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Abstract— Safe and efficient airport operations are highly 
dependent on the availability of reliable visual scene information. 
Especially at airports without A-SMGCS support, the controller 
has to combine several input sources to interpret the overall 
situation on the ground. LiDAR sensor technology combined with 
computer vision algorithms for object detection and tracking was 
identified as a cost-effective method to support surveillance tasks 
of the controller, especially with regard to non-cooperative objects. 
Following previous research on semantic segmentation of airport 
scenes, this paper deals with a real-time detection and tracking 
method of fast-moving objects on the apron in labeled LiDAR 
scans. The method integrates a novel point sampling strategy into 
a basic Kalman filter by selecting a subset of representative points 
from the scanned points as a function of the velocity and distance 
of a moving object from the sensor. We show that the accuracy of 
the proposed detection and tracking method is in-line or close to 
ICAO A-SMGCS standards up to a distance of 350 m, covering a 
typical small apron. 

Keywords- airport ground surveillance, apron control, safety, 
LiDAR, point cloud, 3D modeling, semantic segmentation, detection 
and tracking 

I. INTRODUCTION

In this paper, we propose an adaptive point sampling strategy 
to detect and track non-cooperative, fast-moving vehicles with 
speeds up to 16 m/s in labeled LiDAR scans of the apron thereby 
emphasizing taxiing aircraft. To that end, we exploit the virtual 
airport environment introduced in [1] to handle the generation of 
labeled LiDAR scans of dynamic apron scenes. The task of 
tracking involves detecting objects of interest as well as their 
orientation or heading and their velocity. In this work, we follow 
the more general tracking-by-detection terminology and refer to 
detection and tracking as separate tasks that are solved jointly 
[2]. The motion parameters of the tracked objects provide a more 
precise picture of the traffic situation on the apron and are 
indispensable to predict and prevent risky object constellations 
either automatically or by means of a decision support system.  

Detection and tracking of moving vehicles in LiDAR scans 
are particularly challenging due to the inherent sparsity of 
LiDAR and the sensor latency at lower scan rates giving rise to 
blurry, deteriorated point sets. The sparsity also increases with 

increasing distance from the sensor due to the non-uniform 
resolution of LiDAR. Moreover, due to fast movements, it is also 
more likely that even a high-resolution LiDAR is not able to 
consistently cover the surface regions visible by the sensor in 
addition to self-occluded parts of the scanned surface.  

Such sparse point sets may not be directly utilized to derive 
safety-critical decisions, for example, the compliance with 
distance rules between moving objects and obstacles. Instead, 
some form of prior information about the underlying object 
category is needed, e.g. derived from the category label such as 
the real object dimensions represented by a 3D bounding box 
[3]. This can be seen in the example of the virtual airport 
environment in Fig. 1 that depicts a labeled LiDAR point cloud 
of Dresden airport together with a blurry scan of a moving A320 
collected over a time span of 10s.  

Figure 1.  The proposed approach for detection and tracking of fast-moving 
vehicles (bottom) in simulated LiDAR scans (middle) of the apron using a 

virtual environment (top). 

The detected aircraft is highlighted in the blurry point cloud 
by its 3D bounding box that indicates the current pose (location 
and heading). In fact, little work exists in the literature that 



specifically deals with sparsity and motion blur for detection and 
tracking of objects in labeled LiDAR scans [4]–[6]. This is why 
in this work we specifically deal with the detection and tracking 
of taxiing aircraft where we exploit bounding box priors 
associated with the semantic category to estimate the pose and 
the velocity of aircraft in sparse, deteriorated LiDAR scans. On 
the other hand, some LiDAR sensors available on the market 
tend to be less affected by the impact of motion blur due to 
higher framerates and the way how points from previous 
measurement cycles are handled, however, often at the cost of 
lower scanning resolution and lower operating distance [1]. To 
overcome the challenge of motion blur, we first measure how 
sensitive the detection performance is towards varying velocities 
of an aircraft maneuvering along all permissible inbound tracks 
from the runway to the gate using Dresden airport as an example. 
Notice, that the insight gained from this analysis helps to 
understand how the motion and relative location of aircraft affect 
the scanning behavior of LiDAR and to derive a point sampling 
strategy for detection and tracking that takes the aircraft velocity 
and distance into account. 

