
Real-time Identification of High-Lift Devices
Deployment in Aircraft Descents

An Interacting Multiple Model Filtering Application Validated with Simulated Trajectories

Homeyra Khaledian, Xavier Prats
Dept. of Physics/Aeronautics Division

Technical University of Catalonia UPC/BarcelonaTECH

Castelldefels, Spain

homeyra.khaledian@upc.edu

xavier.prats@upc.edu

Jordi Vilà-Valls
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Abstract—In this contribution, we focus on the real-time
identification of the moment high-lift devices (typically flaps
and slats) are deployed, based on surveillance input data. This
estimation aims to enhance ground-based trajectory predictors
(TP), that might equip a wide range of tools or systems: from air
traffic control decision support tools, to ground-based safety nets,
including alerting/monitoring systems in charge to detect atypical
flight conditions. Given the fact that aircraft fly according to
different guidance modes, a multiple model filtering strategy
is proposed to cope with such different system dynamics. The
filter provides a model probability associated with each guidance
mode, which in turn can be exploited to obtain an estimate of
the high-lift deployment moment. The proposed methodology is
validated with a set of simulated realistic trajectories, showing
good performance and promising capabilities.

Keywords—Air traffic management, flight execution phase
trajectory prediction, high-lift device deployment, IMM filtering.

I. INTRODUCTION

Maintaining the highest safety level in aviation has always

been a big challenge especially in the context of the rapidly

increasing air traffic which is projected to reach 7.8 billion

passengers in 2036 Such growth will require innovative deci-

sion support tools which will enable the increase in capacity,

predictability and eventually enhancing the safety. Therefore,

civil aviation authorities of large number of states worldwide

deployed the national safety programs in order to be complied

with the International Civil Aviation Organization (ICAO)

safety requirements which define different categories of un-

desirable events, such as unstabilised approaches or control

flight into terrain (CFIT) accidents [1].

The final stages of the approach procedure and landing

represent every year the 47% of the total number of accidents,

with the 40% of the total fatalities [2]. The majority of these

accidents show unstabilised approaches, as consequence of

atypical trajectory profiles in the vertical trajectory domain

(speed and/or altitude), which in turn are sometimes the con-

sequence of atypical trajectory profiles in the lateral trajectory

domain (due, for instance, to turns to final too close to the

runway).

According to [3], an approach is stabilized only if all the

criteria in company standard operating procedures (SOPs) are

met before or when reaching the applicable minimum stabi-

lization height. Typically these criteria include a constant ap-

proach speed, a stable decent rate (vertical speed) within some

margins, a stable descent flight path angle, the aircraft high-

lift devices configured for landing, and the landing clearance

received. These criteria shall typically be met at 1, 000 ft above

the runway threshold in instrument meteorological conditions,

or 500 ft in visual meteorological conditions. Otherwise, a go-

around should be executed by the aircraft crew, since failing to

achieve these stabilisation criteria, can seriously compromise

the safety of the flight.

Many studies have been conducted to predict (hidden) flight

parameters using surveillance data [1], [4]–[7]. To the best of

our knowledge, few works specifically tackled the estimation

of the moment high-lift devices are deployed. For instance,

it is worth pointing out that a Long-Short Term Memory

approach was used for real-time estimation of some aircraft

on-board parameters (i.e., fuel flow rate, landing gear and

flap configuration settings) in [4]. For this purpose, Flight

Data Recorder (FDR) data was used to train a model and

Aircraft Dependent Surveillance-Broadcast (ADS-B) data was

used to feed a Neural Network structure. The average distance

estimation error for different flap configurations was found to

be between 2.27NM to 0.88NM [4].

