
GPU-Accelerated RRT for Flight Planning
Considering Ensemble Forecasting of

Thunderstorms

Eduardo Andrés, Daniel González-Arribas,
Manuel Sanjurjo-Rivo, Manuel Soler

Department of Bioengineering and Aerospace Engineering

Universidad Carlos III de Madrid

Leganés, Spain

eandres, dangonza, msanjurj, masolera@ing.uc3m.es

Maryam Kamgarpour

Electrical and Computer Engineering

University of British Columbia

Vancouver, Canada

maryamk@ece.ubc.ca

Abstract—The intrinsic uncertainty of thunderstorms poses
a major threat for flights, as it jeopardizes the safety of the
passengers and the airframe. In this paper, we enhance the
performance of the scenario-based rapidly-exploring random
tree star (SB-RRT∗), a methodology for aircraft trajectory
optimization that considers ensemble-based products for weather
phenomena. Through parallelization on graphical processing
units the simulation time is reduced substantially as required
by practical settings. We test the method considering a unicycle
model of an aircraft flying between two state configurations
at constant flight level and airspeed. Lastly, we compare the
parallelized and the original SB-RRT∗ under the same conditions.
Results show how the new version is able to reduce computational
times in 3 orders of magnitude with respect to the original and
provide safe and close-to-optimum solutions in near-real time.

Keywords—Optimal path planning, Sampling-based algo-
rithms, Uncertain thunderstorm avoidance, Parallel program-
ming.

I. INTRODUCTION

Uncertainties related to convective weather represent an

important concern for the Air Traffic Management (ATM)

system, as they cause safety, capacity and efficiency dis-

ruptions. In 2019, 21% of the delays in Europe were at-

tributed to weather [1]. Specifically, thunderstorms constitute

a considerable risk, with hail, turbulence or wind shear as

possible associated phenomena. Therefore, to avoid them

is a key requirement to guarantee passenger’s comfort and

aircraft’s structural integrity. Thunderstorms evolve in rapid

timescales and their location and timing are hard to predict

with certainty. For these reasons, new algorithms for flight

scheduling must take stochasticity into account, incorporate

new weather measurements and be able to produce solutions in

short time periods. The objective of this paper is the design of

a path planning methodology able to provide optimal and safe

trajectories for aircraft considering uncertain thunderstorms

and to operate in near-real time.

The aforementioned problem can be formulated as a tra-

jectory optimization subject to a stochastic environment. We

recommend referring to [2] for a good survey on the topic.

However, despite the wide variety of methodologies, only a

few works have dealt with the problem of aircraft flying in

regions of uncertain thunderstorm development.

A first class of methods are those based on optimal control

techniques. On one hand we find the so-called stochastic

Reach-Avoid [3], based on Dynamic Programming (DP), able

to deal with uncertainties in aircraft motion and thunderstorm

encounters. The main disadvantage from DP methodologies

is that they are subject to the ”Curse of Dimensionality”;

computational time can be prohibitive as it scales with the

dimension of the state space and the discretization. On the

other hand, the optimal control problem can transcribed into a

nonlinear programming problem. In [4], the authors solve the

motion of a 3 degrees-of-freedom model of aircraft with the

uncertain evolution of convective weather. Its main drawback,

the sensitivity to the initial guess, is overcome with a random-

ized initialization, and in consequence the algorithm is able to

provide a portfolio of solutions. Although both approaches

can be used in complex settings with nonlinear dynamics, its

ability to handle operational constraints is limited.

An alternative way to address the problem are metaheuristic

methodologies, which, contrary to the techniques mentioned

above, are based on a exhaustive exploration and exploitation

of the state space to get near-optimal solutions. Metaheuristic

algorithms were previously used for deterministic weather

avoidance [5] and flight planning under different sources

of uncertainty [6], [7]. In [8], we presented the scenario-

based rapidly-exploring random tree star (SB-RRT∗), a RRT∗-

based algorithm able to provide safe, continuous and close-

to-optimum trajectories in uncertain environments described

by ensemble-based products. The main drawback of this

methodology is the large computational time (order of days),

which makes it unusable for practical purposes.

