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Abstract—Reducing flight delays is considered one of the
biggest challenges of the air transportation system due to its
far-reaching economic, operational, and environmental impact.
Airlines and Air Navigation Service Providers (ANSPs) must
collaborate to optimize their procedures in order to manage
delays. The SESAR Solution, Extended Arrivals Manager (E-
AMAN), allows for early sequencing of the flights, thereby
reducing the aircraft holding times and thus managing congestion
in Terminal Maneuver Airspace (TMA). However, there is a lack
of methodological approaches for transferring the flight delays
and holdings from the approach phase to the cruise phase. To this
end, we have approached this problem using both data-driven
and optimization techniques. First, we propose a method to detect
the holding pattern/time from historical trajectory data. Then a
prediction model is introduced to predict holdings and delays
200 NM from the airport. Finally, we develop an optimization
model that takes the predicted delays as an input and provides
the airlines/ANSPs with adequate speed adjustment, which can
absorb delays in the approach phase and transfer them to
the cruise phase. Results demonstrate that better prediction of
holding pattern/time can lead to predicting the flight delays, in the
approach phase, with high accuracy. Furthermore, the proposed
speed control model shows that, with a speed reduction of less
than 10% at 500 NM from the airport, up to 70% of the initial
delays could be absorbed in the cruise phase. As a result, the
average delay per flight (at the approach phase) is decreased
from 6 minutes to almost 2 minutes.

Keywords—holding detection, extended AMAN, holding pre-
diction, delay prediction, speed control, data-driven, optimiza-
tion.

I. INTRODUCTION

As airports are approaching their capacity limits, new de-

cision support alternatives should be introduced in order to

overcome the TMA congestion. Extended Arrival Management

(E-AMAN) is one such concept developed in the frame of the

SESAR Program (Single European Sky ATM Research) as

an upgrade of the currently applied AMAN system [1]. E-

AMAN assists ATC in the sequencing of arrival traffic in the

cruise phase of flight, much earlier than AMAN horizon. The

main concept is to reduce aircraft holding time in congested

TMAs by managing their speed during the cruise phase of

flight, usually 180-200 NM away from the airport. Controllers

in the upstream sectors, which may be in a different control

center, obtain system advisories to support an earlier aircraft’s

pre-sequencing. Controllers implement those advisories by, for

example, instructing pilots to adjust the aircraft speed along

the descent or even before top-of-descent, thus reducing the

need for holding and decreasing fuel consumption. E-AMAN

validation trials have been performed in many cities such as

Rome, Amsterdam, and London. Findings demonstrate that

aircraft’s fuel consumption is reduced by an average of 8%
per flight; furthermore, the airborne waiting time is reduced

by up to 90% [2].
Despite the substantial benefits expected from implement-

ing the E-AMAN, an accurate prediction of flight arrival

time/delays, especially in the terminal airspace with complex

holdings, remains a challenge for its wider deployment. More-

over, by extending the coverage radius up to 500 NM, the

uncertainties in estimating the arrival times raises. In fact,

inaccuracies in arrival time computation cause a perturbation

in the flight landing sequence due to flights coming before

or after their estimated time of arrival. This may lead to the

re-generating of delays at the TMA.
In this work, we propose a method for detecting and

predicting flight holdings and predicting delays in TMA, with

speed control strategy to absorb such delays in the cruise

phase. As a case study, the proposed method is applied to

reduce airborne delays for arrival traffic into Singapore Changi

Airport (WSSS) by developing the concept and procedures

augmenting the E-AMAN initiatives. The proposed methodol-

ogy includes two independent but complementary approaches.

The first approach focuses on predicting flight delays at an

early stage (before reaching the Initial Approach Fix (IAF)),

while the second permits to instruct the pilots (through up-

stream controllers or Airline Operations Office) with the speed

change advisory to absorb this delay. To this end, we make use

of data-driven methods together with optimization techniques.
The main contribution of this paper are:

• A holding detection method to detect, from historical

flight data, any flight holdings in TMA and their duration.

• A holding prediction model that determines, at 200 NM

from the airport, whether a flight will enter a holding

pattern or not (Classification problem). This probability

function is fitted to a prediction model that predicts the

flight time of holdings (Regression problem).

• A delay prediction model that takes the predicted holding

time as an input and predicts, at 200 NM from the airport,

the flight delays encountered in the approach phase.

• A speed control strategy to absorb the predicted delays

in the cruise phase.

The paper is organized as follows. First, section II includes

a literature review summarizing the previous main works

that belong to the scoop of our topic and our proposed



approach. The data preparation and exploration are highlighted

in section IV. Subsequently, section V and section VI describe

in details the proposed prediction models and speed strategy

model, respectively. Section VII discusses the computational

results. Finally, conclusions are drawn in section VIII.

II. BACKGROUND

Effective implementation of E-AMAN requires an accurate

prediction of delay in the approach phase and effective delay

absorption mechanism such as speed control strategy.

A. Delay prediction

Predicting the delay in the approach phase is a challenging

problem due to the non-deterministic nature of both environ-

mental and air traffic factors, including wind uncertainties,

inaccuracy of in-flight parameters, and frequent tactical vec-

toring of the flight trajectory by TMA controllers. Delay in

the approach phase is defined as the difference between the

actual and planned duration the aircraft flies from the initial

approach fix to landing. It is similar to the arrival/ landing

time prediction (LDT), which involves predicting the transit

time in the TMA.