In this paper we present a methodology to identify, in

real-time, the moment that high-lift devices are deployed on

descending aircraft trajectories, relying exclusively on surveil-

lance data as input source. We focus exclusively to detect the

moment the first high-lift configuration is deployed (i.e. the

transition from what is typically called clean configuration, to

the first high-lift configuration setting). Then, the goal is to

resort to real-time filtering techniques in order to recursively

estimate the aircraft states and high-lift devices deployment

moment. A fundamentally different approach is proposed,

where there is no need of training data, as it relies on model-

based techniques.

This contribution could help to develop future ground-based



monitoring tools, aiming at detecting atypical trajectories

and/or preventing unstabilised approaches. Moreover, it could

as well enhance ground-based trajectory prediction algorithms

that are enablers of a wide range of ATM applications: from

air traffic control decision support tools (such as arrival man-

agers); to ground-based safety nets or separation monitoring

tools (such as Medium Term Conflict Detection systems).

II. BACKGROUND

A. High-lift Devices

Aeroplanes are typically equipped with high-lift devices,

which are designed to increase the maximum lift coefficient

of the wing. This increase in maximum lift reduces the stall

speed and therefore, allows the aircraft crew to fly the aircraft

at lower speeds and, ultimately, reduce the take-off and land-

ing distances. These devices also increase (significantly) the

aerodynamic drag and consequently, are only and specifically

used in the take-off and initial climb; and final stages of the

approach and landing.

There are many types of such devices and the ones typ-

ically equipping modern airliners are the flaps (mounted in

the trailing edge of the wing) and the slats (in the leading

edge). Essentially, these devices increase the camber of the

airfoil; and/or increase the wet surface of the wing (typically

increasing the chord); and/or perform some control or effect

on the boundary layer behaviour [8].

High-lift devices typically have different positions or config-

urations and are progressively deployed during the approach.

Similarly, an aeroplane takes-off with a given high-lift device

configuration and the crew progressively retracts them during

the initial climb. The configuration where all high-lift devices

are retracted is typically called clean configuration, and other

configurations will receive different operational names depend-

ing on the aircraft type.

For example, for most Airbus models there are 5 different

configurations CONF 1, CONF 1+F, CONF 2, CONF 3,

and FULL. Take-offs are typically performed at CONF1+F

or CONF2 and higher configurations are only used in very

specific or exceptional situations, due to the high induced

drag, which significantly degrades the climb performance.

CONF1+F deploys (partially) slats and flaps. During an ap-

proach, CONF 1 is initially selected (which deploys partially

slats) and then CONF 2 follows. Landings are typically

performed in CONF 3 or FULL. Boeing aircraft, in turn, use

a different nomenclature: for the B777 or B787, for instance,

Flap 1 (only slats extended), Flaps 5 (slats and flaps), Flaps

15, Flaps 20... Yet, the operation is similar.

Each high-lift device configuration has a minimum and

maximum speed where it can be operated and the pilots typ-

ically deploy/retract high-lift devices when reaching a certain

speed and/or altitude, according to the aircraft SOP. Yet, the

exact moment where they are deployed/retracted may vary

even for the same aircraft model and same crew flying that

aircraft. In fact, as long as these devices are operated within the

speed minimum/maximum range, the crew can deploy/retract

high-lift devices sooner or later. Many environment variables

affect the exact moment the crew will use these devices, such

as weather (especially in gusting wind conditions), obstacles

below the flight path, actual climb/descent performance, but

also, how busy is the crew in performing other tasks (i.e.,

communicating with air traffic control, executing more or

less complex depart/approach procedures, interacting with the

Flight Management Systems (FMS), etc).

As commented before, aerodynamic drag is increased when

high-lift devices are used. Indeed, the drag coefficient is in-

creased because of higher induced drag caused by the distorted

span-wise lift distribution on the wing with flaps extended

[8]. To a lesser extent, the parasite drag coefficient might also

increase. Thus, aircraft performance models typically specify

different drag coefficient parameters for each high-lift device

configuration of the aircraft.