The aim of the present paper is to update the SB-RRT∗ with

a parallelization of the most time consuming step: the safety

check. The algorithm makes an exhaustive use of that function,

which increases with the number of iterations, thus a reduced

computational time associated to each call is necessary for

fast simulations. We use parallel computing techniques on

graphical processing units (GPUs) to improve significantly the

running times per safety check. In consequence, this method-

ology is able to reduce the original prohibitive computational

time to minutes (or even seconds). As an illustrative example,

we test the algorithm assuming a unicycle model of an aircraft

flying straight between states and maintaining constant altitude

and airspeed.

The paper is structured as follows. In first place, we frame

our approach in Sec.II. Then, we present the SB-RRT∗ algo-

rithm and the parallelization in Sec. III. We test the update and

compare it to the initial implementation in Sec. IV. Lastly, we

outline the main conclusions and possible future works in Sec.

V.

II. PROBLEM FRAMEWORK

Aviation stakeholders consider thunderstorms to be one of

the most dangerous events during flights and it is preferred to

avoid them whenever is possible. Nevertheless, it is difficult

for pilots to find the safest route in stormy regions, entailing

delayed and diverted flights, as well as an increase in fuel

consumption and total costs. The reasons for this are threefold:

• First, thunderstorms are uncertain phenomena that happen

on relatively fast timescales (around 30 minutes) and are

hard to predict.

• Second, for flight planning purposes, pilots make use of

weather charts, which are not updated during a flight

and become obsolete. Relevant weather changes are com-

municated verbally by the air traffic controller or other

aircraft. Weather charts are obtained through numerical

weather prediction (NWP) models some days in advance

and do not have sufficient spatiotemporal resolution to

capture convective phenomena (such as thunderstorm

birth and growth). Additionally, low resolution products

that cover large regions such as Convective Significant

Meteorological Information (SIGMET) are used by pilots

to decide which regions to avoid.

• Lastly, during a flight, the main source of recent weather

information is the onboard radar. Weather radars present

multiple constraints, the range is often limited to 150

nm (around 20 minutes of flight) and the scan region

is restricted to the aircraft front. There is no information

about lateral regions, which might be relevant for possible

diversions.

There exist many ongoing efforts to improve the weather

data available for aviation. In first place, the use of ensemble

prediction systems (EPS). An EPS is a NWP forecasting

technique used to characterize atmospheric uncertainty. It

provides, typically, between 10 and 50 numerical weather

forecasts considering small perturbations in the models and

the parameters [9]. Existing EPS are not yet able to capture

the phenomenology behind convective events. Nonetheless, in

the near future (5 to 10 years), NWP methods are expected to

evolve towards very short term (∼1 h) and very high resolution

(∼100 m) convective-permitting EPS able to better capture

thunderstorms. Consequently, upcoming planning algorithms

must be able to work with ensemble-based weather predictions

that would eventually be able to forecast thunderstorms.

A second effort is focused on the ground-air link of data

and the fusion with onboard information. The main idea is

to combine NWP forecasts, with radar, satellite and other

additional observations and display the results on the cockpit

[10]. Despite the fact that uplink systems have been success-

fully tested in the past in projects such as FLYSAFE [11]

or eFlightOps [12], the real implementation in commercial

aircraft is still under research. Aviation is subject to strict

regulation and certification processes that need to be overcome

before these systems are ready to be included in primary

flight displays. However, the representation of such data on

complementary devices (electronic flight bags) would provide

pilots additional information and more time to react to thun-

derstorm evolution, minimizing deviations from the planned

trajectory and hence saving fuel. An example of that type of

technology is eWAS Pilot 1, an app that provides pilots real

time weather information from several sources through Wifi

or 4G connections.

The aim of the SB-RRT∗ is to be used together with the

aforementioned systems, suggesting possible diversions from

the flight plan to overcome updated weather events. An sketch

is represented in Fig.1 and an example of possible ensemble

forecast over Europe is shown in Fig.2.

III. PARALLELIZED SCENARIO-BASED RRT∗

In this section, we present the SB-RRT∗ algorithm, intro-

duced in [8], and enhance its computational performance by

using parallelization techniques on GPUs.

A. Environment Definition

We define the flight space as X ⊂ R
dx , with dx equal to 2

or 3, depending on whether the motion occurs in a 2D plane

or a 3D volume. We also define the unsafe set that includes

thunderstorms as Xunsafe ⊂ X and the safe-to-fly regions as

Xsafe = X \Xunsafe.

In this scenario-based approach we consider Xunsafe to be

a weather ensemble forecast formed by Nsc possible members

or realizations. Each member is formed by a group of storm

cells, each of them denoted by Cj
l . We refer to a particular

member of the ensemble with j and a storm cell from the j-th

member with l, where j = 1, . . . , Nsc and l = 1, . . . , N j
c . The

number of storm cells N j
c is not constant between scenarios.