Recently, due to their effectiveness in dealing with uncer-

tainty and prediction problem, machine learning approaches,

for predicting LDT have been proposed. For example, Glina

et al. [3] apply Quantile Regression Forests (QRF) to estimate

aircraft landing times. Their findings consist of a short-term

prediction (with a radius of prediction ranging between 20-

30 NM) of flight arrival times with an accuracy of about

60 seconds for 68% of flights. In the same context, [4]

presented a short-term trajectory prediction in TMA based on

4D trajectory prediction. Their model consists of data mining

and Deep Neural Networks (DNNs) model. They predict the

LDT at the TMA (within 25 NM from the airport) with an

MAE of 70 seconds.

In data-driven LDT prediction research feature selection is

a critical a process of transforming raw data into features

that better represent the underlying problem to the predictive

models, resulting in improved model accuracy on unseen

data. In [5] improved the Estimated Time of Arrival (ETA)

predictions by intensive feature analysis using Random Forest

(RF), with an accuracy of 78.8% than the FAA’s ETMS.

One research gap in the previous work for predicting transit

time or delay in TMA is the lack of consideration of holding

time as one of the features for delay prediction. Aircraft that

undergo holding experience extra flight time and elongated

flight distance; hence, this affects their transit time/ delay in the

approach phase. Therefore, in our work, we include a holding

prediction model to predict the holding time in the approach

phase and utilize the predicted holding time to predict delay.

In order to build a holding prediction model, we first have to

develop a holding detection algorithm by studying the holding

patterns of the flights using flight data. Another research gap

in the previous work is the limited prediction horizon for

predicting transit time or delay in the TMA. In our work, we

propose to predict the approach phase delay when the aircraft

is at 200 NM away from the airport.

Furthermore, the prediction of flight delays, in itself, does

not provide quantitative insight into improving the TMA

operational performance. Thus, we implement a speed control

strategy aiming to absorb the predicted delay at the cruise

phase so that the approach outcome can be evaluated in terms

of reducing delays and congestion in the TMA.

B. Speed control for Air Traffic Flow Management

Several researchers have investigated the implementation of

a speed control strategy for Air Traffic Flow Management

(ATFM) purposes. In [6], Delgado et. al proposed a cruise

speed reduction strategy to complement ATFM ground delay.

Results show that given a nominal cruise speed, there exists a

bounded range of speeds reduction (5% to 12%) that allows

aircraft to fly slower with the same or lower fuel consumption

than the nominal flight.

A recent work by Yoshinori et al. [7] proposes a detailed

analysis of the achievable airborne delays by speed control.

They show that around 2 to 3 minutes of delays per each 30
minutes of flight time could be achieved by a speed reduction

while saving about 2 − 3% of fuel consumption. Further,

Jones et al. [8] presented an approach to transfer delay from

the TMA airspace to the cruise phase by adjusting the flight

speeds during the cruise phase in order to avoid any trajectory

adjustment such as vectoring, speed change, or holdings at

the TMA airspace. The authors propose to consider flights at

a radius of 500 NM from the airport and instruct them with

a Controlled Time of Arrival (CTA) to a metering fix situated

at approximately 150 NM from the airport. The results show

a transfer of up to 20% of the delays from the terminal area

to the cruise phase of the flight. Another important finding

in this work is that part of delays can be transferred into

the cruise phase, even with only 25% of compliant flights.

However, the aircraft’s actual flight profile is subject to several

external operational uncertainties such as weather and airport

congestion, which are not considered in their model.

III. PROPOSED APPROACH

This research work proposes to combine two independent

models, flight delay prediction and speed control strategy, to

demonstrate benefits of E-AMAN.

• The first model focuses on predicting the flight delay in

the approach phase. In the feature engineering process,

we include features reported in our recent work [9]. As

flight holdings influences the flight transit time, and thus

contributes to flight arrival delays we have included the

holding pattern in our prediction model. Furthermore, we

propose the prediction model at 200 NM from the airport.

• The second model consists of a speed control strategy to

absorb the predicted delays at the cruise phase. Since our

goal is to absorb delays, we restrict our speed control

maneuver to slowing down the aircraft speed. As most

of the discussed literature in the speed control strategy

suggests, two speed reduction ranges are considered:
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Figure 1. Range rings and Singapore FIR

less than 10% and between 3% to 6%. Furthermore, we

consider studying three different radius coverage from the

airport, namely 200 NM, 300 NM, and 500 NM. There-

fore, virtual concentric circles centered around Singapore

Changi airport are considered, referred to as Range Rings

(RR), as illustrated in Figure 1.

Our proposed methodology is highlighted in Figure 2. It

includes four main models that are performed sequentially,

each of which inputs the preceding model outputs. The first

block is a data mining model that involves cleaning the

data, detecting the trajectory with holdings, and extracting the

features relevant to the prediction model. The second model is

the holding time prediction model. It combines two prediction

models: the first is a classification model to predict whether the

considered flight will be on holding or not, while the second

is a regression model to predict the holding time. The third

block is the delay prediction model. The last model includes

the speed control strategy.

