
Reducing Controller Workload by Automatic Speech 

Recognition Assisted Radar Label Maintenance 
 

Matthias Kleinert
1
, Hartmut Helmke

1
, Sylvain Moos

2
, 

Petr Hlousek
3
, Christian Windisch

4
, Oliver Ohneiser

1
, 

Heiko Ehr
1
, Aline Labreuil

2
 

1
Institute of Flight Guidance, German Aerospace Center 

(DLR), Braunschweig, Germany, 

2
Thales LAS France SAS, Rungis, France, 

3
Air Navigation 

Service Provider Prague, Czech Republic,  
4
Austro Control, Vienna, Austria 

firstname.lastname@{dlr.de, thalesgroup.com, 

austrocontrol.at} and hlousek@ans.cz 
 

Abstract—Various new hard- and software centered methods 

were recently implemented to replace paper flight strips through 

modern technical solutions. These solutions provide valuable 

information for other ATM applications about the verbally given 

guidance instructions from air traffic controllers (ATCos), but 

also tend to increase ATCo workload. Speech recognition appli-

cations, which automatically recognize and input the verbal 

ATCo instructions into a technical flight strip solution, can com-

pensate the workload increase while maintaining the benefit for 

other ATM applications. Experiments from the AcListant® pro-

ject in 2015 have shown that Assistant Based Speech Recognition 

(ABSR), which combines a conventional speech recognizer with 

an assistant system, can provide adequate recognition quality for 

the use in air traffic control (ATC) applications. AcListant® used 

a prototypic radar display implementation and a research proto-

type of a speech recognizer. This paper describes the exercise 220 

of the SESAR 2020 funded solution PJ.16-04. It used a Commer-

cial-Off-The-Shelf (COTS) speech recognition engine instead of a 

research prototype. Furthermore, a radar display developed by 

Thales Air Sys served for visualization. Command recognition 

rates varied greatly between 31% and 82% for different control-

lers. However, the concept from ABSR to predict possible ATCo 

instructions could be integrated with the COTS engine, which 

significantly decreased the command recognition error rate and 

led to a variation between only 4.8% and 6.6%, i.e. only a small 

amount of false recognitions were shown to the ATCo. 

 
Keywords—PJ.16-04, Assistant Based Speech Recognition, 

Automatic Speech Recognition, Checker, Air Traffic Control 

I. INTRODUCTION 

A. Problem 

Recently, the Active Listening Assistant (AcListant®) pro-

ject [1] has shown that a new type of Automatic Speech 

Recognition (ASR) [2] called Assistant Based Speech Recogni-

tion (ABSR) developed by Saarland University (UdS) and 

DLR [3]-[7] could be a solution to get acceptable recognition 

rates for ATCo to pilot voice commands. The Horizon 2020 

funded project MALORCA (Machine Learning of Speech 

Recognition Models for Controller Assistance) successfully 

shows an approach to reduce the costs of ABSR environment 

adaptation [8]. It developed a basic ABSR architecture with 

generic building blocks and automatically adaptable models. 

For adaptation MALORCA greatly relies on Machine Learning 

techniques, therefore only few manual adaptations are neces-

sary. Used airport frequencies, deviations from standard phra-

seology or specific acoustic and semantic variability, like ac-

cented speech of ATCos are automatically learned from rec-

orded radar data and corresponding controller audio recordings, 

which are automatically transcribed (speech-to-text). 

Although MALORCA’s approach was successfully tested 

for two mid-size approach areas achieving command recogni-

tion error rates of 3.2% for Vienna and even 0.6% for Prague, 

there is still no implementation of the approach in an ops room. 

One reason is that MALORCA aimed to achieve Technology 

Readiness Level 1 (TRL-1), i.e. exploring the transition from 

scientific research to applied research by bringing together a 

wide range of stakeholders to investigate the essential charac-

teristics and behaviors of applications, systems and architec-

tures. 

B. Solution 

The experiments 220 of the SESAR 2020 funded solution 

PJ.16-04 CWP HMI (Controller Working Position Human Ma-

chine Interface) uses a commercial-off-the-shelf (COTS) 

speech recognizer engine, developed by Nuance Communica-

tions. The main focus of this ASR system is on dictation appli-

cations in various industry sectors. For the purpose of the 

PJ.16-04 project the grammar of this commercial speech rec-

ognizer was adapted to deliver command recognitions for 

ATCo instructions in the terminal maneuvering area (TMA) 

area. 