We assume that Cj
l is a deterministic closed region, fully

included in X and delimited by a polygon or an ellipse. For

this reason, we can check if a path intersects any Cj
l by means

of geometric operations.

We define the j-th member of the ensemble Xj
unsafe as the

union of all the storm cells from that member. Then,

Xj
unsafe =

Nj
c⋃

l=1

Cj
l . (1)

1http://www.ewas.aero/product/ewas-pilot

2

150 nm

Ground
weather
processor

Suggested
diversions
(SB-RRT*)

Flight plan

Onboard
weather radar

Satellite
Radar
Observations
NWP

Electronic
ight bag

Ensemble forecast

~1 hour

Figure 1. Representation of trajectories suggested by the SB-RRT∗ (green lines) on a electronic flight bag. Storms detected by the onboard weather radar are
represented in blue. An ensemble forecast of 4 members provided by ground-air data link is represented in red.

Figure 2. Example of ensemble weather forecast (showing just 2 members) obtained with the Short-Term Ensemble Prediction System (STEPS) methodology
applied to observations that merge EUTMENET OPERA radar composite and SAF RDT satellite data.

The ensemble Xunsafe is the set that includes the different

members Xj
unsafe, hence

Xunsafe = {X1
unsafe, . . . , X

Nsc

unsafe}. (2)

We assume, without loss of generality, that each member

of the ensemble happens with the same probability. That is,

Pr(Xunsafe = Xj
unsafe) = 1/Nsc, ∀j. However, the formu-

lation can be extended to consider ensemble members with

different weights.

B. SB-RRT∗ Algorithm

We define the aircraft state space as S ⊂ R
ds . In general,

ds ≥ dx, as X only represents possible aircraft positions, while

S might include dynamical variables such as fuel consumption,

velocity or attitude angles. We also define the control space

as U ⊂ R
du . The aircraft dynamics is represented by a state

vector s ∈ S that changes according to a transition equation,

ṡ = f(s, u), (3)

where u ∈ U is the control input.

The SB-RRT∗ belongs to the category of incremental

sampling-based algorithms and its objective is to build a graph

G ⊂ X , such that:

• It is an explicit representation of Xsafe.

• It is created iteratively, it expands through a process of

random sampling of the state space S , setting feasible

connections between pairs of safe samples.

• It is asymptotically optimal, converging almost surely to

a trajectory of minimum cost if the maximum number of

iterations, MaxIter, is sufficiently large.

3

(a) 30 iterations. (b) 50 iterations. (c) 100 iterations

Figure 3. Example of SB-RRT∗ evolution with 30, 50 and 100 iterations.

• It is a single-query algorithm that grows according to an

origin and destination defined beforehand.

The graph G is a combination of two elements: nodes and

edges. We define the node a ∈ X as the projection of a

randomly sampled state s ∈ S in X . That means that a is an

object represented by a position in X , and might also include

additional variables, such as velocity or attitude values. We

also define the edge e ⊂ X as the trajectory that results from

the integration of Eq. (3) between a pair of nodes. The sets A
and E represent, respectively, the groups of nodes and edges

successfully included in G.

We define the initial and target states, sstart, sgoal ∈ S , and

the associated nodes astart and agoal. The graph is initialized

with astart and grows trying to reach agoal. During each

iteration, a node and an edge are tested for safety in order to

be added to A and E . Failing this check means rejection of the

sample and that possible connection. The SB-RRT∗ algorithm

is detailed in Algorithms 1-3 and is illustrated in Fig. 3.

Algorithm 1 G = (A, E) ← SB-RRT∗(astart)

1: A ← astart, E ← {∅};

2: while k < MaxIter do
3: ak ← RandomSample();

4: anearest ← NearestNode(ak, A);

5: enearest ← Steer(anearest, ak);

6: if Safe(enearest) then
7: Anear ← Near(ak, A);

8: aparent, eparent
← BestParent(ak, anearest, enearest, Anear);

9: A ← Add(ak), E ← Add(eparent);
10: G ← Rewire(ak, Anear);

11: end if
12: end while
13: return G

Algorithm 2 aparent, eparent
← BestParent(ak, anearest, enearest, Anear)

