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Abstract—Air traffic controllers’ (ATCos) workload often is a 
limiting factor for air traffic capacity. Thus, electronic support 
systems intend to reduce ATCos’ workload. Automatic Speech 
Recognition (ASR) can extract controller command elements 
from verbal clearances to deliver automatic air traffic control 
(ATC) system input and avoiding manual input. Assistant Based 
Speech Recognition (ABSR) systems with high command 
recognition rates and low error rates have proven to dramatically 
reduce ATCos’ workload and increase capacity as an effect. 
However, those ABSR systems need accurate hypotheses about 
expected commands to achieve the necessary performance. Based 
on the experience with an ATC approach hypotheses generator, a 
prototypic tower command hypotheses generator (TCHG) was 
developed to face current and future challenges in the aerodrome 
environment. Two human-in-the-loop multiple remote tower 
simulation studies were performed with 13 ATCos from Hungary 
and Lithuania at DLR Braunschweig. Almost 40 hours of speech 
with corresponding radar data were recorded for training of the 
TCHG prediction models in 2017/2018. More than 45 hours of 
speech and radar data comprising roughly 4,600 voice utterances 
were recorded in the second simulation campaign for the TCHG 
evaluation test end of 2018. The TCHG showed operational 
feasibility with a sufficiently low command prediction error rate 
of down to 7.3% and low context portion predicted having a 
sufficiently fast command prediction frequency of once per 
120ms to timely deliver the hypotheses to a speech recognition 
engine. Thus, the next step is to build an integrated ABSR system 
for the tower environment. 

Keywords—Air Traffic Controller; Tower Command 
Hypotheses Generator; Assistant Based Speech Recognition; 
Automatic Speech Recognition; PJ.16-04; Multiple Remote Tower 

I.  INTRODUCTION 

Air traffic control (ATC) systems are commonly limited by 
their capacity, as their goal is to balance demand and capacity 
for an optimized overall performance. Air traffic controllers’ 
(ATCo) workload is a limiting factor to increase this overall 
system capacity. 

Nowadays, ATCos’ workload is increasing due to the 
growing number of worldwide flights every year. This can 
limit the number of aircraft handled per sector respectively per 
ATCo in the future. ATCos issue clearances via voice and 
radio communication to aircraft pilots for controlling all 
relevant flights under responsibility. 

The flight crew is expected to confirm the clearance by a 
readback or acknowledge the information – this means instant 
feedback to the ATCo. For their effective operation, ATC 
systems need accurate data in timely manner as well. The 
issued clearances are one of the relevant necessary input data 
for ATC systems. This input is done manually by the ATCo 
using the mouse or another input device through the interaction 
with an electronic flight strip. However, these input devices 
generate high workload for the ATCo. Thus, the necessary 
information for ATC system input is doubled as it already 
exists within the voice clearance in analogue format. 
Automatic speech recognition (ASR) can support ATCos by 
extracting spoken concepts of issued clearances and 
automatically feeding the digital ATC system with them. 

The digitized concepts, i.e. effective meaning of 
commands, can be used as input for further ATC support 
functionalities and may lead to reduced workload and increased 
safety. However, this requires high reliability in the automatic 
speech recognition and extraction of clearance elements. 
Hypotheses about the content of the controller utterance 
tremendously help the speech recognition engine to choose 
from a reduced set of possible contents. Such controller 
command hypotheses integrated into an assistant based speech 
recognition system (ABSR) already proved to dramatically 
decrease the command recognition error rate and increase the 
command recognition rate for the approach area [1]. 

One chain of effects succeeding high controller command 
recognition rates starts with a reduction of ATCo workload to 
enter clearances, resulting in more timely and accurate 
commands. This, in turn, can already be a safety gain and can 
further lead to shorter flight routes and shorter flight times that 
go along with reduced fuel consumption and carbon dioxide 
emissions. But already the visualization of clearance elements 
for better awareness and further tracking of conform aircraft 
trajectory changes can overcome controller-pilot 
communication problems and increase safety. 

To achieve these possible benefits also in the aerodrome 
ATC environment, a tower command hypotheses generator 
(TCHG) is developed to predict commands for usage in a later 
ABSR system. More precisely, a multiple remote tower 
simulation is used to compare automatically generated tower 
command hypotheses with actual given controller commands. 
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This paper consists of related work with respect to speech 
recognition and command hypotheses in chapter II. Chapter III 
outlines the concept for a tower command hypotheses 
generator. The human-in-the-loop study setup for data 
recording and some implications for machine learning are 
explained in Chapter IV. Chapter V presents the results 
regarding quality of command hypotheses. Chapter VI 
summarizes, concludes, and gives an outlook on future work. 

