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Abstract—In aviation, safety has always been a key issue to
reduce the number of incidents and accidents. Nowadays, it is
even more important since the air traffic increases every year,
and is predicted to reach 7.8 billion passengers worldwide in 2036.
Flight safety offices aim at enhancing safety, analyzing past events,
and preventing potential critical occurrences. This paper presents
TAPAS, a post-operational aircraft approach analysis tool. The
software offers an interactive analysis of aircraft approach en-
ergy management. The software uses and validates an existing
atypical approach detection algorithm on flight data record and
flight safety office events from airlines. Various correlations and
analysis are conducted to illustrate the potential benefits of this
methodology.

Keywords—Flight path safety management, safety events, atyp-
ical approaches, anomaly detection, flight data monitoring

I. INTRODUCTION

Approach and landing accidents (i.e. accidents that occur
during the initial approach, the intermediate approach, and
during landing) represent every year 47% of the total accidents
and 40% of fatalities [1]. Moreover, a great majority of acci-
dents features unexpected events that makes the trajectory differ
significantly from nominal approaches such as atypical speed
or atypical altitude [2]. In addition, airports Terminal Maneu-
vering Areas (TMA) and Control Traffic Regions (CTR) are
characterized by a dense air traffic flow with high complexity.
This complexity will surely increase in the future since IATA
forecasts growth of air passenger worldwide from around 4
billion today, up to 7.8 billion in 2036 [3]. Consequently, there
is a crucial need for aircraft atypical approach detection method
and analysis tools.

The French Civil Aviation Authority has launched in 2006
a national safety program in order to satisfy the International
Civil Aviation Organization (ICAO) safety requirement. These
safety states program distinguishes undesirable events in differ-
ent categories such as Non-Stabilized Approaches (NSA), from
ultimate events such as Control Flight Into Terrain (CFIT) or
mid-air collisions. Undesirable events may lead to final events
and therefore jeopardize the safety or reduce airfield capacity.
Their identification and detection is an important issue.

Airline flight safety offices aim at analyzing operated flight
in order to enhance safety. Usually, each flight is analyzed and

monitored if it overpasses safety limits defined by the airlines.
The flight analysis enables modifying their own standards
operation procedures and the inherent pilot behaviors when it
brings safety issues. In general, airlines use dedicated flight
data monitoring software, which enables individual or general
statistics and analysis.

In this paper, a post-operational tool called Trajectory AP-
proach Analysis (TAPAS) dedicated to the analysis of aircraft
energy management during approach and landing is presented.
This software is developed with French airlines in order to
propose an alternative detection of atypical approaches and
atypical energy management during landing. This detection
is based on a mathematical atypical trajectory scoring [4].
This paper aims at validating the atypical trajectory detection
methodology with airline on-board data records and airline
flight office analysis. In addition, this study investigates to
what extent this methodology could be beneficial to enhance
safety since it gives an alternative analysis of safety during
approaches.

The paper is divided into four sections. Section II survey
the existing litterature. Section III explains the methodology
and the data used in the software. Section IV describes TAPAS
software organisation and interactions. Finally, Section V illus-
trates results and analysis produced by the software.

II. STATE OF THE ART

An exhaustive state of the art on aircraft atypical approach
detection is presented in [4], only major and most relevant
publications are surveyed here. Detecting an atypical behavior
is a well-known problem referred as to anomaly detection.
Anomaly detection has been investigated for a long time:
it consists in finding samples from a data set that do not
comply with the overall behavior. Among the various methods
available, the Multiple Kernel Anomaly Detection (MKAD)
technique [5] is one of the most efficient algorithms. It was
developed to detect anomalies in heterogeneous data (i.e in-
volving both discrete and continuous data), and has been
used to detect anomalies in aircraft approach parameters from
on-board data. Another kernel-based approach to study on-
board aircraft parameters is detailed in [6]. Neural network
auto-encoder reconstruction error can also be used to detect
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abnormal behavior [7], [8]. Other anomaly detection techniques
using information geometry and functional representation have
also been investigated. In her thesis [9], Barreyre introduces
different outlier detection methods in space telemetries. More
recent techniques use Generative Adversarial networks to detect
atypical trajectories [10].