1: aparent ← anearest, eparent ← enearest;
2: cmin ←Cost(astart, anearest) + Cost(anearest, ak);

3: for anear ∈ Anear do
4: enear ← Steer(anear, ak);

5: if Safe(enear) then
6: cnear ← Cost(astart, anear) + Cost(anear, ak);

7: if cnear < cmin then
8: aparent ← anear, eparent ← enear;

9: cmin ← cnear;

10: end if
11: end if
12: end for
13: return aparent, eparent

Algorithm 3 G ←Rewire(ak, Anear)

1: for anear ∈ Anear do
2: enear ← Steer(ak, anear);

3: cnear ← Cost(astart, ak) + Cost(ak, anear);

4: if Safe(enear) and cnear <Cost(astart, anear) then
5: aparent, eparent ← Parent (anear)

6: E ← Remove(eparent)
7: E ← Add(enear)

8: end if
9: end for

10: return G

The following functions are required to grow the tree and

are common to many sampling-based algorithms:

• RandomSample: it creates a node ak through random

sampling of S (typically with a uniform distribution).

• NearestNode: given a node ak, it returns the closest

4

node anearest ∈ A, according to a metric, e.g., Euclidean

distance or Dubins path length.

• Steer: it propagates Eq. (3) between two nodes a and a′

minimizing a cost function, e.g. distance, time or fuel

consumption. This can be achieved either by solving an

optimal control problem to get the required control u or

by using precomputed optimal solutions such as Dubins

curves. The resulting path is an edge e.

• Safe: this function checks if an edge e is safe before

including it in E and it is the objective to be parallelized

in this work.

• Cost: it calculates the cost of the path between two nodes

a and a′. It defines the objective to be minimized.

• Parent: for any node a it returns its parent node (the

previous node to which is connected) aparent ∈ A and

the edge eparent ∈ E connecting both. The node a is

called child of aparent
• Near: it returns the set of nodes Anear ⊆ A within a ball

centered at ak with radius γ(log card(A)
card(A))

1
dx+1 (see [13]),

where γ is a constant required for optimality and card(A)
represents the cardinality of A during the corresponding

iteration.

• Add, Remove: these functions include or remove nodes

and edges from G.

Algorithm 1 includes a typical RRT∗ methodology to grow

a graph G by connecting randomly chosen states to the closest

nodes in G. Then, by using BestParent and Rewire functions,

detailed in Algorithms 2 and 3, the internal connections in G
are restructured. The result is a graph that optimizes the cost

of the paths towards each node in A.

The main feature from the SB-RRT∗, and what differences

it from other RRT∗s, is the so-called Dynamic Risk Allocation,

a methodology to test if new connections are safe considering

scenario-based uncertainties. According to the formulation in

[8], we define any path that connects the initial node astart
to any state obtained randomly as P . Each P is a sequence

of N edges, P = {e1, . . . , eN}. The Dynamic Risk Allocation

states that any path P in the tree, including the solution, must

be safe with a safety margin ε ∈ [0, 1]. That is,

Pr(P ∈ Xsafe) = Pr

(
N∧
i=1

ei ∈ Xsafe

)
≥ 1− ε. (4)

The big wedge operator (∧) represents a logical conjunction.

By means of Boole’s inequality, the previous condition can be

conservatively satisfied as follows,

Pr(P ∩Xunsafe) ≤
N∑
i=1

Pr(ei ∩Xunsafe) ≤ ε. (5)

The probability Pr(ei ∩ Xunsafe) is estimated with the pro-

portion of ensemble members intersected by ei. As the tree

is growing, any new connection must verify Eq. (5), so that

any path can be considered safe. An example of the method

considering ε = 0.1 is illustrated in Fig. 4 with two different

Figure 4. Illustration of DRA considering the two possible alternatives:
acceptance of an edge that satisfies Eq. (5) and rejection of an edge that
violates it (dashed line).

edges, e2 and e′2. The application of Eq. (5) to both possible

paths results in:

Pr(e1 ∩Xunsafe) + Pr(e2 ∩Xunsafe) = 0.1 ≤ ε,

and,

Pr(e1 ∩Xunsafe) + Pr(e′2 ∩Xunsafe) ≥ ε.

On one hand, e2 is accepted, as the total sum of probabilities is

not over ε and the tree could keep growing in that direction. On

the other hand, e′2 is rejected, as the aggregated risk violates

the value of 0.1. That way risk is assigned non-uniformly to

the different edges as the SB-RRT∗ is growing.