II. RELATED WORK ON SPEECH RECOGNITION AND 

CONTROLLER COMMAND HYPOTHESES 

A. History of Speech Recognition in ATC 

ASR systems convert spoken words into machine-usable 
digital data and thus serve as an alternative input modality. 
Today, voice recognition is used in various areas of human life 
such as navigation systems or smartphone applications. 
Already three decades ago first ASR systems were developed 
[2], [3] and integrated for ATC training [4]. Years later, this led 
to replacing simulation pilots and to enhanced simulator 
infrastructure (e.g., DLR [5], MITRE [6], FAA [7], and DFS 
[8]). ASR also supports to improve safety, e.g. for closed 
runway incursions [9] or pilot readback errors [10], and to 
perform ATCo workload assessment [11], [12]. 

However, an ABSR system [13] can also significantly 
reduce ATCos’ workload as shown in the projects AcListant® 
and AcListant®-Strips [14]. In addition, air traffic management 
efficiency can be increased with fuel savings of 50 to 65 liters 
per flight [15]. DLR and its speech recognition partner 
Saarland University used KALDI as the ASR platform. DLR 
developed a hypotheses generator making assumptions about 
the next possible controller commands [1]. If e.g. an arriving 
aircraft is in FL100, it is more likely that the ATCo will issue a 
descent to FL80 than a climb to FL140 or even a non-
reasonable descent to FL140. The most probable hypotheses 
are sent to the speech recognition engine to reduce its search 
space and improve recognition quality. Command recognition 
error rates (CRER) below 1.7% were achieved [1]. 

One main issue to transfer ABSR from the laboratory to the 
operational systems is the costs of deployment, because 
modern speech recognition models require manual adaptation 
to local requirements and environments (language accents, 
phraseology deviations, environmental constraints etc.) [16]. 
AcListant® needed more than 1 Mio € for development and 
validation for Düsseldorf approach area. 

The SESAR exploratory research project MALORCA 
(Machine Learning of Speech Recognition Models for 
Controller Assistance) proposes a general, cheap and effective 
solution to automate this re-learning, adaptation and 
customization process by automatically learning local speech 
recognition and controller models from radar and speech data 
recordings [17]. 

Command prediction error rates (CPER) of 3.2% for 
Vienna and 2.3% for Prague approach were achieved in 
MALORCA with corresponding CRERs of 3.2% respectively 
0.6% [18]. Those low CRERs were reached, because of using 
command hypotheses and plausibility checking components as 
they reduce the CRER by roughly 12% for Vienna respectively 
6% for Prague [17]. 

In another setup, CPERs of 4.8% for Vienna approach 
respectively 0.3% for Prague approach were measured [19]. 
Again, the use of an assistant system for ASR dramatically 
decreases the CRER while only slightly decreasing the 
command recognition rate [19]. 

B. Controller Command Hypotheses Formats 

A necessary step for the evaluation of command hypotheses 
is to extract the concepts of actual given commands. Thus, 
ATCo utterances need to be manually transcribed and 
annotated. Transcription is defined as the word-by-word 
equivalent of the verbal utterance, e.g. “good morning 
lufthansa two alpha altitude four thousand feet reduce one eight 
zero knots or less turn left heading two six zero”. 

The annotation is defined as the meaning of utterances. 
Therefore, a set of rules – an ontology – has been developed. In 
the AcListant® project [20] a first version of an ontology was 
created, which consists of four elements: 1) callsign, 2) 
command type, 3) commanded value, and 4) unit [21], [22] 
with mandatory and optional elements. The example above is 
annotated as “DLH2A ALTITUDE 4000 ALT DLH2A 
REDUCE_OR_BELOW 180 DLH2A TURN_LEFT_ 
HEADING 260”. More than 30 command types were 
supported. The approach reaches its limits in the MALORCA 
project [23], [24] when it was extended for command 
annotation for live traffic for Vienna and Prague approach [25] 
also including departure and overflight traffic. More command 
types were needed (e.g. QNH, INFORMATION, 
REPORT_SPEED, EXPECT_RUNWAY) and the necessity to 
handle conditional clearances occurred [26]. For the tower 
environment, even controller command types used only on 
ground such as PUSHBACK, TAXI, and LINEUP need to be 
considered. 

Therefore, all major European air traffic management 
(ATM) system providers and European air navigation service 
providers defined a common enhanced ontology suggested and 
coordinated by DLR [27]. This ontology encompassed 
approach, en-route as well as tower clearances. It can be used 
for annotation of ATCo and pilot utterances as well as for 
command predictions. In the above example, the new 
annotation would be “DLH2A ALTITUDE 4000 ft DLH2A 
REDUCE 180 kt OR_LESS DLH2A HEADING 260 LEFT”. 