Next, we model a Kalman filter to smooth the detected 
aircraft positions in subsequent time frames. The filter integrates 
the proposed point sampling strategy that exploits the estimated 
dependency between the velocity and target distance to the 
sensor and the „optimal“ number of points sampled from the 
point set labeled as „aircraft“. 

Moreover, in this prototypical implementation, we assume to 
have accurately labeled LiDAR scans of the apron at our 
disposal for which we exploit the virtual airport environment in 
[7] that integrates a single LiDAR sensor model also introduced
in [7] resembling the scanning behavior of a first-generation
Neptec OPAL-360HP sensor [8] installed at Dresden airport. In
this way, the framework assigns each point a unique ground-
truth label that specifies its semantics, e.g, A320, building,
ground-plane, pole, etc. In contrast to [7], apron operations
involving taxiing aircraft are simulated by imposing a motion
model on the aircraft instances based on common airport
regulations and aircraft kinematics. The quantitative analysis of
our LiDAR-based detection and tracking model indicates that
the accuracy of the generated results is in line or close to the
limits set by the A-SMGCS licensing requirements [9], [10].

Finally, it is important to note that the proposed adaptive 
point sampling technique specifically exploits the scanning 
principle of the Neptec OPAL-360HP sensor. However, the 
method may readily be adapted to other LiDAR sensors 
available on the market. 

A. Detection and Tracking
Object detection and tracking are essential tasks in automatic

visual scene understanding. There exists a large body of 
literature dealing with 2D/3D image-based detection and 
tracking [11]–[13]. LiDAR sensing captures sparse 3D points 
from the surfaces in the scene and measures the depth 
information in contrast to e.g. stereo vision thereby resolving the 
scale problem. Much of the existing work on 3D detection and 
tracking in LiDAR-based point clouds is motivated by the 
autonomous driving domain. In this context, LiDAR data are 
often used to detect and track other vehicles relative to a 
reference car. The work in [14], for example, provides an 
extensive overview of the existing work in this field.  

For the automotive domain, sensors with an overlapping 
scan pattern are commonly used giving rise to lower scan 
resolutions [1]. However, these sensors are not appropriate to 
identify fine differences, as is necessary at airports, for example, 
to distinguish between different types of aircraft or to detect 
small foreign objects on the airport surface. 

The principle idea behind most traditional 3D detection and 
tracking techniques in raw point cloud scans is to locate and 
remove the ground plane and background points followed by 
clustering or region growing to identify and separate potential 
object proposals [15]. Once the object proposals are found an 
object-specific motion model may be applied in order to track 
the objects over time and to predict future trajectories to avoid 
collisions for example using Kalman filtering or particle filtering 
[16], [17]. More recent techniques for object detection and 
tracking make use of deep learning, however, often at the cost of 
computational efficiency [18]. 

Prior work on object detection in LiDAR scans of the apron 
focused on static or quasi-static scenes. The detection of small 
static objects (FOD), for example, was addressed in [19], [20]. 
The method in [21] jointly classifies and estimates the pose of 
aircraft parked at the gate. The work in [7] segments 
maneuvering aircraft on taxiways in quasi-static poses of aircraft 
traveling along predefined paths. 

Little work exists that specifically deals with object detection 
and tracking in LiDAR scans of highly dynamic apron scenes. 
This is also due to the fact that state-of-the-art algorithms in 
detection and tracking often rely on large-scale data sets with 
point-wise annotations for learning of the underlying model 
parameters [22]. However, no such annotated large-scale data 
set currently exists and the generation of these data under real 
operating conditions is challenging. For this reason, we employ 
the virtual airport environment in [7] which potentially allows 
the simulation of arbitrary apron scenes. 