C. Parallelization

The safety checks resulting from Eq. (5) and the calculation

of each Pr(ei ∩ Xunsafe) were the main bottleneck from

the initial SB-RRT∗ implementation. The process was done

sequentially, calculating the intersection of an edge with each

ensemble member Xj
unsafe. Additionally, if each member has

several storm cells Cj
l , the intersections were also determined

sequentially. The total number of intersections to be obtained

each time Safe is called is
∑Nsc

j=1 N
j
c , hence the computational

time required for checking one edge grows linearly with the

number of ensemble members and the number of storm cells

per member. As the algorithm requires an extensive use of this

function (lines 6, 5 and 4 in Algorithms 1-3, respectively) that

increases with the number of nodes, the total execution time

grows exponentially with the maximum number of iterations.

The objective of this work is to address this issue by means

of parallelization techniques, using CUDA [14], a platform

for general computing on GPUs. To calculate the value of

Pr(ei ∩Xunsafe), all the storm cells Cj
l from any ensem-

ble member are handled in parallel. That way, the previous∑Nsc

j=1 N
j
c steps are reduced to 1, and Safe function becomes

independent of both the number of members in the ensemble

and the number of storm cells. The performance of this new

approach is analyzed in the case study.

5

IV. CASE STUDY

In this section, we compare the parallelized version of the

SB-RRT∗ to our previous implementation [8]. We consider

a unicycle model of an aircraft, which flies straight between

nodes, and keeps constant altitude and airspeed.

A. Problem setting

In order to test the parallelized SB-RRT∗, we consider the

flight region X = [−24◦,−19◦]× [28◦, 35◦] with longitude

λ and latitude φ as state variables and constant flight level

FL300. We simulate an ensemble-based environment with

storm cells described by polygons. An example considering

20 ensemble members is shown in Fig. 5. For this exam-

ple, it is assumed that no-fly regions do not change with

time. However, during the tree propagation, the algorithm

is able to consider ensemble members at different times to

deal with moving cells. The objective consists in finding

a safe trajectory that connects xstart = (−22◦, 34◦) and

xgoal = (−20◦, 29◦) while minimizing total flight distance. A

safety margin ε = 0.1 is considered, hence the constraint for

each path P is
∑N

i=1 Pr(ei ∩Xunsafe) ≤ ε (see Eq. (5)). The

computations are performed in a workstation equipped with an

Intel Core i7-8550U CPU running at 1.80 GHz and a NVIDIA

GeForce GTX 1050 GPU.

Figure 5. Example of ensemble-based environment with 20 members.

B. Computational performance

In this section, we analyze the effect of the parallelization

on the Safe function on its own and as a part of the algorithm.

Firstly, we include in Table I the computational time 2 required

for checking the safety of one edge as a function of the number

of scenarios, with and without GPU. As expected, it can be

concluded that with no parallelization the required time for

the safety check grows linearly with Nsc, whereas the parallel

implementation involves almost constant time per check. We

attribute this scaling to the fact that the GPU has enough

2Average values considering 1000 different edges.

parallel processing cores to handle all the storms in all the

scenarios in a single kernel launch. Moreover, the time per

call is reduced in 2-3 orders of magnitude depending on the

value of Nsc.

TABLE I. CPU VS. GPU. COMPUTATIONAL TIME REQUIRED FOR THE

INTERSECTION CHECKING (PER EDGE) AS A FUNCTION OF THE NUMBER

OF SCENARIOS.

Nsc With CPU (ms) With GPU (ms) timeCPU/timeGPU

5 720 1.22 590

10 1500 1.25 1200

20 2850 1.25 2280

50 6840 1.31 5220

In second place, we analyze how the new approach af-

fects the computational time of a SB-RRT∗ simulation for

Nsc = 20. In Table II, we show the time required by the

simulation, in average, as a function of the maximum number

of iterations MaxIter. Note that there are no results beyond

1000 iterations for the initial implementation as it would

require several weeks.

TABLE II. CPU VS. GPU. SB-RRT∗ COMPUTATIONAL TIME AS A FUNC-
TION OF THE MAXIMUM NUMBER OF ITERATIONS FOR Nsc = 20.

MaxIter With CPU (h) With GPU (s)

100 3.5 1.9

200 10.0 7.1

500 41.9 34.3

1000 120.6 122.9

2000 - 446.4

5000 - 2537.8

As it can be observed, the simulations that involved days to

complete now are finished in a matter of minutes (or seconds).