IV. DATA

A. Data source

The data used in this work is related to arrival flights to

Singapore Changi Airport (ICAO: WSSS) for the month of

May of 2019. They are collected from the following sources:
1) Air Traffic data: The 4D trajectory data source of this

study is Automatic Dependent Surveillance-Broadcast (ADS-

B) flight data derived from the OpenSky Network [10]. Flight

plans are derived from a major airline in Southeast Asia with

flight arrivals into Singapore Changi Airport.
2) Meteorological data: The meteorological data (METAR)

for Singapore Changi airport station are extracted from of Iowa

Environmental Mesonet from Iowa State University [11].

B. Data Processing

Data Processing involves two steps noise filtering and outlier

removal. In the noise filtering step, we remove duplicated

flights, flights with incomplete trajectory or flight plan data

and flights which originates within 200 NM range ring of

destination airport (WSSS) as there will be insufficient time

in the cruise phase to apply speed control.

Figure 2. Methodology framework

In addition, data which has holding time or approach

phase delay which are two standard deviations away from the

respective average values are considered as outliers and thus

are removed from the dataset. After outliers removal, we are

left with 9376 flights with 2091 having flight plans.

V. HOLDING & DELAY PREDICTION FRAMEWORK

The delay prediction framework (as illustrated in Figure 2)

predicts the delay of each aircraft in the approach phase when

the aircraft is at the range ring (i.e., 200 NM away from

the airport) so that the flights can adjust their speed in the
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remaining cruise phase to absorb the predicted delay in the

approach phase. The prediction point is labeled in Figure 6,

and the speed control strategy are outlined in Section VI. The

framework consists of features extraction and construction,

holding detection and prediction, and delay prediction.

A. Feature Extraction & Construction

Table I presents the list of possible features that are included

in the holding and delay prediction models.

Instead of considering the individual components of the

weather parameters and phenomenon as separate features of

the prediction models we used Air traffic management airport

performance (ATMAP) weather algorithm [12] by Eurocontrol

to generate a representative index which indicates the severity

of the overall weather conditions in Air Traffic Management.

As there are four runways available for commercial flights

landing and departing in Singapore Changi Airport are 02L,

02C, 20R, and 20C. The arrival demand is computed using

the estimated time of arrival of the landing flights, and the

departure demand is computed using the estimated time of

departure of the departing flights.

B. Holding Detection Model

A holding pattern can be characterized by an oval course,

which is an intrinsic property that differs, holding from other

types of maneuvers. In kinematics, the projection of 4D

holding trajectories onto its flight path undergoes oscillation.

Based on this property, we can perform the segmentation

of a 4D trajectory into segments with and without holdings.

This can be achieved by detecting zero crossings in speed

from the projected motion, estimated by Kalman filter (KF).

Holding time is computed based on the start and end time of

a segmented holding trajectory.

The input of the holding detection algorithm are:

• A flight trajectory is defined by a set of discrete points,

which are interpolated each 1 second. Let us consider the

trajectory point as the set (X(t), Y (t))t∈[0,..,n], where n
is the flight points number.

• An associated flight path defined by a set of segments.

Figure 3 shows an example of a flight trajectory fragment

where holding is detected, with the flight path segment.

Figure 3. Example of a flight holding pattern for the holding detection.

The steps of the holding and holding time detection algo-

rithm are enumerated as follows:

1) The KF estimates the flight velocity components at each

trajectory point, as follows:

[X,Y, Ẋ, Ẏ ] ← KF(X,Y ) (1)

2) The projection Vu(t) of the aircraft velocity vector

(Ẋ(t), Ẏ (t)) on the flight path (where �u is its unit vector

as shown in Figure 3). This provides us longitudinal

speed along the flight path. It is computed by:

Vu(t) =

[
Ẋ(t)

Ẏ (t)

]
· �u (2)

An example of the variation of the speed component Vu

in case of a detected holding is highlighted in Figure 4.

3) If the vector (Vu(t))t∈[1,..,n] includes a sequence of

negative values for more than Tn seconds, a holding

is detected. Otherwise, a flight trajectory is without

holding. Tn is empirically chosen to be 30 seconds.

4) If a holding is detected, the time of holding is derived by

computing the first turn around time ta and the second

turn around time tb that verify equation 3 and 4, respec-

tively. This can be computed from the zero-crossings

in speed such as in Figure 4. Equation 3 computes

the first time ta where (Vu(t))t∈[1,..,n] goes to negative

values. Equation 4 computes the first time tb where

(Vu(t))t∈[ta,n] goes back to positive values after ta.

ta = min
t∈[1,..,n]

t s.t. Vu(t) < 0 (3)

tb = min
t∈[ta,..,n]

t s.t. Vu(t) > 0 (4)

5) Finally, the time between ta and tb represents half of

the holding time. Thus, the holding time Th is given by:

Th = 2× (tb − ta) (5)

Figure 4. Variation of the speed component Vu relative to time

C. Machine Learning Algorithm for Predictive Models

We have adopted CatBoost machine learning algorithm

which deploy gradient boosting on decision trees, with cate-

gorical features support [13] for Holding Prediction and Delay

Prediction models.
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TABLE I. SUMMARY OF ALL POSSIBLE FEATURES

Type Name Description
Flight Origin Region First letter of ICAO airport code of departure airport
Information Wake Wake category of aircraft (e.g. H , M)

Latitude Latitude of aircraft when it enters the range ring
Flight Longitude Longitude of aircraft when it enters the range ring
parameters Altitude Altitude of aircraft when it enters the range ring
at range Heading Heading of aircraft when it enters the range ring
ring Ground Speed Ground Speed of aircraft when it enters the range ring