B. Aircraft descent guidance modes

FMS on-board modern aircraft employ automatic flight con-

trol systems to guide the aircraft along a previously computed

trajectory (the reference trajectory or trajectory plan), and a

series of flight guidance modes, both in the lateral path and in

the vertical profile (altitude and speed). In general, there exist

two classes of guidance modes to direct the aircraft: managed

modes, which direct the aircraft along the reference trajectory

as computed (and optimised) by the FMS; and selected (or

open) modes, steering the aircraft according to manual inputs

provided by the pilot (disconnected from the FMS trajectory

plan).

FMS typically use a point-mass model representation of the

aircraft dynamics, in which the aircraft motion is reduced to

three degrees of freedom (the three translations), assuming

that all forces are applied to the centre of gravity of the

aircraft in equilibrium. Thus, vertical dynamics are subject

to two degrees of freedom and there exist multiple vertical

guidance modes, depending on which of the two of the three

basic guidance targets are selected: airspeed (which can be in

terms of Mach or calibrated airspeed (CAS)); altitude (which

could be expressed in altitude-rate –i.e., vertical speed (VS)–

, or flight path angle (FPA)) or fixed throttle setting. These

guidance modes provide pitch (elevator) and thrust (throttle)

commands and hence strongly interact with the auto throttle

and autopilot systems. During cruise, the basic guidance target

are straightforward (altitude and airspeed are held through

a combination of elevator and throttle), but for climb and,

particularly descent, multiple options are available, such as

speed managed climb/descent, path managed descent, time-

of-arrival-controlled climb/descent, etc. [7], [9].

This paper focuses to identify the exact moment the aircraft

transitions from the clean high-lift devices configuration to the

first configuration in an approach procedure. Therefore, the

typical decent guidance modes have been taken into account

and summarised in Table I. Modes keeping a constant Mach

number are not considered, since these are typically used at

high altitudes and speeds (where high-lift devices are not

used). Similarly, acceleration modes have not been considered
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TABLE I. DESCENT GUIDANCE MODES CONSIDERED IN THIS ARTICLE

Mode 1 Mode 2 Pilot input parameters Control vector

Fixed Throttle (THR) Deceleration (DEC) pk = [π = 0, e = k|DEC ] uk−1 = [T = Tidle, γ = arcsin (
Tidle−D(x)

mg
)k|DEC ]

Constant CAS (CAS) pk = [π = 0, e = k| ˙CAS=0] uk−1 = [T = Tidle, γ = arcsin (
Tidle−D(x)

mg
)k| ˙CAS=0]

Constant altitude (ALT) pk = [π = 0, V S = 0] uk−1 = [T = Tidle, γ = 0]

Constant vertical speed (VS) Deceleration (DEC) pk = [V S, e = k|DEC ] uk−1 = [T = D(x) + ( mg
k|DEC

)(V S
υ

), γ = arcsin(V S
υ

)]

Constant CAS (CAS) pk = [V S, e = k| ˙CAS=0] uk−1 = [T = D(x) + ( mg
k| ˙CAS=0

)(V S
υ

), γ = arcsin(V S
υ

)]

Constant flight path angle (FPA) Deceleration (DEC) pk = [γg , e = k|DEC ] uk−1 = [T = D(x) + ( mg
k|DEC

) sin γg , γ = γg ]

Constant CAS (CAS) pk = [γg , e = k| ˙CAS=0] uk−1 = [T = D(x) + ( mg
k| ˙CAS=0

) sin γg , γ = γg ]

Constant altitude (ALT) Constant CAS (CAS) pk = [V S = 0, e = k| ˙CAS=0] uk−1 = [T = D(x), γ = 0]

either, since these are not typically used in a descent and

approach procedure.