Another challenge for 3D detection and tracking in LiDAR 
scans is the above-mentioned sparsity and latency of LiDAR 
giving rise to blurry deteriorated point clouds as a result of the 
relative motion between the sensor and the scanned objects of 
interest [23], [24]. However, ongoing developments in LiDAR 
sensing technology focus on increasing spatial resolutions at 
longer ranges and higher framerates [8]. This is particularly 
relevant in the context of apron surveillance where a real-time 
sensor coverage of the maneuvering area is essential. 

B. The novelty in 3D LiDAR Tracking
This paper makes at least three contributions: (a) we extend

the virtual airport environment in [7] by imposing motion 
models on the 3D aircraft models, e.g. an A320, (b) an adaptive 
point sampling strategy that directly operates in the point cloud 
domain and that takes the velocity of a moving vehicle (e.g., 
taxiing aircraft) and the sensor distance into account, and (c) 
baseline results for detection and tracking of aircraft in labeled 
LiDAR scans using Kalman filtering based on the sampling 
strategy in (b). Our work is also in line with the current trend of 
augmented automated airport operations, e.g. the 
implementation of higher-level A-SMGCS functions involving 
object interactions such as conflict detection and –alert [9], [25]. 
The paper is structured as follows. Starting with an overview of 
the method we continue to address each aspect of the framework 
in section II. Next, in section III we provide experimental results 
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for detection and tracking of taxiing aircraft on the apron in 
labeled LiDAR scans. Finally, section IV concludes with a 
summary of our findings and an outlook of our future work. 

II. METHOD
This section describes each component of the proposed 

framework as illustrated by the orange arrows in Fig. 2. The 
input and output of each step of the simulation environment are 
indicated by the green and blue colors, respectively. See also [7] 
for more details about the data sources. 

Figure 2.  Overview of approach. See the text for details. 

Section II.A addresses the modeling of fully dynamic apron 
scenes and the generation of labeled point scans using the virtual 
airport environment introduced in [7]. Our apron simulations 
constitute taxiing aircraft along all permissible tracks from the 
runway to the gate at Dresden airport covering a range of typical 
velocities on straight and curved sections of a taxiway (see Fig. 
3). 

Figure 3.  Close-Up View of the reconstructed CAD environment. “L”: 
Position Lidar, “A/B/C”: Origins of inbound tracks, Aircraft located at the 

gates represent final positions. Example tracks and motion patterns of aircraft 
moving along taxiways, e.g., A320 inbound. 

Section II.B presents the details of the proposed point 
sampling strategy for 3D detection and tracking in labeled 
LiDAR scans generated in section II.A. 

A. 3D Modeling of the Airport Environment and Simulation
of dynamic Apron Operations
In this section, we exploit the virtual airport environment

introduced in [7] to handle the generation of labeled LiDAR 
scans of dynamic apron scenes. The virtual environment 
constitutes a true-to-scale 3D CAD model of Dresden airport 
including static components of the airport infrastructure (e.g., 
buildings, poles, ground-plane) as well as a large variety of 
movable objects (e.g., different types of aircraft and ground 
vehicles). The 3D CAD model is shown in Fig. 4 together with 
an aligned aerial view of the real airport environment. All static 
and movable objects composing the virtual scene are exported 

individually in stereolithography (STL) format together with a 
unique reference that identifies the object category (semantic 
label). Without loss of generality, in this work, we restrict the set 
of movable objects to the most important category “aircraft” for 
which an A320-200 3D mesh model is also depicted in Fig. 4. 
As an example, the close-up view of the virtual CAD 
environment in Fig. 3 shows a taxiing aircraft A320 in 
subsequent positions to demonstrate typical motion patterns of 
arriving aircraft considered in this work. Eventually, all 3D 
models composing the scene are loaded into a simulation 
environment based on MATLAB which implements the scene 
dynamics. The motion of taxiing aircraft and other ground-
vehicles is defined by rigid transformations (rotation, 
translation) on the apron ground-plane under the constraints of 
the operational rules of the airport and the kinematic properties 
of the aircraft. For this purpose, typical tracks of aircraft on the 
apron, i.e. taxiways, stop-lines, other road markings, and the 
permissible headings were integrated as additional constraints 
into the simulation environment. Fig. 6 depicts a bird’s eye view 
of the virtual airport environment with all permissible inbound 
tracks for A320 highlighted in green. Moreover, the permissible 
velocities of taxiing aircraft are based on the recommended 
speed according to the local airport regulations and 
specifications in accordance with [9]. For example, on straight 
sections of taxiways, aircraft move at speeds of up to 
approximately ~16 m/s. On curves and complex taxiway 
configurations, the speed does not exceed a value of ~6 m/s.  