HOD Hour of the day when aircraft enters range ring
DOW Day of the week when aircraft enters range ring
Airway Planned airway of the aircraft

Flight paths STARS Planned Standard Terminal Arrival Route of the aircraft
Runway Planned landing runway of the aircraft

Surrounding Before 30 Number of aircraft that entered .the range ring in the past 30 minutes
Traffic After 30 Number of aircraft expected to enter the range ring in the next 30 minutes

Average Speed Average speed of aircraft that enters the range ring 30 minutes before and after
Weather Weather Index ATMAP weather index of weather 1 hour after aircraft enters range ring

Arrival 02L Estimated number of landing flights on Runway 02L 1 hour before aircraft’s ETA
Arrival 20R Estimated number of landing flights on Runway 20R 1 hour before aircraft’s ETA

Airport Arrival 02C Estimated number of landing flights on Runway 02C 1 hour before aircraft’s ETA
Performance Arrival 20C Estimated number of landing flights on Runway 20C 1 hour before aircraft’s ETA
Metric Departure 02L Estimated number of departing flights on Runway 02L 1 hour before aircraft’s ETA

Departure 20R Estimated number of departing flights on Runway 20R 1 hour before aircraft’s ETA
Departure 02C Estimated number of departing flights on Runway 02C 1 hour before aircraft’s ETA
Departure 20C Estimated number of departing flights on Runway 20C 1 hour before aircraft’s ETA

1) Holding Prediction Model: There are two parts to the

holding prediction model, as shown in Figure 2. The first

portion is the holding classification model, and the second

portion is the holding time prediction model. The purpose of

the holding classification model is to predict the probability

of holding for each flight in the approach phase, and the

prediction horizon is also at 200 NM away from the airport.

The predicted probability of the holding is then utilized inside

the holding time prediction model. The holding time prediction

model is a regression model, and it predicts the total time that

an aircraft will undergo airborne holding in the approach phase

when the aircraft is at the 200 NM range ring. The output of

the holding prediction model (i.e., predicted holding time) is

an important input for the delay prediction model.

2) Delay Prediction Model: In order to build the delay

prediction model, we first have to extract the delay infor-

mation from each flight trajectory. The actual duration in

the approach phase can be extracted from the ADS-B data,

while the planned duration can be extracted from the flight

plan. Therefore, delays are not only computed for flights with

holdings but vectored flights are also considered. Furthermore,

only flights with both ADS-B data and flight plans are used

in building the delay prediction model. As a result, the delay

prediction model is specific to just one airline which flight

plan is available.

Similar to the holding prediction model, the delay prediction

model also consists of two parts, which are the delay classifica-

tion model and the approach delay prediction model, as shown

in Figure 2. The delay classification model predicts whether a

flight will experience a delay of greater than two minutes in the

approach phase when the aircraft is at the RR 200 NM. This

delay classification model employs the predicted holding time

from the holding prediction model. The predicted probability

of delay greater than two minutes for each flight is then

extracted from the model, and this information is included in

the approach delay prediction model. The reason for choosing

2 minutes as the boundary for deciding whether the flight

has delay is to take into account for the noise present in

the ADS-B data. The approach delay prediction model is

a regression model, and it predicts the total delay of an

aircraft in the approach phase when the aircraft is at the

RR 200 NM. Other than utilizing the predicted probability of

delay greater than two minutes, the approach delay prediction

model also includes the predicted holding time from the

holding prediction model as one of the features.

VI. SPEED STRATEGY TO ABSORB APPROACH PHASE

DELAYS

The speed control strategy is a mechanism implemented

in order to absorb the predicted delays that are derived from

the model presented in Section V. The main objective here

is to transfer delays from the approach phase to the cruise

phase. First, we implement a network structure that permits

to represent the considered airspace and model effectively the

flight trajectories. Thus, the mechanism of inserting the ADS-

B trajectories into the proposed network is also discussed in

detail. Then, the problem formulation is displayed, including

and explicit definition of the input data used, the speed strategy

applied, the conflict detection model, and the optimization

problem formulation proposed.

It is worth mentioning that our approach does not focus

on eliminating the delays for two main reasons. First, can-

celing delays require a rescheduling of the airport resources

allocation. Second, due to the increase in traffic density, flight

arrival delays are becoming inevitable even with an optimal

allocation of runways and taxiways. Alternatively, the current

work aims to clear the flight approach phase from delays by

shifting delays to the cruise phase. Our proposed approach

does not achieve a benefit in terms of flight time; meanwhile,

it contributes to reducing congestion in the terminal area.
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Therefore, the flight landing times are maintained as initially

instructed by ATC, and thus, no re-sequencing is required.

Moreover, our approach requires further cooperation between

different involved Area Control Centers(ACC). This is facili-

tated by the System Wide Information Management (SWIM)

that consists of a shared platform to harmonize information

exchange between all the involved airspace users.

A. Network model

The airspace is considered as a structured graph G(W,L),
where W is a set of waypoints (Wps), and L is the set of

links (Ls) associating each two consecutive Wps. Each Wp

is defined by its latitude, longitude, and altitude. The set of

subsequent Wps reaching the Final Approach Fix (FAF) is

called Flight Paths (FPs). For each range ring (Figure 1), a

subset of the graph network is considered.