III. SYSTEM MODEL AND FILTERING STRATEGY

A. System Model

In general, the nonlinear discrete state-space model (SSM)

of interest is defined by the following process and measure-

ment equations pair,

xk = fk−1(xk−1,uk−1,pk) + qk−1

yk = hk(xk,pk) + rk
(1)

with k referring to the discrete time instants, xk the states

of the system, yk the observation vector, and where fk−1(·)
and hk(·) are the known system model functions (process

and measurement, respectively). Both process and observa-

tions are corrupted by additive zero-mean Gaussian noise,

qk−1 ∼ N (0;Qk−1) and rk ∼ N (0;Rk) with covariance

matrices Qk−1 and Rk, typically assumed to be known. uk−1

is a control input, and pk a vector of input parameters.

Regarding the data sources of the observation vector, the

combination of ADS-B and Enhanced Mode-S Surveillance

(EHS) are used in this paper. Indeed, the Enhanced Mode-

S Surveillance (EHS) technology is designed as a dependent

protocol by secondary surveillance radar to provide some flight

parameters (such as the true airspeed, indicated airspeed, Mach

number, and true heading of the aircraft) to improve all sorts

of ATC systems. Besides, ADS-B is a newer data source using

an automatically broadcasting technology and independent

protocol that allows aircraft to send the identification, position,

speed, and other flight parameters (such as vertical speed),

which come from the on-board air data and navigation systems

[10].

Taking into account the application at hand, and disregard-

ing the time dependence for simplicity, at every time step:

• The state to be inferred is x = [hp, υ,m, τ, p]�: hp the

pressure altitude, υ the true airspeed (TAS), m the mass

of the aircraft, τ the temperature and p the air pressure.

• The measurements available from ADS-B and EHS are

given by y = [hp, υ, ḣ, V S, CAS,M ]�: hp the pressure

altitude, υ the TAS, ḣ the derivative of the geometric

altitude, V S the vertical speed which represents the rate

of change of the pressure altitude 1, CAS the Calibrated

AirSpeed, and M the Mach number.

• The control vector is given by u = [T, γ]�, with T the

engine thrust and γ the aerodynamic FPA.

• Since the pilot uses two independent actuators to steer

the aircraft along the vertical plane, the so-called pilot

input parameters vector p is composed of two parameters:

the first parameter corresponds to the throttle setting

and the second one is associated to the elevator. Such

parameters must be taken into account to describe the

specific guidance mode nonlinear dynamic system (refer

to [7] for details).

In the application at hand, it is reasonable to consider

process noise only on temperature and pressure, q =
[01∗3, wτ , wp]

�, with wτ and wp statistically independent, and

their corresponding variances set according to the expected

deviation from the standard atmospheric conditions. It is worth

noting that the initial system state x0 can be obtained from

flight and weather data, except for the mass of the aircraft

which is unknown (we assume that it is not expected to be

shared by the airlines, although, airlines are able to deliver

it depending on their policy and the confidentiality of data),

typically set to the 90% of the maximum landing mass.

The previous definitions provide the overview of the esti-

mation problem of interest, that is, at every k infer xk using

observations up to time k, y1:k, but nothing has been said yet

about the process and measurement functions.

Regarding the aircraft dynamic model (related to fk−1(·)),
few applications use basic kinematics that directly model the

path characteristics of the aircraft. In contrast, FMS and ac-

curate ground-based trajectory predictors use the well-known

aircraft point-mass model: a three degrees of freedom (3DoF)

model that assumes aircraft stability (i.e., rotational dynamics

is not modelled) and therefore, only the aerodynamic, propul-

sive, and external forces (e.g., due to the gravity) are taken

into account. This model is considered accurate enough for

all ground-based air traffic management applications [11]. A

further simplification of the 3DoF point-mass model leads

to the so-called gamma-command model, where continuous

vertical equilibrium is assumed, being the model considered

in this contribution. In this case, the motion of the aircraft in

1In ISA condition, hp = h, and consequently V S = ḣ
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a vertical plane can be described by the following system of

ordinary differential equations (ODEs),

dh

dt
= ḣ = υ sin γ

dυ

dt
= v̇ =

T −D

m
− g sin γ

dm

dt
= ṁ = −FF

dτ

dt
= τ̇ = τh(h)