Whatever the speech recognizer then delivered – based on 

the modified grammar – was validated against a set of predict-

ed commands generated by a checker component from the 

MALORCA project before it was shown to the ATCo. The 

Human Machine Interface for the exercise was developed by 

Thales Air Sys, integrated into the SkyCentre in Rungis and 

validated with controllers from Austro Control and Air Naviga-

tion Services of the Czech Republic (ANS CR). The HMI is 

based on the Shape platform of Thales Air Sys and enables an 

easy integration into the operational TopSky system of Thales 

Air Sys after being validated by controllers. The HMI concept 

enables an easy correction of given ATC commands in the case 

that ASR fails to correctly recognize spoken ATC commands. 

In most cases, however, the recognition is correct, so that the 

ATCo saves cognitive resources for more important tasks than 

entering given commands into the aircraft radar label. 
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C.  Paper Structure 

In the next section we present related work with respect to 

machine learning and speech recognition applications in ATM. 

Section III describes the architecture used in exercise 220. Sec-

tion IV explains the performed experiments, whereas section V 

presents the results. Section VI analyses the results and pre-

sents possible improvements before section VII summarizes 

and concludes. 

II. RELATED WORK 

NASA reports spoken ATC word recognition already in 

1977 [9]. Automatic Speech Recognition applications in the 

simulation environment for trainees to replace pseudo-pilots 

are used since the late 80s of the last century. ASR applications 

which should also understand air traffic controllers on the job 

had limited success. 

One promising approach to improve ASR performance is 

using context knowledge regarding expected utterances. These 

attempts also go already back to the 80s [10], [11]. This infor-

mation may heavily reduce the search space of the speech rec-

ognizer and lead to fewer missed recognitions [12]. Oualil et al. 

[13] analyzed the benefits of using context information for pre-

processing versus using context for post-recognition. Helmke 

et al. extend the usage of context by generating the context 

from an assistance system, i.e. an Arrival Management System 

(AMAN), to support ABSR [4],[5]. ABSR can significantly 

reduce controllers’ workload, which translates into fuel burn 

reduction and an increased runway throughput. These results 

were quantified for Dusseldorf approach area by performing 

baseline runs without and solutions runs with ABSR support: 

ATCo’s clicking time reduced by a factor of three [6]. This 

workload reduction enables  two landings more per hour and 

fuel burn reduction of approx. 60 liters per flight [7]. 

MALORCA project aims to automatically adapt the speech 

recognition building blocks to different approach areas. Auto-

matic adaptation results for Vienna and Prague approach area 

from controller-pilot speech recordings and the corresponding 

radar tracks were presented in [14]. Command recognition er-

ror rates of the baseline system were reduced from 7.9% to 

below 0.6% for Prague and from 18.9% to 3.2% for Vienna 

using each time 18 hours of untranscribed speech recordings 

without silence. 

III. IMPLEMENTATION OF FUNCTIONAL BLOCK “AUTOMAT-

IC SPEECH RECOGNITION” OF EATMA ARCHITECTURE 

The MALORCA project developed an architecture to adapt 

ABSR to different approach areas, by defining generic building 

blocks and application dependent models, which are (as far as 

possible) trained by machine learning from recorded radar data 

and untranscribed ATCo speech recordings [15]. 

The ASR activity of solution PJ.16-04 created a functional 

block (FB) “Automatic Speech Recognition” into the European 

Air Traffic Management Architecture (EATMA) model, which 

is the common architecture framework for SESAR 2020. It is 

the sole mean of integrating the ATM operational and technical 

content developments produced by SESAR 2020 Projects in a 

consistent and coherent way [16]. The FB “Automatic Speech 

Recognition” mainly receives an audio signal as input and 

transforms it into a sequence of words, i.e. “speech-to-text”. 