1) Inserting ADS-B trajectories in the network: To asso-

ciate ADS-B trajectories to the network FPs, we apply the

Dynamic Time Wrapping (DTW) distance metric. It permits

to compute the distance between two trajectories having a

different number of points. Figure 5 illustrates an example

Figure 5. Mapping ADS-B trajectory with FP

of how we map ADS-B trajectory (solid blue line) with a FP

(solid red line). Let us consider a flight f having an ADS-B

trajectory defined by (P f
j )j∈[1..mf ], where mf is the number

of the trajectory points, and a FP defined by (WPj)j∈[1..nf ],

where nf is the number of waypoints.

The DTW distance between (pfj )j∈[1..mf ] and

(WPj)j∈[1..nf ] is defined as
∑mf

i=1 di, where di (dashed

black line in Figure 5) represents the distance between (pfi )
and the closest point in (WPj)j∈[1..nf ]. Thus, for each flight

f , the DTW with all the FPs is computed. Then, the closest

FP to f ’ trajectory is assigned to f .

Once each ADS-B trajectory is associated with a FP, the

orthogonal projection of the FP waypoints into the ADS-B

trajectory is determined and referred to as associated waypoint

(wf
j )j∈[1..nf ] (See Figure 5). Thus, the time needed to fly

between each two consecutive waypoints WPk to WPk+1

is defined by the time recorded between wf
k and wf

k+1. By

associating each ADS-B trajectory with its corresponding FP,

in the sequel, each flight trajectory is limited to the set of

points (wf
j )j∈[1..nf ] for each flight f .

B. Problem formulation

Let us consider a set of flights F arriving to the considered

airport. Each flight f ∈ F includes the following input data:

• Associated flight path: (WP f
j )j∈[1..nf ], where WP f

j is a

3D point defined by its latitude, longitude and altitude.

• Actual trajectory points associated with the flight path:

(wf
j )j∈[1..nf ], where wf

j is a 4D point defined by its

latitude, longitude, altitude, and time.

• The flight speed profile (vfj )j∈[1..nf ], where (V f
j ) is the

speed of f at the trajectory point wf
j . The speed profile

is extracted from the actual trajectory, and it is assumed

to be the agreed speed between pilots and ATC. In the

current work, we assume that ATC instructs this speed

profile at each flight path waypoint, and it is considered

as input data to our model.

The current work is tackling the problem of flight arrival

delays from the airline perspective. Therefore, the speed

control strategy is not applied to the entire flight set; rather, it

is dedicated to a particular airline. The flight set is subdivided

into two groups, as follows:

• Cooperative Flights (CF) are flights belonging to the

major airline operating in south-east Asia. They are

capable of communicating with the Singapore ANSP and

get the required instructions. Furthermore, as we only

consider flights with a delay more than 2 minutes in the

speed control process, all flights belonging to CF are

predicted to be delayed by more than 2 minutes and are

involved in the speed control strategy.

• Non-Cooperative Flights (NCF) are arriving flights that

are not considered in the speed control maneuvers.

Our objective is to reduce arrival delays for only CF flights.

Therefore, CF flights are required to adjust their speeds in the

cruise phase in order to absorb approach phase delays while

avoiding conflicts with both CF and NCF flights.

1) Speed control strategy: The proposed approach is illus-

trated in Figure 6. Let us consider a flight f entering the RR

at tf0 and reaching the Initial Approach Fix (IAF) at tf
nf . If

f is predicted to be delayed by a time Df at its approach

phase, our objective is to revise f speed so that the assigned

delay is progressively absorbed before reaching the IAF. Thus,

f have to reach each waypoint wf
i at (tfi + δfi ), where tfi is

the original time over wf
i and δfi is the achieved delay when

slowing down the aircraft from wf
i−1 to wf

i . Therefore, the

aggregate value of the elementary delay δfi has to be equal to

the initial delay Df .

In order to compute the flight timing over the waypoints

after changing the aircraft speed, we assume that the aircraft

perform a constant deceleration. For instance, let us consider

an aircraft f flying from wf
j to wf

j+1 with a speed vfj and

vfj+1, respectively (Figure 6). The constant speed deceleration

a(t) is a function of time given by:

a(t) =
vfj+1 − vfj

t
(6)

The equation of motion is given by:

(vfj+1)
2 = (vfj )

2 − 2a(t)dj (7)
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Figure 6. Concept diagram of the speed strategy approach.

where dj refers to the distance between wf
j and wf

j+1. As

vfj+1 �= vfj , the time t needed to fly from wf
j to wf

j+1is given

by substituting equation 6 in equation 7 as follows:

t =
2dj

vfj+1 + vfj
(8)

Finally, equation 8 is used to update the flight trajectory timing

in each waypoint.

As we only manage flights inside the RR, the speed at the

entry waypoint of the RR is a fixed parameter, and the speed

control does not change it as shown in Figure 6.

Furthermore, our hypothesis is that flights should maintain

the same landing performance as the actual operation. There-

fore, they have to reach their instructed IAF with the same

instructed speed. If not, they will need more time to land,

and thus, it may yield to a disruption in the landing sequence,

which in turn leads to the regeneration of delays. Therefore,

the instructed speed at IAF is considered a fixed parameter.