dh

dt
dp

dt
= ṗ = ph(τ, p)

dh

dt

(2)

where τh(h) is the temperature partial derivative with respect

to the geometric altitude, and it is set to a constant value

according to the international standard atmosphere (ISA) tem-

perature lapse rate. In hydrostatic equilibrium ph(τ, p) = −ρg
is the pressure partial derivative with respect to the geometric

altitude, with g the gravity acceleration and ρ = p
Rτ the density

of the air, where R = 287.053 J/kg K the air perfect gas

constant. D is the aerodynamic drag and FF is the engine

fuel flow.

To further complete the previous equations, we can write

the pressure altitude as a function of the geometric altitude as,

hp(h) =

{
τSSL

λτ
(1− ( p

PRef
)

Rλτ
g ) if h ≤ htropo

htropo − Rτ11
g ln p

P11
if h > htropo

(3)

with htropo = 11.000m, τSSL = 288.15K the standard

sea level air temperature, λτ = 0.0065K/m the temperature

gradient, PRef the reference pressure associated with the

transition level, τ11 = 216.65K, p11 = 22632Pa. Under the

ISA condition, assumed in this paper, the pressure altitude is

equal to the geometric altitude, therefore providing the link

between the first ODE equation and the first state variable hp.

As clearly explained in [7], in order to integrate (2) we

must close two degrees of freedom, linked to the pilot throttle

and elevator. Indeed, such pilot inputs could directly control

the thrust T and FPA γ, but aircraft are not operated fol-

lowing specific T and γ profiles, and instead are composed

of different guidance mode segments (i.e., constant Mach or

CAS segments for climbs and descents). Therefore, two path

constraints are needed (refer to [7] for details). The pilot (or

FMS) input parameter vector is given by p = [π, V S, γg, e]
�:

π the throttle, γg the ground FPA, V S the vertical speed and

e the energy share factor. In general, we define three different

energy share factors according to the guidance mode: i) the

energy share factor in the direct input fixed to a known value;

ii) the aircraft is flying at constant CAS, resulting to an energy

share factor as function of atmospheric parameters; and iii)

similar as previous case, the aircraft is flying at constant Mach.

Each guidance mode is defined by a combination of two path

constraints, which depend on two of the parameters in p. In

other words, two of the pilot inputs are used in each guidance

mode to compute the input vector u and obtain fk−1(·). Notice

that the measurement function hk(·) can be directly expressed

from xk and pk.

B. An Interacting Multiple Model Filtering Approach

For linear SSMs the best linear filter which minimizes

the mean square error (MSE) is the Kalman filter (KF)

regardless of the noise distribution, provided that we have

a perfect knowledge of the system: known system matrices,

known noise mean and covariance, known inputs and perfect

initialization. For nonlinear SSMs, the most popular solution is

the extended KF (EKF), which uses a first order approximation

of the nonlinear system model and the standard linear KF

solution [12]. These filters apply for a single dynamics SSM,

but as previously stated, in the problem of interest we have

several guidance modes which lead to a set of different dy-

namic models. A possible solution to cope with such problem

formulation is to resort to the so-called Interacting Multiple

Model (IMM) filter [13], [14], where several (interconnected)

filters run in parallel, each one matched to a specific SSM.

If the system is nonlinear, as considered in this contribution,

this implies to use a bank of EKFs, denoted EKF-IMM. In this

paper, the generic EKF-IMM algorithm (refer to [13], [14] for

the formulation details) has been adapted to identify the exact

flap deployment moment. In order to accomplish that, different

models have been defined, each one corresponding to a given

configuration setting and a specific guidance mode, where two

parameters are controlled. The different modes are shown in

Table I. Notice that the output of the EKF-IMM provides

both an estimate of the state vector and the model probability

associated to each of the guidance modes. The latter can be

directly used for real-time flap deployment identification.