Figure 4.  (Top-Left) Arial view of DRS, (Top-Middle) 3D mesh model of 
Dresden Airport reconstructed in AutoCAD. 3D mesh models (STL) and 

labels of static objects (Top-Right) and movable objects1 (e.g., aircraft A320-
200) are passed as input to the simulation environment.

The motion of a taxiing aircraft along a predefined track may 
be described by the general equation of motion, i.e.,  

=

1 0 cos ( ) 0.5 cos( ) 0
0 1 sin ( ) 0.5 sin( ) 0
0 0 1 0
0 0 0 1 0
0 0 0 0 1

+

0
0
0  

,  
  
 
 
 

- Projected center (c) of aircraft on the ground 
- Aircraft velocity 
- Aircraft acceleration
- Aircraft orientation 
- Discrete timestep

under the constraints (2) and (3) where the quantities 
,   ,   denote the maximum permissible 

velocity in a particular segment (straight/curved) on the taxiway 
and the acceleration/deceleration limits of the aircraft. 
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Notice, that the simulated motion of an aircraft according to 
(1) is controlled by the temporal derivation of  and , i.e. ,  
where the orientation  is defined by the configuration of the 
considered track. There are many possible ways to adjust the 
acceleration/deceleration value of a taxiing aircraft. In our 
approach, we sample the acceleration/deceleration  at time 
step  from a normal distribution with a mean of 2 /  and 

0.5 /  with standard deviation of 1 / and truncated at 
 (0 / / 1 / ),  (0 / /3 / ), respectively 

such that the velocities satisfy the speed constraint in (2) in each 
track segment. According to [9] an acceleration of 1 to 2 /  
should be considered for the taxiing (routing). In our simulation, 
the acceleration may also reach higher values in order to cover 
the entire range of velocities specified in the requirements in [9]. 
The virtual airport environment integrates a LiDAR sensor 
model to generate synthetic LiDAR scans of the apron and the 
movement area according to the hardware specifications of the 
sensor [8] installed at Dresden airport. The large green circle in 
Fig. 2 illustrates the considered range of the LiDAR sensor 
located on the north-east rooftop of the terminal building at 
Dresden airport as indicated by the green-colored cone. We also 
assume an idealized environment that abstracts from challenging 
atmospheric conditions (e.g., rain, fog, etc.) as well as from 
surface attributes beyond shape information, e.g., material 
properties and texture. On the other hand, in contrast to [7], the 
LiDAR scans obtained in this work are subject to motion 
dependent blur [23], [24] as a result of the relative motion 
between the scanned object and the sensor. 

B. 3D Mesh Sampling and Ground-Truth Generation 
This section summarizes the details of the LiDAR sensor2 

model highlighted in Fig. 2 and the sampling procedure to 
generate labeled LiDAR scans of dynamic apron scenes [26]. 
The sensor operates with a laser wavelength of 1540 nm and 
provides a field of view of 360° horizontally and 45° vertically 
with an azimuthal resolution of 0.0057°. The level of detail 
captured by the sensor greatly depends on the Pulse Repetition 
Rate (PRR) and the scanning duration. Assuming a scanning 
duration of 1 s and provided that the sensor operates with a PRR 
of 200 kHz the LiDAR sensor forms a point cloud of the scene 
containing up to 200.000 points. Each point is defined by its 
spatial ,  and z coordinates and its intensity. Fig. 5 illustrates 
how the scan pattern evolves. The red dot represents the sensor 
position. To take the sensor characteristics into account, we 
developed a LiDAR sensor model based on the hardware 
specification provided by Neptec. Please refer to [8] for more 
details. Scanning of simulated apron scenes involves computing 
triangle ray intersections for each light beam emitted by the 
sensor with a maximum scan rate of 200 kHz. 