2) Conflict detection: The airspace system includes both

CF and NCF flights. While only CF flights apply speed

control maneuvers, NCF are taken into account to evalu-

ate the system performance and assure that the new flight

trajectories remain conflict-free. In this work, we require a

lateral separation of Lsep = 5 NM and a vertical separa-

tion of Vsep = 1000 ft. The network structure presented

in Section VI-A complies with these separation norms as

waypoints are separated by more than Lsep laterally and by

Vsep vertically. Thus, conflict detection is restricted to nodes

level.

Node conflicts are detected when aircraft flying over the

same waypoint violate the standard separation norm. Let us

consider two flights f and g flying over a waypoint WPj such

as f is ahead of g. The separation is ensured if the following

equation is satisfied:

Δt = tgj − tfj � Lsep

vfj
(9)

Where vfj is the ground speed of the leading aircraft at WPj ,

and tfj and tgj are the times where the flight f and g reach

WPj , respectively.

3) Optimisation problem formulation:
a) Input data: The optimization problem includes only

CF flights. Therefore, for each flight f belonging to CF , the

input data for the optimization problem are as follows:

• Actual trajectory points associated with the flight path:

(wf
j )j∈[1..nf ], where wf

j is the 3D point trajectory points

and nf is the number of points.

• The flight speed profile (vfj , t
f
j )j∈[1..nf ], where (vfj ) is

the ground speed of f at the trajectory point wf
j , and tfj

is the time f flies over wf
j .

• The predicted approach delay Df .

b) Decision variables: Decision variables are defined by

(v′i
f
)i∈[1..nf ] where v′i

f
is the new assigned ground speed of

each flight f ∈ CF at the trajectory point wf
i . It is illustrated

by a set of speed rate of change (rf ) for each flight f . Each

rf represents the percentage of change of f ground speed at

its trajectory waypoint. It is defined as follows:

v′i
f
= vfi − (rf ∗ vfi ) (10)

As the flight achieved delay δfi is deduced from the flight

speed rate of change rf , we define the function g that evaluates

achieved delay subject to the speed control measures as

g(rf ) = δfi .

c) Constraints: In order to avoid excessive speed vari-

ation, boundaries are imposed on the variables (rf ). The

maximum and minimum allowed speed rate of change for the

flight f are referred to as maxf
r and minf

r , respectively.

In the present work, we propose to investigate two speed

adjustment maneuvers. The first maneuver consists of reducing

the aircraft speed by less than 10%. The second maneuver

consists of changing the aircraft Mach by M0.02 to M0.04.

This adjustment range has been proposed in several previous

works.As the aircraft Mach is not provided in the considered
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data, we convert it into knots. This results in a speed adjust-

ment range between 13 to 26 knots. Experiments show that

this adjustment interval is also equivalent to a speed reduction

rate ranging from 3% to 6%.

d) Objective function: In the current work, three main

objectives are considered to be minimized. Let us first consider

the following data:

• N the set of flights that apply the speed control strategy.

Note that N ⊆ CF .

• δfi the achieved delay by flight f between waypoints wf
i−1

and wf
i ,

• rf the speed rate of change of the flight f , and

• W set of network waypoints.

The first objective function is illustrated in equation 11. It

highlights the sum of the deviation between the achieved delay

(
∑nf

i=0 δ
f
i =

∑nf

i=0 g(r
f )) and assigned delay (Df ) over all

flights.

obj1 =
∑
f∈N

∣∣∣∣∣∣Df −
nf∑
i=0

g(rf )

∣∣∣∣∣∣ (11)

Note that we consider to minimize the absolute value of the

difference between the predicted and absorbed delay so that

the amount of absorbed delay will not exceed the predicted

value. Furthermore, we aim at minimizing the flight approach

delays with the least impact on aircraft performance. Thus, we

consider minimizing the flight speed rate of change among

all flights. Meanwhile, all flights with delays are required

to participate in performing the speed control; thus, 1
Nf

is

included, where Nf is the number of flights in the set N .

obj2 =
1

Nf

Nf∑
f∈N

rf (12)

Finally, the generated conflicts at each waypoint n, defined by

Φn, is also a criterion to be considered among the minimiza-

tion objectives. Note that having a conflict-free solution is not

a primer objective in our model. In fact, since we are tackling

the cruise phase, the remaining conflicts can be handled by en-

route controllers at the tactical level. Therefore, the number of

generated conflicts is not a constraint in our problem; rather,

it is included in the objective function to be minimized.

obj3 =
∑
n∈W

Φn (13)

e) problem statement: The overall problem can be mod-

eled as follows:

min α
∑
f∈N

∣∣∣∣∣∣Df −
nf∑
i=0

g(rf )

∣∣∣∣∣∣+ β
1

Nf

Nf∑
f∈N

rf + γ
∑
n∈N

Φn

s.t. minf
r < rf < maxf

r
(14)

where α, β, and γ are the parameters used to weight the

minimisation of the three objectives obj1, obj2, and obj3.

C. Simulated Annealing

Due to the high complexity of the present combinatorial

optimization problem, we use a meta-heuristic algorithm-

simulated annealing which has proved its potential in several

ATM applications [14].

SA is widely known for its capabilities in avoiding getting

stuck in a local minimum by implementing random neighbor-

hood moves. SA is adapted to our problem as follows:

1) The search space consists of all flights belonging to CF
which involve a predicted delay higher than 2 minutes.