The sequence of words is than transformed further into a se-

quence of ATC concepts (“text-to-concepts”) using a set of 

rules (an ontology) also defined by PJ.16-04 [17]. The resulting 

concepts can be used for further applications such as visualiza-

tion on an HMI. The FB ASR consists according to EATMA of 

three ETAMA functions (Figure 1): 

Command 
Prediction

Usage of Speech 
Information

Weather

Radar
Concept 

Extraction

External Data

Voice Communication 
System (VCS)

FB Automatic Speech Recognition
 

Figure 1. Integration of Automatic Speech Recognition into EATMA 

1. Command Prediction to forecast possible future control-

ler commands taking into account external data. This ex-

ternal data can be radar data, flight plan data, weather data, 

airspace data, and also historic data of those types.  

2. Concept Extraction, which transforms the verbal control-

ler utterance first into a sequence of words (speech-to-text) 

and then the word sequence into the corresponding ATC 

concepts, which are further combined to ATC commands 

(concepts-to-commands). The output of the Command 

Prediction can be used to ease both tasks and also for 

checking the extracted ATC commands against expecta-

tions (Checker task).  

3. Usage of Speech Information:  The extracted ATC com-

mands are used to enable further applications at the same 

CWP HMI, e.g. callsign highlighting, command visualiza-

tion, manual and automatic verification, workload estima-

tion, pilot readback error detection. 

The Command Prediction function was reused from the 

MALORCA project, where it is composed of the generic 

Command Hypotheses Predictor and an application dependent 

Command Prediction Model (CPM) [15]. MALORCA’s over-

all architecture contains also the Concept Extraction function 

consisting of the 

 Generic building blocks: Acoustic Recorder, Feature 

Extractor, ASR Decoder, N-Best-Generator, Corrector, 

Command Extractor, Command Filtering, Plausibility 

Checker and 

 Application dependent models: ATC grammar, Do-

main Knowledge, Acoustic Model, Language Model 

and Lexicon. 

In the described exercise the parts of the speech recognition 

related blocks and models of the Concept Extraction function 
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are based on a COTS Speech Recognition Engine from Nuance 

(Recognizer 10.2.4 with Nuance Speech Server 6, windows 

version on hardware with 16 GB RAM and SSD disk), so that 

most of the building blocks and models mentioned above are 

treated as black boxes, except the Acoustic Model, ATC 

Grammar, Domain Knowledge and Plausibility Checker. No 

special Acoustic Model was implemented to cover acoustic 

characteristics from the Czech respectively Austrian accent, i.e. 

a standard language pack from Nuance was used designed for 

speakers from the UK. The used ATC grammar is based on the 

ICAO phraseology plus some local deviations observed during 

the pre-trials so that a Czech version and an Austrian version in 

form of basic grammars exist. To continuously update the basic 

grammars during runtime the function Command Prediction 

generates a set of commands which are possible in the current 

situation according to the surveillance data, which consists of 

e.g. of radar data, flight plan and weather information. This 

than results in an update of the basic grammar and transforms it 

into its real time version like shown in Figure 2. The update 

cycle for command predictions and, therefore, also for gram-

mar updates is 10 seconds. 

Command 
Prediction

Updated 
Grammar

Voice Communication 
System (VCS)Basic 

Grammar
Command 
Extraction

Plausibility 
Checker

Predicted Commands

Word Sequence
CommandsCommands

 
Figure 2. Implementation of EATMA Architecture in Exercise 220 

The outputs of the Nuance Engines are a sequence of words 

and extracted ATC concepts given in an XML format. The 

concepts are transformed into a sequence of ATC commands 

by the Command Extraction function in Figure 2 according to 

the ontology [17]. The implementation used in validation trials 

takes into account the provided callsign information, QNH and 

frequency values to limit the possibilities of the speech recog-

nition and Command Extraction output. Therefore, the output 

of the Nuance engine and the Command Extraction could never 

be a callsign or a QNH value which is not predicted. This limi-

tation only represents a subset of the information provided by 

the Command Prediction function; the full set of predictions 

includes various command types with corresponding values, 

which are used by the Plausibility Checker in Figure 2. If a 

DESCEND command with flight level 70 is not predicted for a 

callsign, but it is the output of the Command Extractor, it will 

not be shown to the controller. If the rejected command was, 

however, said by the controller, we have a false rejection; oth-

erwise we reduce the number of command recognition errors. 