Moreover, notice that the transition matrix which specifies

the probabilities of switching from one guidance mode to

another is given by: P (j|i) = Pi,j = 0.02 for i �= j and

Pi,j = 0.98 for i = j.

IV. RESULTS AND DISCUSSION

This section displays and discusses the results obtained for

a set of representative aircraft descent profiles, which are gen-

erated via a custom trajectory simulator considering an Airbus

A320 aircraft. First, details on the validation trajectories (VT)

are given in Section IV-A, and the simulation results are shown

and discussed in Section IV-B.

A. Simulation Setup

The trajectory simulator generates flight data which contains

the same information that could be obtained from ADS-B

and a selective mode transponder (Mode S) receiver. The

trajectories are divided into several flight phases, each one

expressed in terms of a parametrised guidance mode being

targeted and an end condition to be met. The initial condition

of the trajectories profile can be described as the initial

mass of the aircraft, the pressure altitude, the speed and the

geometric position. The profile starts at the initial condition

and the trajectory is numerically integrated according to the

guidance mode until reaching the end condition. In turn, this

end condition is used as the initial condition for the next

trajectory phase [7]. Thus, the starting time of each phase

is the ending time of the previous one. The simulator is
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TABLE II. VERTICAL PROFILE SPECIFICATION OF THE VALIDATION TRAJECTORY (VT1)

Phase Guidance Mode Mode1 Mode2 End Condition Configuration Landing Gear

1 THR-CAS Idle 250 kt hp = 4000 ft CLEAN UP
2 THR-DEC Idle 0.3 CAS = 193 kt CLEAN UP
3 VS-CAS −500 ft/min 193 kt Δs = 2NM CONF 1 UP
4 FPA-DEC −3◦ 0.76 hp = 2000 ft CONF 1 UP
5 FPA-DEC −3◦ 0.6835 hp = 1500 ft CONF 2 UP
6 FPA-DEC −3◦ 0.53 CAS = 147 kt CONF 3 DOWN
7 FPA-DEC −3◦ 0.472 CAS = 128 kt FULL DOWN
8 FPA-CAS −3◦ 128 kt hp = 50 ft FULL DOWN

TABLE III. VERTICAL PROFILE SPECIFICATIONS OF THE VALIDATION TRAJECTORIES (VT2,VT3,VT4,VT5)

Phase Guidance Mode Mode1 Mode2 End Condition Flap position LG

1 THR-CAS Idle 250 kt hp = 4000 ft CLEAN UP
2 THR-DEC Idle 0.3 CAS = υ2 CLEAN UP
3 THR-DEC Idle 0.3 CAS = 193 kt CONF 1 UP
4 VS-CAS −500 ft/min 193 kt Δs = 2NM CONF 1 UP
5 FPA-DEC −3◦ 0.76 hp = 2000 ft CONF 1 UP
6 FPA-DEC −3◦ 0.6835 hp = 1500 ft CONF 2 UP
7 FPA-DEC −3◦ 0.53 CAS = 147 kt CONF 3 DOWN
8 FPA-DEC −3◦ 0.472 CAS = 128 kt FULL DOWN
9 FPA-CAS −3◦ 128 kt hp = 50 ft FULL DOWN

TABLE IV. VERTICAL PROFILE SPECIFICATION OF THE VALIDATION TRAJECTORIES (VT6,VT7,VT8)

Phase Guidance Mode Mode1 Mode2 End Condition Flap position LG

1 THR-CAS Idle 250 kt hp = 4000 ft CLEAN UP
2 THR-DEC Idle 0.3 CAS = 193 kt CLEAN UP
3 VS-CAS −500 ft/min 193 kt Δs = s3 CLEAN UP
4 VS-CAS −500 ft/min 193 kt Δs = s4 CONF 1 UP
5 FPA-DEC −3◦ 0.76 hp = 2000 ft CONF 1 UP
6 FPA-DEC −3◦ 0.6835 hp = 1500 ft CONF 2 UP
7 FPA-DEC −3◦ 0.53 CAS = 147 kt CONF 3 DOWN
8 FPA-DEC −3◦ 0.472 CAS = 128 kt FULL DOWN
9 FPA-CAS −3◦ 128 kt hp = 50 ft FULL DOWN