2) The energy function is given by the objective function

of our optimization problem described in equation 14.

3) A neighbor solution �xj represents a local change com-

pared to a current solution �xi. The process of getting

a neighbor solution is divided into two steps. First, we

select the flight to be modified based on the following

heuristic: a random value p ∈ [0, 1] is generated accord-

ing to a uniform law, then if p < 0.5, than the flight that

involves the highest delay is considered, else, a random

flight is considered. Once the flight to be modified is

selected, a random value of speed change is assigned.

4) The acceptance probability of a neighbor solution �xj is

given by e(f( �xi)−f( �xj))/T , where T is the temp, f(�xi) is

the objective value of the current solution, �xi, and f( �xj)
is the objective value of the neighbor solution, �xj .

5) A classical method for SA to decrease the temperature T
is by applying a geometrical law given by Ti = a×Ti−1.

6) The termination criterion is set when the temperature T
goes below a predefined final temperature, Tf . Tf = b×
TInit (with b � 1 and TInit is the initial temperature).

VII. RESULTS & DISCUSSIONS

A. Holding Detection and Prediction Models results

Using the proposed holding detection algorithm, all 679
flight trajectories withholding are correctly identified. Figure 7

plots the trajectories of 100 flights in which holdings were

detected by the algorithm.

Figure 7. 100 trajectories with holding with the STAR groups
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For all the prediction models, the data is split into 80%
training data and 20% test data. In addition, during the train-

ing, three-fold cross-validations are performed to determine

the optimal parameters for each prediction model. During

the training of regression models (both for holding time and

approach delay prediction), the trajectories are categorized into

four Standard Terminal Arrival Route (STAR) groups, and

each group has its own prediction model. The four STAR

groups are shown in Figure 7. Flights that are approaching

from the North, West, South, and East are categorized in STAR

group 1, 2, 3, and 4, respectively.

The classification models are evaluated using the classifica-

tion accuracy and the regression models with Mean Absolute

Error (MAE) and Root Mean Square Error (RMSE).

1) Holding Prediction: The holding prediction model con-

sists of a classification and a regression model. The classifi-

cation model predicts whether an aircraft will be instructed to

undergo holding during the approach. The prediction accuracy

of the classification model on the test set is 92.9%.

The regression model predicts the aircraft holding time in

the approach phase. Table II tabulates both the holding time

statistics and the holding time prediction performance with

and without using the predicted holding probability from the

classification model. When the holding time prediction models

do not make use of the predicted holding probability from the

classification model, the RMSEs are comparable to the holding

time standard deviations of the flights in the different STAR

groups. However, when the holding time prediction models

include the predicted holding probability, the RMSEs decrease

at least 38%, and all the RMSEs are less than a minute. In

addition, the predicted holding probability feature ranks the

highest in the feature ranking.

TABLE II. HOLDING TIME PREDICTION RESULTS

Holding time Without holding With holding
statistics (minutes) probability probability

Total
Flights Mean STD RMSE MAE RMSE MAE

STAR grp 1 4186 0.448 1.485 1.414 0.725 0.870 0.281
STAR grp 2 1958 0.143 0.899 0.885 0.279 0.364 0.081
STAR grp 3 980 0.315 1.283 1.242 0.541 0.522 0.153
STAR grp 4 2252 0.412 1.460 1.517 0.746 0.864 0.300

2) Delay Prediction: Similar to the holding prediction

model, the delay prediction model also has a classification

model and a regression model. Both the classification model

and regression model make use of the predicted holding time

from the holding time prediction model. The classification

model predicts whether the aircraft will experience a delay

of more than two minutes in the approach phase and the

classification accuracy is about 69.5%. Even though the clas-

sification accuracy is not very high, we are more interested

in the prediction accuracy of the regression model as the

classification model only provides an input (i.e., the predicted

probability that a flight will have delay more than two minutes)

to the final approach delay prediction model.

The prediction results of the regression model are tabulated

in Table III along with the delay statistics. Lesser data is used

to train the delay prediction model as only delays for flights

with corresponding flight plans can be extracted. The RMSEs

for prediction models that did not include the predicted holding

time and the predicted delay probability is greater than three

minutes for the four different STAR groups. On the other

hand, the RMSEs for the second set of prediction models

(which include the predicted holding time and predicted delay

probability) are lesser than three minutes, except for one

(i.e., STAR grp 3). Also, the prediction performance improves

across all the four STAR groups. Furthermore, the predicted

delay probability and predicted holding time are the top two

features in the feature ranking.

TABLE III. DELAY PREDICTION RESULTS

Delay statistics Without holding time With holding time
(minutes) and delay probability and delay probability

Total
Flights Mean STD RMSE MAE RMSE MAE

STAR grp 1 766 2.952 3.990 3.311 2.547 2.373 1.669
STAR grp 2 373 0.236 4.746 3.222 2.535 2.601 2.005
STAR grp 3 337 4.173 4.067 3.905 2.762 3.181 2.233
STAR grp 4 615 2.809 3.975 3.393 2.444 2.442 1.675

B. Speed Control Results

The considered scenario involves both CF and NCF flights.

The flight set includes 762 flights, among which 80 flights are

belonging to CF with predicted delays of more than 2 minutes.

Those 80 flights are subject to speed control strategy, but while

considering non-conflicting with remaining flights.

The objective function parameters are empirically tuned.