IV. PERFORMED EXERCISES  

This section describes the performed exercises with Prague 

and Vienna controllers in Thales SkyCentre Environment sup-

ported by DLR’s Command Predictor function. First, the 

commonalities of both experiments are described. Section IV.A 

then describes the Prague approach and section IV.B the Vien-

na approach area exercise. 

The reference scenarios always represent working without 

ASR support, i.e. the ATCo provides all the inputs into the sys-

tem manually. In comparison the solution scenarios address the 

conditions when ASR is enabled. The system shall recognize 

which aircraft is contacted by the ATCo on the voice channel, 

highlight the appropriate callsign, translate the issued voice 

command(s) into system inputs and ensure that the highlighted 

callsign is retained, so that the ATCo can verify the recognized 

values. A special kind of command was the takeover of a flight 

from the previous managed sector, or its handover to the next 

sector for departures or to tower for arrivals. Such a command 

contained no value being shown to the ATCo in the radar label. 

Just the color coding of the callsign changed and the controller 

had time enough to reject the recognition before the recogni-

tion would result in a callsign transfer to the next ATCo posi-

tion. 

If the recognized and displayed values are correct, the 

ATCos didn’t have to confirm the inputs. However, the ATCos 

were advised to correct all incorrect values manually. In addi-

tion to reference and solution runs one training run was per-

formed per controller. The training run included parts where 

ASR was disabled (allowing the controllers to accustom to 

work on the simulation platform) and parts where ASR was 

enabled to familiarize controllers on how to interact with the 

ASR tool and its performance. Common for all exercises is: 

 Inbounds and outbounds are considered, but overflights 

and also nearby airport traffic are ignored for simplicity. 

 Typical traffic samples with typical Prague/Vienna 

callsign names are selected. 

A. Exercise 220a with Prague Controllers 

The validation scenarios mimicked the current traffic of 

Prague approach unit restricted to runway 24 (see Figure 3).  

 

Figure 3. Approach Display in SkyCentre for Prague controller 

The approach unit consists of seven working positions. The 
simulation, however, considers only the Departure Executive 
Controller (DEC), the Arrival Executive Controller (AEC) and 
the Director Executive Controller (PEC). In the case of lower 
traffic (up to 30 movement per hour), the positions AEC, PEC 
and DEC can be combined into a single position and all flights 
are controlled by one single Executive Controller. This option 
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was chosen for the validation exercises, enabling more simula-
tions with the same budget. The situation also often appeared 
when data for command prediction training was recorded dur-
ing the MALORCA project. So the command prediction model 
(CPM) from the MALORCA project could be reused [14]. 
Two scenarios were created, (1) a medium traffic scenario con-
taining 24 movements per hour and (2) a heavy traffic scenario 
with 30 movements per hour. 

B. Exercise 220b with Vienna Controllers 

The validation scenarios for Vienna modelled the current 

traffic of Vienna approach unit restricted to only runway 34 

(see Figure 5). There are in total 10 working positions within 

Vienna approach. The simulation, however, considers only the 

positions NERDU-Sector Executive, MABOD-Sector Execu-

tive, BALAD-Sector Executive, and Feeder for runway 34 Ex-

ecutive Controller (also called Director). The sector positions 

are shown in Figure 4. 

 

Figure 4. BALAD (VB), NERDU (VN), MABOD (VM) sectors of Vienna 

Each day of the final validation trials only one Austro Con-

trol ATCo was available. Therefore, the duties of all four posi-

tions were performed by one ATCo. Traffic flows were 

adapted accordingly so that traffic was manageable. This situa-

tion, however, never happened when data for command predic-

tion training was recorded in 2016 for the MALORCA project. 

Therefore, the CPM from MALORCA could not be used. A 

complete retraining of the CPM was necessary. Training data 

for this was recorded during pre-trials in March 2019 resulting 

in 3,400 different commands. 

 

Figure 5. Approach Display in SkyCentre for Vienna controller 

C. Validation hypotheses 

The validation objectives are to demonstrate ASR technical 

feasibility and interoperability (TFI), ASR performance stabil-

ity (PST), ASR operational feasibility (OPF), Human perfor-

mance (HUP), Safety (SAF), and TMA capacity (CAP). Figure 

6 shows the dependency graph of these validation objectives. 