III. METHODOLOGY AND DATA

A. Methodology

In this paper, the atypical trajectories are detected using
a process that combines a Functional Principal Component
Analysis (FPCA) and an outlier scoring on a sliding window
[4]. The main idea is to focus on the aircraft total energy
management, or on an approximation of the total energy while
studying radar data. Indeed, the major issue an aircraft is facing
in order to land is managing an excess of energy. Excess
of energy corresponds to situations where an aircraft is, for
example, too high on glide, resulting in too high potential
energy, or with a high speed owing to tailwind in final approach,
or late power reduction resulting in high kinetic energy. High
energy implies, first to detect the excess of energy, and second
to manage the energy so as to recover a nominal state.

FPCA is an information geometry tool that extends the well
known Multivariate Principal Component Analysis (MPCA)
[11] to the functional setting. It was extended by Deville [12]
and Dauxois [13], [14]. When data are functions sampled from
an underlying stochastic process, FPCA enables dimensionality
reduction by estimating the Karhunen-Loève decomposition.
With this decomposition, the trajectories can be represented
by their decomposition coefficients on the principal component
basis, and considered as a small dimension vector. This process
is described as.

Γ(t) = γ(t) +

+∞∑
j=1

bjφj(t) (1)

Where each curve Γ is considered as the weighted sum of
a mean curve γ plus the principal components φj by defining
the orthogonal basis that maximizes the explained variance in
the first dimensions. Usually, the decomposition is truncated
to keep an amount of variance, which also implies further
dimensionality reduction.

The process, illustrated in Figure 1 is applied to each window
slides to enable a local anomaly scoring. It is divided into
three steps. First, the FPCA decomposition is applied to a
window slide of total energy curves set. Second, an outlier
score is computed for each sample. Third, the outlier scores
are attributed to the corresponding trajectories.

Finally, trajectories with an atypical score above some thresh-
old value (0.6 in the tests) during more than some reference
duration (2NM in the tests) are considered to be atypical

B. Data

The data used in this paper are composed with flight data
record and flight data events from airline flight data recorder

Figure 1: This figure illustrates the atypical detection methodology process

TABLE I: THIS TABLE SUMS UP THE AIRPORTS RUNWAY QFUS ANALYSED
IN THE STUDY

Airport Name - OACI Index QFU
Béjaïa - DAAE 26

09
Alger - DAAG 23

27
Tlemcen - DAON 25

06
Paris Orly - LFPO 08

26
17L

Lyon Saint Exupery 17R
LFLL 35L

35R
13L

Marseille Provence- LFML 31L
31R

and safety office analysis for flights between March 2017 and
June 2019. Each aircraft records on-board parameters; this data
gives a complete description of the aircraft configuration and
flight situation at every moment. The data were extracted with
a frame rate of 4 seconds to fit with the radar recording rate
used in the algorithm [4]. These data are further analyzed by the
safety office, and safety events are recorded when a parameter
exceeds some predefined limit. Safety events are separated per
flight phases, and intensity levels (high, medium, and low). The
airport runways and QFUs studied in the analysis are detailed
in Table I

IV. TAPAS
A. Software Organization

TAPAS software is divided into four sections. The first
section called Data, gives general statistic on the analyzed tra-
jectories such as the aircraft distribution, the airport distribution,
and the runways QFU distributions. Figure 2 gives an example
of the section Data.
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Figure 2: The Data section of TAPAS giving general information of the data.

Figure 3: The Data section of TAPAS giving operational statistics of the data
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Figure 4: The Event section of TAPAS providing flight safety event statistics.

Figure 5: The Flight Study section of TAPAS enabling single flight approach analysis
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Figure 6: The first graph of TAPAS section Flight Study, displaying the
longitudinal path and lateral compliance criteria

The second section, called Statistics, illustrated in Figure 3,
is dedicated to operational statistics of the analyzed trajectories.
It gives the distribution of the analyzed trajectories in terms of
compliance [4], operational limits [4], atypicality, event phase,
event intensity level, and event number per flights.

The third section, called Events, represented in Figure 4,
displays for each type of event, its number of occurrences and
intensity. It provides a list of the event type sorted by their
number and intensity.

Finally, the last section, called Flight Study, represented in
Figure 5, enables analyzing individually each flight. It gives the
different properties of the flight, the compliance, the operational
limit, the atypicality per area, and the events notified for this
flight. It also displays different parameters.

There are four graphs displayed in the Flight Study section.
The first graph shows the longitudinal trajectory path and is
illustrated in Figure 6. Besides, the user is able to display
compliance limits. For instance, the flight illustrated in figure 6
presents a non-compliance corresponding to a lateral deviation
[4] for the 4000ft FAP procedure at Paris Orly runway 26.