To this end, we employed a modified version of the Möller 
Trumbore ray triangle intersection algorithm [27]. For 
computational efficiency, the calculations were carried out on a 
GPU (GeForce RTX 2080 Ti). 

 
Figure 5.  Evolution of the LiDAR scan pattern over time. The red dot 

represents the sensor position. 

For each laser light beam intersecting a triangle of a 3D 
surface mesh the reflectance value is calculated and the semantic 
label of the corresponding triangle is assigned. If a ray intersects 
several triangles, only the first intersection is considered. 
TABLE I summarizes the semantic labels currently used in our 
simulations together with a unique color code that identifies the 
semantic category. The simulation of taxiing aircraft involves 
modeling of the motion parameters of an aircraft along the 
chosen track using (1). Based on the motion parameters it is then 
possible to compute the position and heading of an aircraft along 
the track assuming that the former is defined by the center of the 
bounding box of the aircraft. In our simulation, we choose a time 
discretization step of 0.005 s given that one azimuthal 360° 
rotation of the LiDAR sensor takes about 0.028 s. At each time 
step, the aircraft is positioned and oriented depending on the 
current taxiway configuration. From this, it follows that during 
a single azimuthal rotation of the sensor the aircraft adapts its 
pose approximately 0.028s/0.005s~6 times along the track. 
Fig. 1 depicts the labeled LiDAR scan of an arriving aircraft 
A320 after a time interval of 10 s. Notice, how the relative 
movement between the scanned aircraft and the sensor gives rise 
to motion blur. 

The total number of inbound tracks at Dresden airport 
considered in our experiments is 42 (see also Fig. 6). Using 
different combinations of maximum velocities  and 
acceleration/deceleration values along the taxiways we obtain a 
total number of 500 labeled LiDAR scans of taxiing aircraft. 
Besides, each simulated track comprises a sequence of aircraft 
poses (positions, headings) along the track, velocities, and 
distances between the aircraft and the sensor which we use as 
ground-truth data to derive the adaptive point sampling strategy 
for detection and tracking. Notice, that the number of ground-
truth positions per track may differ depending on the length of 
the track and the boundary conditions in (2) and (3). 

TABLE I.  SEMANTIC LABELS AND ASSOCIATED COLORS 

 
Semantic label 

A320 Pole Building Ground-plane 
Color code     

1Moveable 3D models were kindly provided by TRANSOFT Solutions. 
2The LiDAR sensor at our disposal is a first-generation OPAL-360 HP sensor
developed by the company Neptec. The motion of a taxiing 
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Figure 6.  Bird's eye view of all inbound tracks for aircraft A320 at Dresden 

airport starting at position A/BC. 

C. Adaptive Point Sampling for Detection and Tracking 
Let  denote a set of labeled points of a taxiing aircraft 

captured by LiDAR during the scanning interval > 0 starting 
at some point of time  as depicted in Fig. 1, where the red color 
encodes the class A320-Inbound (see Table I). Our objective is 
to estimate the pose of the aircraft represented by a bounding 
box (see Fig. 1) and the velocity at +  using  where  is 
affected by motion blur. Notice, that the dimensions of the 
bounding box are readily available from the aircraft type 
encoded by the semantic label of . A naive approach would be 
to sample a constant cardinality subset ’  of  with | ’| =

 and to estimate the pose using ’ irrespective of where the 
aircraft is located and oriented relative to the sensor and how fast 
it moves. A more reasonable strategy may be derived from the 
scanning principle of the OPAL-360HP sensor by noting that the 
points in  form an ordered sequence according to the 
acquisition timestamp  associated with each point    such 
that 

 =  ( , ) ,…,| | 

forms a sequence of pairs ( , ) where  :  <  , 1
< | | defines the ordering of . Notice, that in general, we 

have  and | | + . A simple strategy to cope with 
the variable impact of motion blur in  is then to exploit the 
sequential ordering by sampling the last  points of  that best 
represent the true pose of the aircraft at +  given its velocity 
and its distance from the sensor. More formally, among all 
connected subsequences ’ of the form  