Different validation success criteria were formulated for 

each of the six validation objectives resulting in validation hy-

potheses. For ASR performance stability (PST) the following 

hypotheses were formulated: 

 The ASR performance is maintained during the time, i.e. 

Command Recognition Rate (CmdRR) greater than 85% 

and Command Recognition Error Rate (CmdER) less than 

2.5%. 

 The ASR command recognition rate is acceptable and 

there is no major difference between clearances types. 

More validation hypotheses are presented in the next sec-

tion together with the results.  

 

Figure 6. Dependancy Graph of Validation Objectives 

V. VALIDATION RESULTS 

The validation runs with four controllers from Prague took 

place in Rungis in February 2019, the runs with two Vienna 

controllers in May 2019. Each controller participated in four 

runs (medium/heavy with and without ASR support) plus the 

training runs.  

 

Figure 7. Screen Dump of Transcription and Annotation Tool CoCoLoToCoCo 
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The audio files of all runs were recorded together with the 

corresponding radar data. Additionally the predicted com-

mands were saved when an audio file was recorded. In total we 

got 16 Prague and 8 Vienna runs (without training runs). All 

6,600 commands from the runs were manually transcribed and 

annotated by DLR with CoCoLoToCoCo tool (Controller 

Command Logging Tool for Context Comparison), which al-

ready implements the ontology developed by PJ.16-04 [17], see 

Figure 7. A run of 45 minutes takes approximately 90 – 120 

minutes of transcription and annotation time including the time 

for error corrections. 

A. Objective Prague Results 

The following Table 1 provides command recognition rates 

etc. for all eight solution runs. Row “All commands” contains 

the results when considering all 1,994 commands annotated. 

Row “> 10 commands” excludes command types which oc-

curred less than 10 times (e.g. type NAVIGATION_OWN or 

REPORT). Row “Must” contains only types, which were de-

fined in Functional Requirements Document (FRD) as “recog-

nition must be supported” (e.g. all command types which are 

also shown in the ATCo’s HMI). Row “Must+Should” shows 

the results, which should or must be recognized according to 

FRD (handover type is e.g. a “should”, but not a “must” type). 

TABLE 1: ASR PERFORMANCE OF ALL SOLUTION RUNS FOR PRAGUE 

 

Column “totalGiven” counts the number of commands, 

given/annotated in all the eight solution runs. Column 

“RecognRate” contains the average command recognition rate: 

We calculate the average command recognition rate for each of 

the eight solution runs and then the average, so that each solu-

tion run has the same weight for the average value. A com-

mand is correctly recognized if the callsign AND command 

type AND value AND qualifier are correctly recognized. The 

correct or wrong recognition of the unit has no effect on the 

result. Column “ErrorRate” provides the average command 

recognition error for the eight runs. Column “RejectRate” pro-

vides the average command rejection rates. A command is 

counted as rejected if nothing is recognized or the output was 

NO_CALLSIGN or NO_CONCEPT (NO_CALLSIGN or 

NO_CONCEPT are not correct according to annotation). De-

tails of these calculations are provided in [4]. 

TABLE 2: ASR PERFORMANCE FOR PRAGUE WHEN CHECKER IS USED  

 

The results in Table 1 are still without using the Plausibility 

Checker (see Figure 2). Table 2 shows the results when the 

Plausibility Checker is used, i.e. commands which are not pre-

dicted are than rejected as well. The last two rows repeat the 

results of Table 1, i.e. when the Checker is not used. 

The Checker sometimes also rejects correct recognitions. In 

these cases the controller uses commands which are not pre-

dicted. The resulting reductions in the recognition rates, how-

ever, are neglectable compared to the dramatic reduction (fac-

tor of 3) of the command recognition error rate. 

In addition to the manual quite work intensive post-run an-

notation, a first rough analysis was manually performed by a 

subject matter expert during the validation runs. The following 

Table 3 shows the results of this analysis per ATCo. 