The next section describes the concept, evaluation metrics, 
and implementation of command predictions for the tower 
environment that was implemented for the first time. 

III. TOWER COMMAND HYPOTHESES GENERATOR 

CONCEPT, IMPLEMENTATION AND VALIDATION GOALS 

The TCHG is a new system developed by DLR using 
experience of former projects regarding hypotheses 
information generation in the approach area. However, the 
command types used in tower environment are different from 
those of approach controllers of former projects. Additionally, 
the tower area comprises much more command types than the 
implementation for approach. The TCHG predicts possible 
tower controller commands for the near future taking into 
account surveillance data (e.g. radar data, flight plans, and 
meteorological data). This prediction is not a single forecasted 
command, but a set of possible commands (context). 

2

 9th SESAR Innovation Days 
2nd – 5th December 2019 

ISSN 0770-1268 

 

 

 
 

 

 



Examples for single predictions in different situations 
according to the defined ontology are: “AEE2019 STARTUP”, 
“BAW123 PUSHBACK”, “AFR456 TAXI VIA A”, or 
“DLH789 CLEARED TAKEOFF RW13R”. Furthermore, this 
is done for three remote airports at the same time. Therefore, 
there were three geographical regions defined to forecast 
commands with respect to aircraft within those regions. One 
global geographic area covers the airspace between and around 
the airports, e.g. to predict commands for flights that fly from 
one to another of those three airports. 

The technical validation plan for the TCHG evaluation 
foresaw two objectives and three criteria goals. The first 
objective was to assess the stability of the (ASR) system 
performance. The second objective was to assess the 
operational feasibility of the integration of the (ASR) system 
and its sub-systems into operations. Furthermore, three target 
numbers regarding the prediction quality should be reached. 
The relevant numbers are the command prediction error rate 
(CPER) with its standard deviation (SD) and the context 
prediction time (CPT). 

CPER is defined as the number of given controller 
commands that were not forecasted divided by the number of 
all given controller commands per run. Or in other words: 
Number of actually given commands by the controller that are 
not part of the set of predicted command hypotheses divided by 
the total number of commands actually given by the controller. 
The lower the CPER the better, as an ABSR system can rely on 
accurate forecasts to only falsely reject as few commands as 
possible due to stated non-conformity to the context. The 
average CPER should be below 10% with a standard deviation 
of less than 2.5%. It was assumed that the CPER for a first 
tower command prediction – particularly due to a greater 
variety of commands than in the approach environment – will 
be slightly higher than CPERs of already advanced approach 
command predictions. The CPT should be below five seconds 
to enable a prediction at least for each radar data update cycle. 

Besides, another metric will be assessed – the context 
portion predicted (CPP). CPP is defined as the number of 
forecasted commands divided by the total number of 
commands, which an ATCo theoretically could give. Multiple 
hundreds of commands are possible per aircraft (commands for 
speed, altitude, direction, ground clearances, etc. with 
reasonable values). Or in other words: Total number of 
predicted commands divided by the number of commands 
which are theoretically modelled and possible, e.g. the number 
of predicted headings commands is normally in the range of 
10-40 per callsign, the total number in our model is 144 (005, 
010, 015, … 355, 360 multiplied by two because the qualifiers 
LEFT and RIGHT are possible). The total number of heading 
commands is even higher, i.e. 720, if heading commands of 
step size one are considered. The lower the CPP, the better, 
because a lower number of command hypotheses for the ABSR 
system helps to faster choose the best fitting command 
hypotheses for a given utterance and to increase the command 
recognition rate in case of correct forecasts. After 
implementation and integration of the TCHG in a multiple 
remote tower environment, the prediction quality was assessed 
using data from a series of four successive human-in-the-loop 
studies. 

IV. HUMAN-IN-THE-LOOP STUDY WITH TOWER COMMAND 

HYPOTHESES GENERATOR 

A. Validation Setup and Simulation Run Conditions 

The SESAR2020 industrial research project PJ.16-04 CWP 
HMI (Controller Working Position Human Machine Interface) 
contained – amongst others – a validation exercise for the 
TCHG. The PJ.16-04 ASR exercise 240 “Controller Command 
Prediction for Remote Tower Environment” was hosted at 
DLR’s Multiple Remote Tower Experimental Setup in 
Braunschweig, Germany. The series of four human-in-the-loop 
studies to evaluate the TCHG prototype took place in 2017 and 
2018. The ATCos – as study subjects – had three rows of 
monitors presenting the camera image of the respective three 
airports and a head-down ATM system unit to monitor and 
safely influence the given traffic (see figure 1). 