’  ( , ) ’,…,| || 1 ’ | |  

we aim to find a connected subsequence  with 

=  arg min ’ Err(Pos , Pos ) 

such that = | | denotes an optimal number of 
representative points of  and Err 0 computes the deviation 
between the ground-truth pose, say PoseGT of the aircraft at +

 and the estimated pose, say Pos  given ’at + . We 
define the function Err to compute only the position error 
between the bounding box center    of ’ and the ground-
truth center    of the aircraft at +  using the L1-Norm 
which is in line with the A-SMGCS requirements covering the 
representation of detected objects [9], i.e.,  

Err( , Pos ) =    

where we omit the argument +  for better readability. Fig. 7 
plots the resulting number of representative points using (5)-
(7) as a function of the velocity and the distance of the aircraft 
from the sensor across all scans using the ground-truth data 
obtained in II.B where we set the sampling interval  across all 
scans to = 0.1 . 

 
Figure 7.  Number  of representative points as a function of the velocity 

and the distance between aircraft and sensor. 

The resulting characteristic function in Fig. 7 interpolates 
linearly between the discrete measurements over the considered 
domain to approximate a continuous function. From the plot, one 
can see that the number of representative points increases 
more rapidly with decreasing velocity and increasing distance 
from the sensor. On the other hand, higher velocities give rise to 
smaller values  which is expected since the impact of motion 
blur increases with increasing velocity so that points  in  with 
smaller time stamps  tend to distort the position estimates. 
Also notice, that  was limited to a maximum value of  = 
600 points. 

Finally, the characteristic function depicted in Fig. 7 is 
integrated into a Kalman filter [28] to smooth the detected 
aircraft positions along arbitrary tracks. The resulting procedure 
is summarized in Algorithm 1. 

Algorithm 1: Kalman filter with Adaptive Point Sampling 
Input: Segmented point cloud 
Output: Taxiing sequence: (Projected center of aircraft on 
the ground , Aircraft orientation , Aircraft velocity 

) ,…,  
0: Initialisation: = 0.1 , n = 0, Initial estimate of 

, , , distance to sensor  for , Kalman 
prediction of c  

1:  + 1 //Increment time step
2: Get point set  during next time frame   

Get last  points of  using ,  
//Adaptive point sampling (Fig. 7); Assume constant 
velocity during  

3: Detect position  at  //Object detection: BBox 
center of  

4: Kalman correction of  at using Kalman 
prediction of at   

5:  Kalman prediction of the position  
6: Estimate , ,  using corrected position  

and , respectively 
7: Go to 1. 
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III. RESULTS

In this section, we validate the performance of the proposed 
detection and tracking Algorithm 1 by comparing the method 
with a Kalman filter that replaces the adaptive point sampling 
method in Step 2 with a naïve sampling method that draws a 
fixed number of points from the scanned point set  captured by 
the sensor during the scanning interval . Moreover, we 
compare the proposed method with the licensing requirements 
for surveillance systems according to the A-SMGCS 
documentation [9]. 

The data set at our disposal consists of approximately 
450.000 simulated ground-truth measurements of aircraft 
positions and orientations generated with the virtual airport 
environment described in II.A and II.B together with the 
associated velocities across all inbound tracks for A320 at 
Dresden airport. The simulation was carried out for all common 
velocities on straight and curved sections of the taxiways 
according to [9]. 

Fig. 8 and Fig. 9 depict two representative examples to 
illustrate our experimental setup and the capability of the 
proposed detection and tracking method in Algorithm 1. 
Specifically, Fig. 8 visualizes the estimated bounding box (blue) 
representing the pose estimate of a taxiing aircraft A320 (red) 
during some time interval  along the taxiway together with the 
ground-truth bounding box (green). The heading of the aircraft 
is encoded by the line segment that intersects the right face of 
the bounding box. The length of the line-segment is proportional 
to the estimated velocity shown at the top where the ground-truth 
speed in this example is 7 / . Notice, that such a visualization 
of the pose and the velocity may also assist the controller to 
quickly recognize the situation on the ground.  

