutes time window Type 1B, 10 minutes time window Type 1B, 10 minutes time window

|F | cs Hotspots Time (s) cs Hotspots Time (s) cs Hotspots Time (s)

PC BM PC BM PC BM PC BM PC BM PC BM

122 3 61 47 — — 4 11 11 1.49 61.2 5 1 1 0.19 0.07
137 3 75 58 — — 4 16 16 1.68 47.78 5 1 1 0.07 0.06
131 3 52 47 — — 4 5 5 0.1 0.18 5 0 0 0.03 0.04
142 3 52 48 — — 4 8 8 0.13 0.28 5 0 0 0.02 0.03
110 3 47 47 — — 4 4 4 0.06 0.32 5 0 0 0.02 0.02
127 3 58 63 — — 4 19 19 4.57 74.73 5 2 2 0.06 0.08
115 3 14 14 0.2 53.24 4 0 0 0.02 0.03 5 0 0 0.02 0.03
120 3 33 32 43.76 — 4 1 1 0.05 0.04 5 0 0 0.03 0.02
131 3 50 35 — — 4 6 6 0.11 0.47 5 0 0 0.03 0.04
143 3 51 54 — — 4 2 2 0.04 0.07 5 0 0 0.03 0.03
136 3 65 62 — — 4 7 7 0.36 8.25 5 0 0 0.02 0.03
142 3 54 53 — — 4 9 9 0.79 24.43 5 0 0 0.03 0.03
139 3 63 50 — — 4 9 9 0.58 2.68 5 1 1 0.05 0.06
126 3 68 71 — — 4 16 16 1.22 5.46 5 2 2 0.05 0.08
139 3 76 56 — — 4 21 21 8.19 — 5 3 3 0.04 0.06
288 5 59 60 — — 6 31 24 39.06 — 7 2 2 0.18 0.26
289 5 102 103 — — 6 46 36 — — 7 7 7 0.29 1.32
278 5 0 142 — — 6 48 41 — — 7 4 4 0.2 0.52
259 5 57 58 — — 6 37 25 — — 7 7 7 0.49 5.05
254 5 44 44 — — 6 25 14 53.25 — 7 6 6 0.79 0.82
279 5 75 76 — — 6 29 25 — — 7 9 9 0.47 1.47
287 5 84 83 — — 6 42 27 — — 7 4 4 0.22 0.7
259 5 87 86 — — 6 27 20 487.6 — 7 2 2 0.14 0.21
281 5 91 89 — — 6 43 31 — — 7 11 11 2.57 5.07
296 5 60 62 — — 6 24 21 213.2 — 7 2 2 0.12 0.24
275 5 68 67 — — 6 16 16 18.31 — 7 1 1 0.11 0.13
256 5 56 57 — — 6 32 19 — — 7 6 6 0.39 1.14
273 5 0 97 — — 6 48 29 — — 7 10 10 2.72 8.05
274 5 93 93 — — 6 44 37 — — 7 10 10 1.41 —
287 5 0 112 — — 6 36 24 — — 7 8 8 1.24 14.26
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