 

Figure 1.  Multiple Remote Tower Environment at DLR Braunschweig. 

However, the command hypotheses did not influence the 
ATCo’s or controller support system’s active work. The 
simulated remote airports were run in parallel with different 
traffic. In the study with ATCos from HungaroControl (HC) 
airports were located in Hungary: Budapest (LHBP), Debrecen 
(LHDC), Papá (LHPA), for Oro Navigacija (ON) in Lithuania: 
Vilnius (EYVI), Kaunas (EYKA), Palanga (EYPA). Five 
respectively four different traffic scenarios have been used for 
Hungary and Lithuania. They comprised Instrument and Visual 
Flight Rules (IFR/VFR) traffic, but VFR traffic was never 
more than 20%. All simulation scenarios lasted 50 minutes and 
took place at day light conditions. The majority of traffic had to 
be controlled from the first listed tower (LHBP/EYVI). There 
were a few special situations that ATCos were faced with, e.g. 

- four simultaneous movements, i.e. departure or arrival 
(2 at the main airport, 1 at the smaller airports each), 

- VFR arrival and departure crossing, 
- Remotely Piloted Aerial System (RPAS) in airspace, 
- responsibility for ground movements. 

The exercise was conducted jointly by DLR and HC 
respectively ON under the umbrella of solution PJ.05-02. This 
solution was responsible for the validation platform itself – 
without the TCHG – and the remote tower concept validation. 
The communication between ATCos and simulation pilots was 
done via radio telephony (Yada console) on three different 
frequencies. The resulting wav files with controller utterances 
and radar data were captured on a Linux laptop. 
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B. Data Recordings 

Pre-trials with seven HC ATCos running four different air 
traffic scenarios took place from November 13 to 21, 2017. 
Pre-trials with six ON ATCos running also four different 
scenarios took place from March 19 to 27, 2018. Pre-trials 
were used to collect data to develop the models for command 
prediction of the TCHG. Final trials with seven HC ATCos 
running five different scenarios took place from November 12 
to 22, 2018. Final trials with six ON ATCos running four 
different scenarios each took place from December 3 to 11, 
2018. The data recordings of those trials were used for 
evaluation of TCHG prediction accuracy. With pre-trial data 
(before summer 2018), machine learning algorithms were 
implemented to improve the accuracy of command hypotheses. 

The complete data set comprised 52 simulation runs with a 
duration of roughly 142’000 seconds (39.4h). This included 
roughly 4’700 voice utterances (wav files). 100% of the 
Hungarian and 30% of the Lithuanian tower utterances have 
manually been transcribed (speech to text), annotated (text, i.e. 
word sequences to ATC concepts and commands), and checked 
for this learning approach. This sums up to more than 3,400 
transcription files and the same number of annotation files. 
When ignoring the “silence” between different wav-file 
occurrences, there were roughly 7 hours (26 h “with silence”) 
of annotated tower commands available for learning. 

The data resulting from the final trials (after summer 2018) 
was used to test and perform the evaluation of prediction 
accuracy. The reported portion of actually given annotated 
controller commands was compared to the tower command 
hypotheses from the trials. The complete data set comprised 59 
simulation runs with a duration of roughly 164’000 seconds 
(45.6h). This included roughly 4’600 voice utterances. 25% of 
the Hungarian and 35% of the Lithuanian tower utterances 
have manually been transcribed, annotated, and checked for the 
testing and evaluation (9 simulation runs each). These data 
sums up to more than 1’000 transcription and annotation files 
each consisting of more than 2 hours (12 hours “with silence”) 
of annotated tower commands available for testing. 

C. Determining Parameters for Machine Learning 

The determination of parameters for the machine learning 
algorithms is a pre-result that needs to be found first. 
Therefore, the methodology of how to find this result is shortly 
outlined in the following. The proportion of 80% training data 
and 20% test data that can roughly be used here is a very 
typical one in the machine learning community to proof the 
accuracy of the learned model. 

As a first step, an appropriate window size for the machine 
learning approach needed to be found (for more background of 
the “window” use and the machine learning algorithms, refer to 
[24]). The “window” is a raster size (a certain rectangle in 
terms of latitude and longitude) and is used to cluster airspace 
areas where certain controller commands are given respectively 
expected (hypotheses). If the window size is huge, command 
types are predicted everywhere in the airspace. However, a 
lineup far away from an airport does not make sense. 
Furthermore, a speech recognition engine would receive too 
many hypotheses to choose from. 