The second graph, represented in figure 7, illustrates the
altitude profile and the atypical coefficients represented by the
colored dots. The atypical coefficient is bounded between 0
(corresponding to nominal situations and displayed in green),
and 1 (corresponding to atypical situations displayed in red).
The user is also able to display operational or compliance limits.
For instance, the flight illustrated in figure 7 presents a glide
deviation associated with the event Glide Interception From
Above [4]. The atypical coefficient highlights this atypical area.

The third graph, illustrated in Figure 8, shows the ground

Figure 7: The second graph of TAPAS section Flight Study, displaying the
altitude profile. The colored dots corresponds to the atypicality coefficients
between nominal (0 and green) and atypical (1 and red).

Figure 8: The third graph of TAPAS section Flight Study, displaying the ground
speed and computed air speed profile. The colored dots corresponds to the
atypical coefficients between nominal (0 and green) and atypical (1 and red).

speed profile, the computed airspeed profile, and the atypical
coefficients. Operational limits are also available. The flight
illustrated in figure 8 presents a late speed reduction associated
with an atypical area in red.

Finally, the fourth graph, represented in figure 9, illustrates
the aircraft engine power, and aircraft configuration elements.
The blue horizontal bar shows the use of speed brakes. The ver-
tical dashed lines display the flaps and landing gear sequence.
Several Gaussian curves are also represented. They illustrate
the distribution of flaps and landing gear sequence over all
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Figure 9: The fourth graph of TAPAS section Flight Study, displaying the
engine power, the flaps settings, the landing gear setting, and the airbrake use.
(The Gaussian curves illustrate the distribution of configuration elements for
all the flights with this specific runway QFU)

the flights available for this QFU. This enables analyzing this
particular flight flaps configuration policy compared with the
others.

B. Software group by interaction

The user is able to use TAPAS interactions to group the
trajectories regarding different parameters. This enables show-
ing statistics over a particular trajectory set, highlighting cor-
relations, and studying a particular trajectory group. The user
is able to select compliant, non-compliant, nominal, warning,
critical, typical and atypical trajectories [4]. In addition, the
user can select a particular airport, runway QFU, aircraft type,
and the phase of the atypicality (25NM-15NM, 15NM-5NM,
5NM-THR).

V. RESULTS

A. Validation and Studies

This section aims at validating the atypical event detection
algorithm and showing the relevance of the use of this new
process. This study analyses 14864 different A320 approach
trajectories at the airports’ runway QFU detailed in Table I

1) Correlation: Typical flights are compared with atypical
flights, and several strong correlations are revealed. First, the
compliance highly decreases, from 73.6% for typical flights
to 53.2% for atypical flights. In addition, while the ratio of
flight over-passing the operational critical limits [4] is 5.5%
for typical flights, it is 56.6% for atypical flights. These first
two figures highlight the accurate behavior of the detection
algorithm. Indeed, the atypical flights detected include a non-
negligible number of flights with operational issues regarding

Figure 10: An illustration of the atypicality appearance phase

the compliance criteria and critical operational limits. Second,
other correlations are found with the airline’s safety office
events. Regarding the number of events notified per flight,
typical flights present 27.8% of flights without any events and
5.4% of flights with more than three safety events. At the
opposite, atypical flights include only 9.7% of flights without
any events, and 30.6% of flights with more than three safety
events. Besides, the event intensity level is also correlated.
Typical flights present only 18.5 high-intensity events per 100
flights on average, while there are 92.7 high-intensity events per
100 flight in average for atypical flights. It shows that atypical
flights are strongly correlated with safety events.

In addition, the atypicality location is studied. The study
range (25NM to the runway threshold) is divided into three
phases: 25NM to 15NM, 15NM to 5NM and 5NM to the
runway threshold. Airline safety offices mainly focus on the
last phase (5NM to the runway threshold), which corresponds
to the stabilization phase. The above behavior is confirmed with
a strong correlation between the atypicality location phase and
the numbze of flight safety events and their intensity. Focusing
on atypical flights between 25NM to 15NM, there are 15.8%
of flights with more than 3 safety events. The atypical flights
between 5NM and the runway threshold present 54.0% of
flights with more than 3 safety events.