TABLE V. END CONDITION PARAMETRISATIONS

VT2 VT3 VT4 VT5 VT6 VT7 VT8

υ2 230 kt 210 kt 220 kt 200 kt
s3 0.5NM 0.75NM 1NM
s4 1.5NM 1.25NM 1NM

based on Eurocontrol’s Base of Aircraft Data (BADA) aircraft

performance models [15].

Table II gives details on the typical descending profile

for the first validation trajectory (VT1), including the cor-

responding guidance modes and their associated values, the

end condition, the flap position, and the landing gear position.

In this VT, the pilot decides to start using flaps at phase 3,

and simultaneously switches from flying with idle thrust and

deceleration to constant VS and constant CAS.

Table III gives the typical profiles associated to VT 2 to 5,

where the flaps are deployed without changing the guidance

mode. In this case the flaps are deployed while flying in idle

thrust and deceleration mode. The difference among VT 2 to

5 is the end condition of the second phase (i.e., CAS = υ2,

with the corresponding values summarised in Table V).

Table IV concerns the last three typical VT profiles (VT 6

to 8), for which the flaps are deployed while flying at constant

VS and constant CAS, at three different moments (refer to the

end condition Δs = s3 and Δs = s4 in Table IV, and the

corresponding values summarised in Table V).

Figure 1 illustrates the geometric altitude, true airspeed, and

CAS for the descending profiles associated to VT4 and VT7,

as an example of the 8 VT. The vertical pink lines show the

start time of each phase of the profile, and the vertical black

line indicates the flap deployment moment.

B. Results

In the simulations we consider the general nonlinear discrete

SSMs in Section III, taking into account that the measurement

noise is a zero-mean Gaussian with known covariance R =
diag((5 ft)2, (5 kt)2, (25 ft/min)2, (25 ft/min)2, (5 kt)2, 10−3).
Recall that one of the outputs of the EKF-IMM is the model

probability, which is exploited in this contribution for flap

deployment identification. For each VT we perform 1000

Monte Carlo runs in order to obtain statistically meaningful

results. The average model probability around the flap

deployment moment (two phases at the vicinity of the flap

deployment moment), for the different VT, is shown in Figure
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(a) VT4

(b) VT7

Figure 1. Descending profiles for VT4 and VT7. Start of the different phases
indicated with the pink vertical lines, and flap deployment illustrated by the
vertical black line.

2. Indeed, results Figure 2 focus on the flap deployment

moment, but the whole trajectory is estimated. For each

VT, the upper subplot shows the real guidance mode, and

the lower subplot the average estimated mode probability.

It is easy to see that in most of the cases the EKF-IMM is

able to estimate the correct guidance mode (i.e., taking the

model with maximum probability among the pool of possible

modes).

Figure 2 also shows the average estimated flap deployment

moment (vertical black dashed line). Notice that in order to

avoid false alarms, or equivalently, to increase the method’s

robustness, this value is computed using a moving average of

the EKF-IMM outcome mode probabilities, with a window

size equal to N = 5 samples. Obviously, there exists a perfor-

mance versus robustness trade-off which requires a dedicated

study (i.e., w.r.t. the window size, the flap deployment moment,

the system parameters, etc.) and is left for future work.

The moving average method implicitly induces a method

response delay, that is why in subplots (a) to (e) in Figure 2

there is a slight shift to the right w.r.t. the true flap deployment

time instant. Indeed, this is not only because of the moving

average but also because the EKF-IMM also needs a short time

lapse to adapt to the new mode when switching between two

different configuration settings. It is interesting to notice that in

the last three VT, that is, VT6 to VT8, the IMM is not able to

correctly decouple the identification of VS-CAS clean mode

from the VS-CAS CONF1 mode. This has a direct impact

on the results, and the high-lift device deployment moment

estimate appears before the real mode change.