If the window size is small, valid command types might not 
be forecasted, e.g. because the aircraft position was just a few 
meters next to the forecast region being too small. Besides, a 
speech recognition engine would not receive an accurate set of 
hypotheses (context) including the actually given ones of the 
ATCo. Thus, a trade-off needs to be found for the window size. 
The window size is completely different to the “context size”. 
The context size comprises all command predictions at a given 
time. The absolute context size indicating the number of 
predicted commands per controller utterance occasion is a very 
important parameter to the CPP and helps to find reasonable 
values for machine learning. 

For determining the best window size, the Hungary-2017-
11 data was used to train the command prediction model. This 
model was then used to test the Hungary-2017-11 data that 
were split into two halves (A/B). As this was done with all 
available data end of 2017 and is only a pre-result for applying 
the machine learning algorithms on later data, only Hungary-
2017-11 data was used for determining parameters. Different 
window sizes from 1 to 14 were used for this test. The CPER 
and the context size (number of forecasted commands) should 
be as low as possible. However, big context size normally 
results in low CPERs and vice versa. Hence, it was decided to 
choose the window size parameter that does not show great 
differences in the results of the two aforementioned values 
compared to the parameter step before. The analysis result is 
shown for CPER in figure 2 and for context size in figure 3. 

 

Figure 2.  Comparison of command prediction error rates for different 
window sizes. 

 

Figure 3.  Comparison of context size for different window sizes. 

4

 9th SESAR Innovation Days 
2nd – 5th December 2019 

ISSN 0770-1268 

 

 

 
 

 

 



The CPER of window size 11 was 97% of the error rate of 
window size 10 for data half B. For data half A, the error rate 
from window size 10 to 11 only changed in the second value 
after the decimal. The context size of window size 11 was 
already at 99% respectively 98% of the context size at window 
size 12 and thus reached a sufficiently high number. Thus a 
window size of 11x11 was chosen as the best compromise 
between low error rates and low context size. Further 
increasing the window sizes only very slightly improves the 
CPER, but further increases the context size. The above 
reported window size is valid when analyzing all controller 
command types together. 

However, there might be better fitting window sizes for 
single command types that have other characteristics with 
respect to airspace regions that are usually instructed by an 
ATCo. The top twenty commands actually given by ATCos are 
as follows in descending order (the command most often used 
(rank 1) appeared 1631 times, rank 20 appeared only 37 times 
in all Hungary-2017-11 data): INFORMATION 
(WINDDIRECTION, WINDSPEED, ATIS, TRAFFIC, ...), 
CLEARED (LANDING, TAKEOFF, TOUCH_GO, TO, VIA, 
etc.), INIT_RESPONSE, TAXI, CLIMB, SQUAWK, 
REPORT (FINAL, BASE, etc.), CONTACT_FREQUENCY, 
CONTACT, STARTUP, LINEUP, INFORMATION QNH, 
REPORT_MISCELLANEOUS, CONTINUE, VACATE (also 
with TO, VIA), CALL_YOU_BACK, PUSHBACK, 
VFR_CLEARANCE, DIRECT_TO, ENTER_CTR. Therefore, 
an analysis of selected commands on one half of the data 
shows which window size could be chosen best for them 
individually as shown in TABLE I. This analysis serves as an 
input for optimization of the TCHG towards future technology 
readiness level (TRL) 6. For the further analysis, the above 
reported determined window size of 11x11 is used. 

TABLE I.  VARIATION OF BEST WINDOW SIZES FOR MACHINE 

LEARNING OF DIFFERENT TOWER COMMAND TYPES 

Controller Command Type Best Window Size 
INFORMATION 9 
CLEARED 8 
INIT_RESPONSE 11 
REPORT 12 
TAXI 11 
CLIMB 2 
CONTACT_FREQUENCY 7 
VACATE 9 
PUSHBACK 1  

D. Transcription and Annotation of Controller Utternaces 

Manual transcription and annotation of controller utterances 
is a very time consuming process. The new software tool 
CoCoLoToCoCo (Controller Command Logging Tool for 
Context Comparison) concentrating on efficient usage has been 
developed to accelerate this process (see figure 4). This tool 
also performs a context check to evaluate whether the given 
commands were forecasted or not. It also performs automatic 
plausibility checks for transcriptions and annotations with 
respect to ontology format, air traffic rules, common typing 
errors, etc. The graphical user interface of CoCoLoToCoCo 

- lists all audio wav-files (“wave”) with timestamps and 
different colors for transcription and annotation 
progress levels in the upper left, 

- allows to generate and edit word-by-word 
transcriptions in cor-files (“correct”) at the bottom, 

- shows the list of cmd-files (“command”) for the 
current annotations above, e.g. “DLH2A LINEUP 
RW05R” – with context check (green is in context; red 
is not) – being editable via the six column menus, and 

- maintains nfo-files (“inform”) for comments on the 
upper right side. 