Fig. 9 shows the top view of a single track of a taxiing aircraft 
A320 moving from the runway at location A to the parking 
position at gate G30 (see Fig. 6). The green line indicates the 
ground-truth track of the taxiway and the blue points show the 
tracked sequence of aircraft positions. The labeled point cloud 
of the aircraft captured by the sensor is shown in red. Notice, that 
the algorithm starts to track the aircraft with some delay which 
is due to the fact that the tracker requires a minimum number of 
points to obtain a reasonable initialization (see Step 0 in 
Algorithm 1).  

 
Figure 8.  Snapshot of a tracked aircraft A320 using Algorithm 1 (blue) 

compared with the ground-truth (green). See the text for details. 

 
Figure 9.  Bird’s eye view of the tracked positions (blue) of a taxiing aircraft 
A320 (red points) along the ground-truth path (green) using Algorithm 1. See 

the text for details. 

We conduct an extensive quantitative analysis of Algorithm 
1 by validating the localization error of the detected aircraft 
positions across all tracks in the data set, the orientation 
(heading) deviation of the estimated bounding boxes, and the 
error of the estimated velocities. As a baseline, we use a Kalman 
filter with a simplified sampling strategy in Step 2 that selects a 
constant number of points from a point set  captured during a 
time interval . We set the number of sampled points to the 
mean value  = 62 computed over the entire data set which we 
found to be the best naive sampling strategy during our 
experiments. Notice, that Algorithm 1 also satisfies the run-time 
requirements outlined in [9] due to the update-rate of = 0.1  
of the tracked positions. 

In Fig. 10 we plot the detected aircraft positions using 
Algorithm 1 over all inbound tracks in the data set together with 
the localization error in (7) ranging from 0 m (blue) to > 30 m 
(yellow). From the plot one can see that the detected aircraft 
positions are overall consistently arranged along the tracks. 
Larger deviations from the ground-truth are mainly caused by 
cross-track errors which primarily occur as a result of self-
occlusions of the scanned surfaces so that the detected positions 
tend to be biased towards surface regions visible by the sensor. 
TABLE II. also indicates that the adaptive point sampling 
strategy reduces the localization error of the detected positions 
compared to the naïve sampling method. Moreover, our results 
are mostly in-line or close to the A-SMGCS requirements 
referenced in the last row in TABLE II. Further analysis shows 
that after removing 1% of the outliers we achieve an average 
localization error of ~7.5 m as required. 
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Figure 10.  Bird's eye view of tracked measured aircraft positions across the 
entire data set using Algorithm 1. The color code indicates the localization 

error (7) ranging from 0 m (blue) to > 30 m (yellow). The Sensor is located at 
(0/0/0). Notice, that the majority of the measured positions are in line with the 

A-SMGCS requirements. 
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In Fig. 11 we plot the localization error as a function of the 
ground-truth velocity and the distance between aircraft and 
sensor to better interpret challenging constellations indicated by 
the yellow regions. Based on Fig. 11 we found that the largest 
localization errors occur when a taxiing aircraft reaches the 
parking positions 32, 33 (bottom, left yellow regions in Fig. 11) 
and the parking positions 37, 38 (top, left yellow regions in Fig. 
11) located further away from the sensor. In fact, in the former 
case, the aircraft is partially occluded by a passenger bridge and 
in the second case, larger regions of the aircraft were not visible 
by the sensor due to self-occlusions. Moreover, the localization 
error tends to grow with increasing velocities and distances from 
the sensor which is also caused by the non-uniform resolution of 
LiDAR and initialization errors. 
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Figure 11.  Localization error as a function of the velocity and the target 
distance between the sensor and scanned aircraft using (7). Notice, that the 
localization error is averaged over velocity intervals of 1 m/s and distance 
intervals of 10 m. For the white sections, no measurements were available. 