The highest priority is given to reducing the delays (equa-

tion 11), thus, α > β ≥ γ. However, less priority is given to

reducing the change of speed and conflicts. In fact, the speed

adjustment range is operationally reasonable, thus relaxing this

parameter is acceptable. Furthermore, minimizing the number

of conflicts is less-weighted because as long as a low number

of conflicts are generated, they can be tactically resolved by

en-route controllers. The SA parameters are adjusted as a

trade-off between achieved objective values and CPU times

using a classic configuration.

The initial total delay is 513 minutes, with an average of

6.41 minutes per delayed flight. Experiments are conducted for

three different RRs, namely 200 NM, 300 NM, and 500 NM,

and for the two speed strategies discussed in VI-B3c. The first

speed strategy, labeled SS 1, refers to the speed decrease rate

of less than 10%. The second speed strategy, labeled SS 2,

refers to the speed decrease rate ranging from 3% to 6%.

Figure 8 shows the percentage of absorbed and remaining

delays within different RRs and different speed strategies.

It is evident that the earlier speed control is applied, the

more absorbed delays are achieved. Furthermore, increasing

the range of speed adjustment (as in SS 1) yields more

absorbed delays. For instance, at RR 200 NM, more than

20% of the total delays are successfully transferred to the

cruise phase by applying speed control strategy 1, whilst,

when applying speed control strategy 2, around 18% of the

total delays are transferred to the cruise phase. Results from

RR 300NM are quite similar to those from RR 200 NM. In

fact, at RR 300 NM, about 30% and 20% of the total delay

is transferred by applying SS 1 and SS 2, respectively. More
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Figure 8. Absorbed and remaining delays within different RRs and different
speed strategies for the considered scenario.

TABLE IV. DELAY STATISTICS FOR THE CONSIDERED SCENARIO IN MIN-
UTES.

Mean initial
delay

Mean absorbed delay Mean remaining delay
SS1 SS2 SS1 SS2

RR 200
6.41

1.39 1.01 5.02 5.38
RR 300 2.05 1.11 4.36 5.29
RR 500 4.38 2.67 2.02 3.73

noticeable results are recorded from RR 500 NM where almost

70% and 40% of the total delay is transferred to the cruise

phase by applying SS 1 and SS 2, respectively.

Table IV summarizes the mean delay results after applying

the two speed strategies. Initially, flights are delayed by almost

6.41 minutes on average. After applying both speed strategies,

the average remaining delay decreases significantly with 2.67
and 3.73 average delay per flight when applying SS 1 and

SS 2, respectively, at RR 500 NM. In terms of absorbed delays,

it is found that by applying speed control at RR 200 NM,

flights are able to absorb around 1 to 1.4 minutes of delays.

The performance is slightly improved when speed control is

applied at RR 300 NM, where flights can absorb on average

from 1.1 to 2 minutes. More interesting results are recorded

for speed control strategy at RR 500 NM. In fact, the average

absorbed delay per flight can reach almost 4.38 minutes.

These experiments also evaluated the performance of our

proposed approach in the presence of NCF flights. However,

since the speed adjustment range is narrow, it was found that

no conflicts have been generated. This result is consistent

with the fact that reducing flight speeds up to 10% can be

performed without informing the controllers as it does not,

usually, generate new conflicts. Thus, evaluating the conflicts

at each algorithm iteration shows that the solution is conflict-

free regardless of the speed adjustment applied.

VIII. CONCLUSION

In this work, a method to transfer flight delays from the

approach phase to the cruise phase is proposed. It includes

includes an innovative holding detection algorithm to de-

tect flight holdings and holding times from historical data.

Furthermore, it presents a data-driven model that combines

classification and regression prediction methods in order to

predict flight holdings, the flight time of holdings, and flight

delays at 200 NM away from the airport. Finally, it introduces

a speed strategy approach to absorb the predicted delays in the

cruise phase. In order to evaluate the performance of proposed

method, computational experiments are conducted using one

month air traffic data for flights arriving at Singapore Changi

airport. Two important observations were made. First, pre-

dicting flight delays is strongly correlated with the prediction

of holding pattern and duration. Second, applying the speed

control at 500 NM contributes to transferring up to 70% of

delays to the cruise phase. This may help reduce the workload

of TMA controllers as well as reduce fuel consumption caused

by holding at lower altitudes.

In future works, we plan to investigate the holding and

delay prediction models at RR 300 NM and RR 500 NM.

Furthermore, the speed adjustment in the proposed model

is fixed at the range ring and does not change up to the

IAF. However, due to uncertainties, the delay initially planned

to be absorbed may change over time. Thus, a dynamic

speed adjustment will be investigated to better manage delay

prediction errors or uncertainties.
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[10] M. Schäfer et al., “Bringing up opensky: A large-scale ads-b sensor
network for research,” in 13th International Symposium on Information
Processing in Sensor Networks, pp. 83–94, IEEE, 2014.

[11] Iowa Environmental Mesonet, “Asos-awos-metar data download.”
[12] EUROCONTROL, “Technical note: Algorithm to describe weather

conditions at european airports.”
[13] A. V. Dorogush et al., “Catboost: gradient boosting with categorical

features support,” arXiv preprint arXiv:1810.11363, 2018.
[14] S. Alam et al., “A distributed air traffic flow management model for

european functional airspace blocks,” in 12th ATM Seminar, 2017.

10