 

Figure 4.  Software tool for efficient transcription and annotation of 
controller utterances using standardized ontology terms and performing 

integrated hypotheses and plausibility checks. 

V. RESULTS OF TCHG VALIDATION EXERCISE 

A. Applying Machine Learning Techniques and Evaluation of 
Command Prediction Quality 

There are four different data sets called Hungary-2017-11, 
Lithuania-2018-03, Hungary-2018-11, and Lithuania-2018-12. 
As described above, an evaluation analysis consists of training 
the prediction models via machine learning and testing 
afterwards. Four different training and test set combinations 
have been used according to history of data. Those training/test 
sets are called as listed in TABLE II.  

TABLE II.  OVERVIEW ON TRAINING AND TEST DATA SETS WITH TIME 

OF RECORDING AND AIR NAVIGATION SERVICE PROVIDER INFORMATION 

Name of Evaluation Training with Dataset Test with Dataset 

HUNGARY Hungary-2017-11 Hungary-2018-11 

LITHUANIA Lithuania-2018-03 Lithuania-2018-12 

BOTH_COUNTRIES 
Hungary-2017-11, 
Lithuania-2018-03 

Hungary-2018-11, 
Lithuania-2018-12 

COMPLETE 
Hungary-2017-11, 
Lithuania-2018-03, 
Hungary-2018-11 

Lithuania-2018-12 

 

For each of the annotated runs there were context files (ctx) 
every time the ATCo uttered something. These context files 
contain all predicted commands of a certain timetick. The 
results of the command hypotheses evaluation are reported in 
historical order in the following sub-sections after the overview 
in TABLE III.  
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TABLE III.  OVERVIEW OF CPER (UNDERLINED IF SIGNIFICATNLY BELOW 

10%), STANDARD DEVIATION OF CPER (SD) AS WELL AS AVERAGE AND 

MAXIMUM NUMBER OF HYPOTHESES RELEVANT FOR CONTEXT SIZE IN CTX-
FILES (CTX_AVG, CTX_MAX) FOR THE FOUR DIFFERENT EVALUATIONS 

Name of Evaluation CPER SD ctx_avg ctx_max 

HUNGARY 7.8% 2.57% 450 593 

LITHUANIA 12.5% 3.6% 340 498 

BOTH_COUNTRIES 7.3% 2.46% 548 760 

COMPLETE 7.5% 3.7% 629 900 
 

1) HUNGARY 

For the six annotated Hungarian simulation runs with a 
scenario without runway configuration change, the average 
CPER per run is 7.8% (SD: 2.57%). As there was no runway 
configuration change in the training data (Hungary-2017-11 
runs), this of course could not be learned. Hence, such a new 
aspect negatively influences the command prediction quality 
i.e. for the runway configuration change this affected TAXI, 
VACATE, CLEARED LANDING/TAKEOFF, etc. 
commands. 

Taking three further simulation runs with runway 
configuration changes also into account, the CPER is 9.1% 
(SD: 2.85%). 450 commands have been predicted on average 
(ctx_avg). When analyzing the biggest set of predicted 
commands per run (ctx_max), this averages to 593 for the 
Hungary-2018-11 runs. 

All of the top 14 commands (that were at least used in 2.2% 
of all commands from the Hungary-2018-11 scenarios without 
runway change) showed CPERs below 8.3%. However, for the 
“TAXI TO”-command this is only true if a generalization of 
stands is made (so specific stands such as “R107” were not 
forecasted, but only “TAXI TO STAND”). 

2) LITHUANIA 

For the nine annotated Lithuanian simulation runs, the 
average CPER per run is 12.5% (SD: 3.6%). Many scenarios 
had aircraft repeating touch-and-gos respectively go-arounds 
which are more difficult to predict. When ignoring such 
command predictions, the CPER would be around 7%. 340 
commands have been predicted per context file in average 
(ctx_avg). When analyzing the ctx_max, this averages to 498 
for the Lithuania-2018-12 runs. 

3) BOTH_COUNTRIES 

For the six annotated Hungarian simulation runs – however, 
machine learning performed on Hungary-2017-11 and 
Lithuania-2018-03 – the average CPER per run is 7.3% (SD: 
2.46%). These numbers are reported as the main result as the 
technical validation plan foresaw validation trials with 
Hungarian ATCos and a command prediction model that 
learned from all available data before. 