In particular, our previous upper bound, MaxIter = 1000,

has reduced the computational time from 5 days to 2 minutes.

Additionally, we include in Fig. 6 a continuous representation

of computational time with the number of iterations for

multiple simulations; the dependence is almost quadratic and

if we double the iterations we might expect around 4 times

more time.

C. Convergence and sensitivity of the solution

In this section we study the influence of the number of

iterations on the algorithm convergence and the solutions

considering Nsc = 20. The SB-RRT∗ is a heuristic algorithm

that explores a region based on a random sampling process.

Each simulation grows a different graph and approaches the

solution in a new manner. An example of graph and solution

after 5000 iterations is shown in Fig. 7. As it was stated

beforehand, this methodology presents asymptotic optimality

and would require an infinite number of iterations to obtain

the trajectory of minimum cost. We analyze the number of

iterations required for a close-to-optimum solution by running

the same simulation 50 times. In Fig. 8 we represent the

6

Figure 6. Computational time of the parallelized SB-RRT∗ as a function of
the maximum number of iterations for Nsc = 20.

Figure 7. Example of SB-RRT∗ and solution after 5000 iterations with
Nsc = 20.

relative error in flight distance with respect to its minimum

value. 3 The results show that in half of the simulations this

difference is 2.4% (or less) after 500 iterations and 1.1%
after 1000. Moreover, we represent with different color bands

the 66 and 90 percentiles. After 1000 iterations, a third of

the solutions resulted in a difference above 1.2% and a 10%
differed more than 2%. The greater difference was a 3.2%.

To conclude, we illustrate the sensitivity of the solutions

to the maximum number of iterations. In Fig. 9 we show

the solutions provided by 10 different simulations after 1000,

2000 and 5000 iterations. It can be observed in Fig. 9(c) that

3The minimum flight distance was calculated with a simulation of 105

iterations.

after 5000 iterations, or even more, the algorithm converges to

the same solution in almost every case. However, due to the

quadratic relation with the number of iterations, it requires

around 25 and 6 times more computational time, respectively,

compared to the simulations with 1000 and 2000 iterations. As

it is shown in Figs. 9(a)-9(b), there exist a higher variability in

the results in those cases, indicating the existence of different

local optima. Considering the results shown in Fig. 8, after

1000 iterations all of the solutions are within a 3.2% margin

in cost, and after 2000 the margin is expected to be tighter.

This is indeed a positive fact, as we can obtain fast solutions

and propose different near-optimal alternatives to pilots and

air traffic controllers.

Figure 8. Relative error of the cost function with respect to the minimum
flight distance as a function of the number of iterations.

V. CONCLUSIONS

In this work, we present a parallelized version of our

SB-RRT∗, a sampling-based algorithm for aircraft trajectory

planning that considers uncertainies described by ensemble-

based products. Our previous work concluded that the most

time consuming step was the individual safety check required

each time the graph tried to grow towards a new random

sample. This function is implemented in parallel using general

computing techniques on GPUs. We test the update and

compare its performance to the initial version considering

the same conditions. The results show that the individual

safety checks now require a computational time 3 orders of

magnitude lower and the entire simulation reduces its running

time from days to seconds.

In virtue of the above, it would be possible to use the

algorithm in near-real time operations. The algorithm could

be integrated in an electronic flight bag that, based on the

weather data provided by a ground station, calculates possible

diversions to avoid storms. As an additional step, the safe

trajectory would need to be translated into particular actions

that a pilot could achieve, e.g., a change in heading.

7

(a) 1000 iterations. (b) 2000 iterations. (c) 5000 iterations

Figure 9. Sensitivity of the results to the maximum number of iterations.

Note that the main disadvantage of the SB-RRT∗ is the

asymptotic optimality and its convergence rate; it approaches

the solution in an inefficient manner. During the whole sim-

ulation, the algorithm is trying to minimize the cost towards

each node, even though we are only interested in the trajectory

between origin and goal. In consequence, many samples and

iterations are wasted in the exploration of areas that are not

relevant. This can be addressed through informed techniques

that reduce the search space and focus the exploration on the

regions in which is more likely to find the optimum.