2) Atypicality Appearance Phase: The location study leads
to interesting atypicality appearance phase statistics detailed in
Figure 10. There are three trends. First, atypicalities appearing
during the 25NM to 15NM phase are still present during the
15NM to 5NM phase but are mainly dissipated in the 5NM to
threshold (THR) phase. It seems that these kinds of energet-
ical atypicalities are taken into consideration and appropriate
energy managements followed. An example is displayed on
Figure 11, where the aircraft was too high on the glide path
before recovering (around 10NM). Nevertheless, this raises the
question of the origin of the atypicality. Second, atypicalities
appearing during the 15NM to 5NM phase are half dissipated
in the 5NM to THR but still represent 37% of atypicalities in
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Figure 11: An example of an atyical flight during phase 25NM to 15NM and
15NM to 5NM

the 5NM to THR phase. Figure 7 shows an example of this
kind of trajectories. The aircraft over-shooted the glide path. It
recovered the nominal path just before stabilization. This group
of atypicality presents a major interest. Indeed they may induce
severe safety events but could be reduced if decisions are taken
when detected. Finally, atypicality appearing during the 5NM
to THR phase are critical. They are mainly due to late speed
reductions, tailwind or glide path deviations. An example of
late speed reduction is displayed in Figure 8. The explanations
might be ATC speed constraints, pilot reduction policies, or
even exterior factors in case of a tailwind.

3) Inappropriate Control Inputs: Inappropriate control in-
puts are actions that do not correspond to those recommended
by the Standard Operating Procedure (SOP) documentation. In
this section, actions relative to landing configuration are studied
and correlated with atypicality.

a) Landing Configuration Time: Figure 12 represents the
landing configuration time distribution (left axis) and atypical
ratio for each time group (right axis). It corresponds to the
time spent between the first and the last element. The average
landing configuration time is between two and three minutes,
while the fastest is 24 seconds. Short landing configuration
times might induce high workloads for pilots. The atypical
ratio was computed per minutes group (less than one minutes,
between one and two minutes etc.). It is interesting to notice
that the atypical ratio increases to 16.1% for the less than
one minute group. This group is mainly composed of fast
approaches or late reduction flights.

b) Landing gear down setting in the landing sequence:
Figure 13 analyses the landing gear down setting appearance
distribution in the landing configuration sequence correlated
with the atypical ratio per category. For the A320, it is
recommended to apply gear down while flaps 2 configuration

Figure 12: This figures illustrates landing configuration time distribution and
atypical ratio correlation for all the A320 flights

Figure 13: This figures displays the landing gear action appearance distribution
in the landing sequence and the atypical ratio correlation for all the A320 flights

is out. This is well described with the distribution in Figure
13 since this is what a great majority of flight did. However,
a non-negligible number of flights applied gear down while
being flaps 1 or flaps 0. The correlation with the atypical ratio
is meaningful with 9.8% for the flaps 1 group and 29.6% the
for flaps 0 group. It describes underlying energy managements.
Indeed it mainly corresponds to atypicality in the 25NM to
15NM phase, and pilots anticipated landing gear configuration
in order to dissipate an excess of energy.

c) Last landing configuration element distance to the
mean: Figure 14 represents the distance in nautical miles to
the mean last landing configuration element correlated with the
atypical ratio. It is similar to the Gaussian curves displayed in
Figure 9 aggregated for all the QFUs. Atypical ratios were
computed per nautical mile groups. When the last landing
configuration element appears between 1NM and 2NM after
the mean distance, the atypical ration increases up to 6.2%, and
up to 27.7% between 2NM and 3NM. The group is composed
of late configurations and usually late power reductions.
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Figure 14: This figures shows last landing configuration element distance to
the mean distribution and the atypical ratio correlation for all the A320 flights

VI. DISCUSSION & CONCLUSION

This paper presents TAPAS, a post-operational aircraft ap-
proach analysis tool. This software uses an existing atypical
flight detection algorithm using Functional Principal Compo-
nent analysis to analyze aircraft approach energy management.
The software was used to validate the algorithm on flight data
record and flight safety office events. The software design
and interactions enable relevant correlation and analysis. In
particular, the atypicality phase of appearance and inappropriate
control input raise interesting safety discussions and possible
safety enhancement policies.

Future works will focus on extending this analysis to other
aircraft types such as B737. Other studies will be done on
ATC speed constraints and atypical ratio correlation. A real-
time extension of the algorithm is currently being developed. In
addition, discussions have begun with FDM software providers
to integrate TAPAS into an energy management module of an
FDM analysis software.
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