TABLE 3: CORRECTLY DISPLAYED COMMANDS ON RADAR SCREEN OF ATCO  

 

The recognition rates online calculated via drawing stroke 

on a piece of paper during the solution runs, seems to be much 

higher than the offline calculated rates after the runs. However, 

the subject matter expert only considers the relevant com-

mands, which are shown on the radar label of the ATCo. Head-

ing commands are a second reason. The controller only sees 

the heading value, but not the qualifier (LEFT/RIGHT), which 

was often wrongly recognized by the Nuance engine. The sub-

ject matter expert also has to decide at once and cannot replay 

the utterance. 

TABLE 4: COMMAND PREDICTION ACCURACY FOR PRAGUE APPROACH 

 

Table 4 provides in the last two columns the accuracy of 

the Command Hypotheses Predictor and compares them to the 

command recognition rate and command recognition error rate, 

e.g. only two “Must” commands out of 1,461 commands given 

by the ATCo were not predicted (0.15%). 

B. Objective Vienna Results 

The following Table 5 provides the recognition results of 

all four solution runs for the Vienna ATCos, when the Plausi-

bility Checker is not used. 

TABLE 5: ASR PERFORMANCE OF ALL SOLUTION RUNS FOR VIENNA 

 

Although the total number of commands is equal for 

“Must” and “Must+Should” type the resulting rates are differ-

ent: Type “INFORMATION ATIS” is e.g. a should-type for 

Vienna. If recognized (but not said), it is thrown out from the 

recognition and calculated neither as an error nor as a rejection. 

Table 6 shows the results when Plausibility Checker supports 
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the Vienna controllers and compares the results again, in the 

last columns, to the situation without checker. The high reduc-

tion in the command recognition rate again enables a very sig-

nificant improvement of the command recognition error rate. 

TABLE 6: ASR PERFORMANCE FOR VIENNA WHEN CHECKER IS USED  

 

Table 7 shows the online annotation of the subject matter 

expert. It shows again the already explained differences be-

tween offline evaluation and online evaluation taking the 

ATCo’s feedback on the HMI into account, but it also shows 

the big difference between the two ATCos from Vienna, 

whereas the differences between the four different Prague 

ATCos are much smaller (Table 3). Vienna controller deviated 

much more in used ICAO phraseology. 

TABLE 7: CORRECTLY DISPLAYED COMMANDS ON RADAR SCREEN OF ATCO  

 

Table 8 shows the accuracy of the Command Hypotheses 

Predictor for Vienna Approach in the last two columns. 

TABLE 8: COMMAND PREDICTION ACCURACY FOR VIENNA APPROACH 

 

Compared to Prague data (Table 4) command prediction 

accuracy seems to be improvable for Vienna. However, Prague 

CPM model could be reused from MALORCA. Vienna CPM 

model was retrained on data obtained in pre-trails, because the 

combined airspace does not exist in real-life data. 

C. Validating the Validation Hypotheses 

Although the validations were performed in a laboratory 

environment, the previous sections show that both the com-

mand recognition rates and also the command recognition error 

rates are improvable and are below the results of the MALOR-

CA project. MALORCA also uses Prague and Vienna ap-

proach as validation airports. MALORCA, however, trained 

the acoustic models for Czech and Austrian accent. MALOR-

CA achieved a command recognition rate of 91.7% for Prague 

and 85.2% for Vienna. The command recognition error rates 

were 0.6% for Prague and 3.2% for Vienna. MALORCA’s 

baseline system – with 18 hours of untranscribed data of each 

airport also achieves command recognition rates of only 79% 

for Prague and 60% for Vienna. The numbers presented in the 

previous sections together with subjective ATCo’s feedback 

obtained via questionnaires was used to validate the six valida-

tion objectives presented already in Figure 6. 

TABLE 9: VALIDATION OBJECTIVES AND HYPOTHESES FOR TFI, PST 

Obj Validation Hypothesis Prague Vienna 

TFI 

The ATCos are able to use the ASR 

system without visible slowing down of 

the system or malfunctioning compared to 
basline 

OK OK 

PST 

CmdRR > 85% and CmdER < 2.5%, 

CpER < 10% 
POK POK 

The ASR command recognition rate is 

acceptable and there is no major difference 

between clearances types. 