Taking also the nine annotated Lithuanian simulation runs 
into account, the average CPER per run is 7.9% (SD: 3.2%). 
Taking all 18 annotated simulation runs (with runway 
configuration changes) into account, the CPER is still below 
10% – in a range between 8 and 9%. For the Autumn-2018 
runs the ctx_avg and ctx_max were 548 respectively 760. 

4) COMPLETE 

For the nine annotated Lithuanian simulation runs – 
however, machine learning performed on Hungary-2017-11, 
Lithuania-2018-03, and Hungary-2018-11 – the average CPER 
per run is 7.5% (SD: 3.7%). The ctx_avg was 629, the ctx_max 
was 900 for the Lithuania-2018-12 runs. 

5) Significance of Results 

The confidence in the results of the exercise is high due to 
the number of simulation runs, i.e. the CPERs have high 
statistical significance. The performed t-test tested against the 
required average value of 10%. The obtained p-value is 1.18% 
for the “BOTH_COUNTRIES-data” respectively 3.29% for the 
core “HUNGARY-data”. Normally, a statistical significance of 
below 5% is required to significantly support the underlying 
assumption. Hence, we can conclude that the average CPER 
per run is very surely below 10%. For the reported 
“LITHUANIA-data” with a p-value of 2.46%, we assume that 
the CPER is above 10% due to the t-test. However, for the 
“COMPLETE”-data, testing the same Lithuanian files with the 
reported model learned on more data, we can assume that the 
CPER is below 10% with a p-value of 2.91%. 

6) General Notes 

The CPP was below 10% all the times. However, the 
ctx_avg shows that more training data lead to more command 
predictions. This results in less command prediction errors, but 
is increasing the search space for a speech recognition engine. 
Furthermore, it has to be noted, that there are still unintended 
human-made transcription and annotation errors in the data. 
The CoCoLoToCoCo tool notifies the human annotator about 
possible errors. This tool continuously improves; however, it is 
not able to detect all errors. Besides, it might have a small 
influence which simulation runs have been chosen to be 
annotated and thus analyzed. In general, it can be stated, that a 
CPER below 10% was achieved and can be further enhanced. 

B. Real-Time Aspects of Command Prediction with Respect to 
Given Commands 

In average, software-based generation of command 
hypotheses took 119 milliseconds (analyzed from log files of 
59 simulation runs of final trials in autumn 2018) which is a 
factor of 40 better than required. 

Context (set of command hypotheses) has been generated 
more than 21’000 times. As traffic density during tower trials 
was rather medium to low (compared to former ATC approach 
trials, in which context was used), context was generated only 
every 10 seconds. However, the measurements show that it is 
possible to do it 80 times more often if needed. The context 
generation frequency was also reasonable, because the average 
length of radio telephony (RT) calls from tower controllers is 
shorter than 10 seconds as shown in figure 5. These five to 
seven seconds of simple ATCo command communication have 
also been reported for en-route sectors [28]. 

The portion of time used for commands and the number of 
commands is visualized in figure 6. This emphasizes the 
potential for workload reduction by usage of ASR, because 
each command nowadays means that ATCos also need to 
perform manual input into the ATC system. 
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Figure 5.  Average duration of radio telephony transmissions in seconds from 
tower controller to pilot (with positive and negative standard deviation). 

 

Figure 6.  Percentage of time and number of tower controller utterances per 
hour using radio telephony (with positive and negative standard deviation). 

Within the number of roughly 21’000 command prediction 
attempts, only four of them lasted longer than one second. 
However, it was always faster than two seconds. Further 
analyses showed, that not command prediction itself was slow, 
but storing the data into the data bases respectively getting 
input data from data base. All other attempts succeeded in less 
than one second. These numbers are highly reliable regarding 
the number and duration of runs. 

C. Debriefing Comments 

Each ATCo also joined a debriefing session. This included 
a discussion about strengths and weaknesses of transcription 
and annotation focusing on the appropriateness of the ontology 
and the CoCoLoToCoCo support tool. Furthermore, the ATCos 
were asked for their opinion about an ABSR system in the 
daily life CWP. Paraphrased answers are reported in the 
following. 