ACKNOWLEDGMENT

This work has received funding from (1) the Spanish Gov-

ernment (Project RTI2018-098471-B-C32) and (2) the SESAR

Joint Undertaking under the European Union’s Horizon 2020

research and innovation programme under grant agreement No

783287. The opinions expressed herein reflect the authors’

view only. Under no circumstances shall the SESAR Joint

Undertaking be responsible for any use that may be made of

the information contained herein. The authors would like to

thank Juan Simarro, from the Spanish Met Office -AEMET-

for providing us with the images shown in Figure 2.

REFERENCES

[1] Eurocontrol, “Performance review report. An assessment of air traffic
management in europe during the calendar year 2019,” Tech. Rep., 2020.

[2] N. Dadkhah and B. Mettler, “Survey of motion planning literature in
the presence of uncertainty: Considerations for UAV guidance,” Journal
of Intelligent and Robotic Systems, vol. 65, pp. 233–246, 01 2012.
[Online]. Available: https://doi.org/10.1007/s10846-011-9642-9

[3] D. Hentzen, M. Kamgarpour, M. Soler, and D. González-Arribas,
“On maximizing safety in stochastic aircraft trajectory planning
with uncertain thunderstorm development,” Aersopace Sciencce and
Technology, vol. 79, pp. 543–553, 2018. [Online]. Available: https:
//doi.org/10.1016/j.ast.2018.06.006

[4] D. González-Arribas, M. Soler, M. Sanjurjo-Rivo, M. Kamgarpour,
and J. Simarro, “Robust aircraft trajectory planning under uncertain
convective environments with optimal control and rapidly developing
thunderstorms,” Aerospace Science and Technology, vol. 89, pp. 445–
459, 2019. [Online]. Available: https://doi.org/10.1016/j.ast.2019.03.051

[5] L. He, A. Zhao, X. Wang, Z. Zhang, P. Wang, and R. Wu,
“Path planning method for general aviation under hazardous weather
using heuristic algorithm,” in 2019 5th International Conference
on Transportation Information and Safety (ICTIS), 2019. [Online].
Available: https://doi.org/10.1109/ICTIS.2019.8883714

[6] S. Chaimatanan, D. Delahaye, and M. Mongeau, “Hybrid metaheuristic
for air traffic management with uncertainty,” Recent Developments
in Metaheuristics, pp. 219–251, 2018. [Online]. Available: https:
//doi.org/10.1007/978-3-319-58253-5 14

[7] W. Dai, J. Zhang, D. Delahaye, and X. Sun, “A heuristic algorithm
for aircraft 4D trajectory optimization based on bezier curve,” in
ATM 2019, 13th USA/Europe Air Traffic Management Research and
Development Seminar, ser. ATM Seminar 2019, 2019. [Online].
Available: https://hal-enac.archives-ouvertes.fr/hal-02178439

[8] E. Andres, M. Kamgarpour, M. Soler, M. Sanjurjo-Rivo, and
D. Gonzalez-Arribas, “RRT*-based algorithm for trajectory planning
considering probabilistic weather forecasts,” in The 6th ENRI Interna-
tional Workshop on ATM/CNS, 2019.

[9] P. Bauer, A. Thorpe, and G. Brunet, “The quiet revolution of numerical
weather prediction,” Nature, vol. 525, pp. 47–55, 2015. [Online].
Available: https://doi.org/10.1038/nature14956

[10] C. Forster, A. Ritter, S. Gemsa, A. Tafferner, and D. Stich, “Satellite-
based real-time thunderstorm nowcasting for strategic flight planning en
route,” Journal of Air Transportation, vol. 24, no. 4, pp. 113–124, 2016.

[11] R. W. Lunnon, T. Hauf, T. Gerz, and P. Josse, “FLYSAFE
meteorological hazard nowcasting driven by the needs of the pilot,” in
American Meteorological Society, September 2009. [Online]. Available:
https:/ams.confex.com/ams/pdfpapers/103462.pdf

[12] C. Kessinger, G. Blackburn, N. Rehak, A. Ritter, K. Mil-
czewski, K. Sievers, and D. Wolf, “Demonstration of a
convective weather product into the flight deck,” in American
Meteorological Society, February 2015. [Online]. Available:
https://ams.confex.com/ams/95Annual/webprogram/Paper269015.html

[13] K. Solovey, L. Janson, E. Schmerling, E. Frazzoli, and M. Pavone,
“Revisiting the asymptotic optimality of RRT∗,” 2020. [Online].
Available: https://arxiv.org/abs/1909.09688v2

[14] CUDA Programming Guide, NVIDIA Corporation, 2010.

8