NOK NOK 

 

The results in Table 9 show that it is feasible to integrate 

ASR into a controller working position without influencing its 

performance (objective TFI). The abbreviation in the last two 

columns of this and the following tables stand for (1) OK = 

Achieved, (2) POK = Partially Achieved and (3) NOK = Not 

Achieved. As explained in the beginning of the section the per-

formance stability objective (PST) was not achieved. The im-

provable recognition performance is also reflected in the ASR 

operational feasibility (OPF) validation objective (Table 10). 

TABLE 10: VALIDATION OBJECTIVES AND HYPOTHESES FOR OPF 

Obj Validation Hypothesis Prague Vienna 

OPF 

The ASR will support the performance of 

operations. 
NOK POK 

The ASR will be adequate for the 

accomplishment of operations with respect 
to CmdRR and CmdER 

NOK NOK 

ASR supports the performance of 
operations in terms of timeliness 

NOK NOK 

The number of error is within tolerable 

limits (CmdER < 2.5%) 
NOK NOK 

TABLE 11: VALIDATION OBJECTIVES AND HYPOTHESES FOR HUP, PART 1 

Obj Validation Hypothesis Prague Vienna 

HUP 

The level of Command Recognition Rate 
will be >= 85%. 

NOK NOK 

The responsiveness is adequate (< 2 

seconds) 
NOK POK 

Tasks can be achieved in timely manner. NOK NOK 

The level of workload with the introduction 

of ASR is maintained at the acceptable 

level. 

OK OK 

Situation Awareness (SA) is not reduced. OK OK 

The number of severe human errors is 

within tolerable limits. 
OK NOK 

TFI, PST and OPF validation objectives are a pre-condition 

for the other three validation objectives. Therefore, they are 

also not fully achieved. Human performance is shown in Table 

11 and Table 12. Although recognition performance is not ac-

ceptable, controllers’ feedback in questionnaires was not com-

pletely negative. Mostly they see that radar label maintenance 

support via ABSR could reduce their workload, if recognition 

performance is significantly improved. Due to bad recognition 

performance, also no capacity improvements were observed 

(Table 13). 
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TABLE 12: VALIDATION OBJECTIVES AND HYPOTHESES FOR HUP, PART II 

Obj Validation Hypothesis Prague Vienna 

 
The design of the user interface supports 

ATCos in carrying out the tasks. 
OK OK 

 
The design of the user interface supports 

ATCos in carrying out the tasks. 
OK OK 

HUP 

The presentation of information supports 

ATCos in detection of possible system 
errors. 

OK OK 

The level of trust in the ASR system is 

acceptable. 
OK OK 

The ASR is assessed as acceptable. NOK NOK 

The level of Command Recognition Rate 

will be >= 85%. 
NOK NOK 

The responsiveness is adequate (< 2 

seconds) 
NOK POK 

Tasks can be achieved in timely manner. NOK NOK 

TABLE 13: VALIDATION OBJECTIVES AND HYPOTHESES FOR CPA AND SAF 

Obj Validation Hypothesis Prague Vienna 

CAP 
The workload reduction provided by ASR 
system is adequate to increase ATM 

capacity.  

NOK NOK 

SAF 

 

The completeness and accuracy of the 

information provided by the ASR is 
adequate. 

NOK NOK 

The responsiveness of the ASR is adequate NOK NOK 

The number or severity of errors resulting 
from the introduction of ASR is within 

tolerable limits. 

NOK NOK 

The recovery means for errors resulting 

from ASR are identified to minimize 
operational impact 

OK OK 

VI. INTERPRETATION OF RESULTS AND NEXT STEPS 

ATCos’ feedback also addresses the recognition times 
(Table 11). The delays between issuing a clearance and feed-
back on the HMI were sometimes too long. ATCos many times 
thought that the commands were not recognized and start to 
manually input the commands whereas in parallel the values 
are displayed in the HMI. This is due to the implementation. 
Recognition starts first, when the ATCo has released the push-
to-talk button. This, however, is more a software design than 
an ABSR issue. Recognition could already start when ATCo 
starts talking and intermediate results could be provided if the 
controller gives multiple commands to the pilot. This is al-
ready implemented in the Nuance recognition engine 11. 

Correcting wrongly recognized commands takes too much 

of ATCos capacity even with only medium traffic. The follow-

ing order describes all cases identified from less intrusive to 

very intrusive in the ATCos work: 

 No recognition: ATCo needs to enter complete command 

into radar label, i.e. same situation as without ABSR. 