ABSR do not seem to be of huge interest for one of the 
controllers, who does not need to enter many things in the 
CWP HMI today. A list of last clearances in written form 
would be good for another ATCo as he also uses the hearback 
replay button in his CWP. ABSR would be a good support for 
improvement of the HMI, for departure clearances, as well as 
flight levels and squawks. Also regarding future ATC systems 
for the ground – that will be introduced in the next two years – 
ABSR support would be helpful as ATCos need to enter all 
waypoints, taxi points, routes, etc. for applications such as 
“follow-the-greens”. Other ATCos also mentioned safety 
critical aspects that could be supported by ABSR. ABSR 
should recognize “RWY blocked” and show it on the HMI if 
ground personnel enters a runway. Furthermore, a reliable 
readback failure presentation would be great, especially for 
digits in clearances, frequencies, and for the attributes “left” 
respectively “right”. 

VI. SUMMARY AND OUTLOOK 

A. Summary of Command Hypotheses Validation Results 

The complete trials generated 107 recorded simulation runs 
for data analysis. There was no need to evaluate also the data of 
26 ATCo training runs. The results of the simulation runs with 
respect to the TCHG are positive and encouraging. The TCHG 
fulfilled both validation objectives, i.e. operational feasibility 
as well as performance stability was validated. One aim was to 
have a command prediction time at least as fast as the update 
rate of radar data, i.e. the prediction time should be below 5 
seconds. Command predictions were forecasted timely and 
could be generated on average even every 120ms and was 
always below 2 seconds. The CPER achieved its targets to stay 
below 10% with a standard deviation below 2.5%. 
Furthermore, the CPP was below 10% for all simulation runs, 
however, having limited expressiveness as a valuable result. 
Nevertheless, the CPP was in a comparable dimension as for 
the approach hypotheses generator. 

AcListant® project showed that ATC command hypotheses 
improve the recognition quality of an ABSR system in the 
approach environment. Hence, the positive evaluation of the 
forecast quality of the TCHG is a central factor for a later 
tower ABSR system. This future system could present the 
recognized commands to the controller and might be used 
similar to the actions in the other four PJ.16-04 ASR exercises. 

B. Outlook on Future Work 

There will be further industrial research on ABSR in 
SESAR’s Wave 2 project PJ.05 “Digital Technologies for 
Tower” more precisely solution 97 “HMI Interaction modes for 
Airport Tower”. It is foreseen to integrate an enhanced TCHG 
with a speech recognizer to generate the first ABSR system for 
towers transitioning from TRL2 to TRL4. Two real-time 
simulation exercises are planned that consist of a generic or 
Vienna tower environment. 

Validation EXE-003 will be performed at 
EUROCONTROL tower platform in Brétigny with partners 
DLR, COOPANS (ACG and CCL), B4 (ON and ANS-CR), 
and ENAV. Validation EXE-006 will be conducted in Remote 
TowerLab at DLR Braunschweig with the partners ACG, CCL, 
and ANS-CR. As the aerodrome ATC includes more types of 
clearances, e.g. for VFR flights than the approach ATC, it is of 
interest if the results from AcListant® can be extrapolated, i.e. 
if tower command hypotheses improve the command 
recognition error rate (CRER) of a not yet known speech 
recognition engine as much as in the approach environment. 
Positive effects on tower controllers’ workload in the future 
can be assumed, but – conform to planning – this has not yet 
been proven. 

Regarding the implementation of the enhanced TCHG there 
are different aspects of improvement for the context quality. 
The set of hypotheses should be minimized and fulfil even 
more requirements valid on ground. A state machine approach 
– complementing the machine learning approach – could 
deliver even more background knowledge for the TCHG. 
There are more single actions and command types that succeed 
each other in a certain order in the tower than in the approach 
environment. 
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If e.g. a taxi clearance followed a pushback clearance, the 
likelihood of a startup or landing clearance afterwards is almost 
zero. However, the likelihood of a lineup clearance is very 
high. This of course depends on the accuracy of the data 
quality of former clearances. If they are derived from the 
ABSR system output, the follow-up states of the aircraft and 
thus of clearances is connected to a certain probability. 
Individual window sizes per controller command type 
prediction as described above can further improve machine 
learning results and thus command hypotheses accuracy. 
Additionally, the growing amount of data, i.e. (1) available 
radar and speech data for training of all scenarios and 
environments that are tested and (2) annotated speech data to 
then optimize CPER and CPP helps to build a TCHG on higher 
TRLs. 

Moreover, it will be investigated if the developed ontology 
for annotation of controller commands and the local accent of 
the English radio communication language is feasible for other 
tower controllers. This evaluation of speech data will be done 
on already performed multiple remote tower trials in May 2019 
with ATCos from Finland and will be done with real life data 
from Vienna, Vilnius, and Prague tower. Furthermore, the 
ABSR systems with TCHG should be brought closer to the 
operation’s room, i.e. real towers or remote towers to support 
various applications of using speech information. 
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