To further complete the previous results a box-and-whiskers

plot is shown in Figure 3 to be able to better understand the

flap deployment moment estimation error (in seconds in the

plot) for all VTs. For each VT, the bottom and top of the

box represent the first and third quartiles, respectively. The

lines extending vertically from the boxes (whiskers) indicate

the variability outside these quartiles, while the ends of the

whiskers represent the 1.5 interquartile range of the first and

third quartile. Finally, the red line inside the box is provides

the median, and outliers are represented in red points.

It is interesting to acknowledge again a significantly differ-

ent IMM behaviour depending on the descent configuration.

Indeed, because of the moving average procedure using N = 5
samples, one would expect the average estimation error to be

between 0 and -5 seconds, which is the case for VT2, VT4

and VT5, but the error slightly increases for VT1 and VT3,

meaning that the IMM takes some extra time to respond to

the mode change. As already stated, because the IMM is not

able to correctly decouple the VS-CAS clean mode from the

VS-CAS CONF1 mode, then the error is positive for VT6 to

VT8. In any case, the average method performance is good

enough to validate the proposed methodology.

In this paper, the metric to measure the filter performance is

the difference between the real and estimated deployment time,

in seconds. If we take the true airspeed of the aircraft at the

moment CONF 1 is deployed, the error in distance is always

below 1NM. These are promising results, taking into account

the performance of similar studies found in the literature, such

as [4]. We have to keep in mind, however, that in this paper

the validation has been done with a few number of simulated

trajectories.

V. CONCLUSION

In this contribution, an IMM filtering approach has been

proposed for real-time identification of the high-lift device

deployment moment in aircraft descents. The underlying idea

was to exploit the fact that aircraft fly following different

guidance modes (each one related to a specific dynamic

model), reason why a multiple model filtering strategy must be

accounted for, and study if such multiple model filter was able

to identify the difference between clean and deployed high-

lift configurations. Instead of using the standard state estimate

outcome of the IMM, the model probabilities were used to

determine the high-lift deployment moment. In addition, to

avoid false alarms and further improve the robustness of the

proposed method, a moving average was applied to such IMM

model probabilities. A custom trajectory simulator was used to

release high rate data (1 s). Without entering into the method’s
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(a) VT1 (b) VT2

(c) VT3 (d) VT4

(e) VT5 (f) VT6

(g) VT7 (h) VT8

Figure 2. Considering the trajectory region around the flap deployment moment, each subplot provides, for each validation trajectory (VT): 1) the real guidance
mode, 2) average estimated model probability, and 3) the estimated flap deployment moment.
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Figure 3. Estimation error of flap deployment moment

computational complexity details, it is worth pointing out that

the filter running time is low enough to ensure a real-time

implementation. The preliminary results in this article show

the good performance of the IMM-based high-lift deployment

identification, being a promising solution for such application.

Accurate and reliable trajectory prediction is fundamental

for the design of next generation air traffic services (ATS),

decision support tools for traffic synchronization and sep-

aration management; as well as enhanced safety nets and

collision avoidance tools; either in a (partially) automated

environment, on-ground, airborne or in a distributed system.

This contribution could help to develop future ground-based

monitoring tools, aiming at detecting atypical trajectories

and/or preventing unstabilised approaches, but could enable

as well advanced trajectory prediction capabilities benefiting

many ATM applications.

Several points must be addressed in future work : i) use

historical data gathered from ADS-B receivers to assess the

method performance with real data; ii) extend the method to

other configuration settings containing different flap positions,

and landing gear up/down; iii) analyse the impact of real-time

flap deployment identification on ground-based tools; and iv)

consider atypical trajectories and other types of aircraft.
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