 Wrong callsign recognized and no command displayed: 

Same as for “no recognition”. No correction for wrong 

callsign necessary, but callsign highlighting of wrong air-

craft demands cognitive ATCo resources. 

 Wrong value for correct callsign with correct command 

type: e.g. DESCEND 210 FL instead of DESCEND 200 

FL: ATCo needs to correct the wrong value in the radar 

label. Requires cognitive resources to identify wrong val-

ue. Risk is that a wrong value is not recognized by ATCo. 

 Wrong command type for correct callsign recognized: e.g. 

HEADING 200 LEFT instead of REDUCE 200 kt: ATCo 

needs to delete the wrong recognition and also enter the 

correct recognition. Additional risk is that misrecognition 

is not detected. 

 Command wrongly/correctly recognized for wrong 

callsign: ATCo needs to delete recognition for wrong 

callsign, identify the position of the correct callsign and 

enter the correct commands in the radar label. Additional 

risk is that misrecognition for wrong callsign is not detect-

ed. 

This results in the summary that no recognition is better 

than a wrong recognition. There is of course always a trade-off 

between recognition (CmdRR) and error rate (CmdER). 

Even though Prague controllers use a reduced phraseology 

subset recognition rates for them are also quite low. Table 14 

shows that Prague controllers use much smaller range of dif-

ferent words than Vienna ones. Therefore, the modelled phra-

seology needs to be improved. 

TABLE 14: COMMAND COMPLEXITY 

 

Trainees can be forced to strictly follow ICAO phraseolo-

gy. However, ATCos already on the job will never accept a 

system which does not support their current phraseology, alt-

hough AcListant®-Strips project has shown that controllers 

will more and more adapt their phraseology towards modelled 

phraseology if they get benefits, i.e. better ASR support. Nev-

ertheless, we first need to improve ASR performance, and then 

ATCos might slightly adapt their phraseology and not the other 

way round! 

The drawback, however, is that then an acoustic model and 

a grammar are available for the lab environment, but at the end 

the benefits are in real life traffic. Therefore, no time should be 

wasted for improving the models on laboratory data, but on 

real life data. Thousands of hours of training data from the ops 

room for ABSR model training are available nearly for free, 

provided that data privacy issues are solved. For lab data costly 

experiments are necessary just for generating training data. 

On the other hand special situations like near misses and 

thunderstorm weather and heavy traffic scenarios could be cre-

ated in the lab environment. These situations are difficult to 

7

 9th SESAR Innovation Days 
2nd – 5th December 2019 

ISSN 0770-1268 

 

 

 
 

 

 



produce in real life and are not desired, i.e. validations with 

special situation scenarios need to be done (in the lab environ-

ment). 

VII. CONCLUSIONS 

The experiment 220 of SESAR 2020 funded solution 

PJ.16-04 validated a radar display developed by Thales Air Sys 

and a Commercial-Off-The-Shelf (COTS) speech recognition 

engine. Command recognition rates varied between 31% and 

82% for different controllers. The ABSR concept to use a Plau-

sibility Checker based on predicted possible controller com-

mands could dramatically reduce the command recognition 

error rate ranging between [14.7% .. 22.6%] to a range of 

[4.8% .. 6.6], i.e. most of the false recognitions were not shown 

to the ATCo. 

Based on the work performed and the results of the valida-

tion exercise, the following recommendations are issued in 

view of further research and implementation work: 

 Reduce the delay until the voice communication and its 

recognition is displayed in the HMI by processing the 

recognition already during the communication. 

 Use special acoustic model trained for final end users, i.e. 

English with Czech accent for Czech and English with 

Austrian accent for Austrians etc. 

 Extend the grammar to support more phraseology devia-

tions. 

 Extend ABSR systems also to other ATC workstations 

such as in tower and remote tower environment [18]. 

 Training of acoustic and language model (grammar) 

should be done with real-life data and on automatically 

transcribed voice recordings (MALORCA approach). 

 Larger amount of runs should be performed in order to 

achieve a higher level of significance of the results, pro-

vided that the identified improvements result in better 

ASR command recognition rates, which are comparable to 

AcListant®-Strips [7] and MALORCA [14] project. 
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