TABLE II.  LOCALIZATION-ERROR 

Localization Error Mean Standard Deviation 

Adaptive sampling 7.91m 3.79m 

Naïve sampling 8.95m 4.26m 

A-SMGCS requirements 
„4.2.3 The actual position of an aircraft, vehicle or 

obstacle on the surface should be determined within a 
radius of 7.5 m.“ [9] 

Next, in Fig. 12 we plot the velocity estimation error as a 
function of the true velocity and the ground-truth distance from 
the sensor. The velocity estimation error was defined by the 
absolute value of the difference between the ground-truth 
velocity and the estimated velocity. The figure shows that for 
very low ground-truth velocities the error tends to be higher 
(yellow) which corresponds to situations where the aircraft are 
closer to the final parking positions and the localization accuracy 
is lower, partly due to self-occlusion (Fig. 11)  
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Figure 12.  Velocity estimation error as a function of the true velocity and the 
target distance between the sensor and scanned aircraft. Notice, that the error 

values are averaged over velocity intervals of 1 m/s and distance intervals of 
10 m. For the white sections, no measurements were available. 

Moreover, in some cases, the measurements also tend to 
under-estimate the velocities especially during the initialization 
phase of the tracker where the ground-truth velocities are 
actually higher as indicated by the yellow regions in the top right 
part in Fig. 12. Due to the constant velocity assumption, the 
Kalman filter may propagate larger velocities to subsequent time 
frames where the true velocity may be lower and vice versa. This 
can lead to erroneous Kalman predictions of subsequent aircraft 
positions. On the other hand, the statistics in Table III confirm 
that our approach satisfies the A-SMGCS requirements for 
velocity estimates 

TABLE III.  VELOCITY-ERROR 

Velocity Error Mean Standard Deviation 
Adaptive sampling -0.33 m/s 1.86 m/s 

Naïve sampling -0.34 m/s 3.17 m/s 

A-SMGCS requirements „The A-SMGCS should be able to accommodate the 
following speeds determined to within ± 2 km/h (1 

kt)” [9] 

Finally, Fig. 13 plots the orientation estimation error as a 
function of the ground-truth velocity and the distance of the 
scanned object from the sensor. The orientation estimation error 
was defined by the absolute value of the difference between the 
ground-truth orientation and the estimated orientation. 
Compared to the A-SMGCS requirements in TABLE IV. the 
orientation estimation error appears to be relatively large. As 
indicated by the yellow and light blue regions in Fig. 13 larger 
errors are typically associated with larger distances from the 
sensor. To a great extent, these cases correspond to inconsistent 
location estimates during the initialization phase of the Kalman 
tracker. Moreover, for ground-truth velocities close to zero the 
orientation estimates also tend to exhibit larger deviations from 
the ground-truth which coincides with the localization errors 
near the parking positions shown in Fig. 10 and Fig. 11. 
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Figure 13.  Orientation estimation error as a function of the true velocity and 
the target distance between the sensor and scanned aircraft. Notice, that the 

error values are averaged over velocity intervals of 1 m/s and distance 
intervals of 10 m. For the white sections, no measurements were available. 

TABLE IV.  ORIENTATION-ERROR 

Orientation Error Mean Standard Deviation 
Adaptive sampling 4.86° 34.83° 

Naïve sampling 4.76° 40.78° 

A-SMGCS requirements „ The A-SMGCS should determine the direction of 
movement in terms of the magnetic heading of each 
participating aircraft and vehicle to within ± 1°.“ [9] 
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IV. CONCLUSIONS AND OUTLOOK 
We have presented a fast detection and tracking method for 

non-cooperative objects in semantic LiDAR scans using a 
virtual airport environment. Our method integrates a novel 
sampling strategy into a basic Kalman filter that exploits the 
scanning principle of the LiDAR sensor to select points from 
sparse, deteriorated point sets as a function of the velocity of the 
scanned object and its distance from the sensor. Experimental 
results on simulated data demonstrate that our proposed strategy 
performs within or close to the limits set by the A-SMGCS 
requirements even by using just one sensor. Limitations of the 
approach mainly result from self-occlusions of the scanned 
surfaces which we plan to address in our future work, e.g., by 
integrating multiple LiDAR sensors into the airport 
environment. Further research directions include advanced 
tracking models with a constant steering angle assumption [29], 
multi-object detection and tracking, and long-term motion 
prediction to assess the risk of potential object positions ahead 
of time, e.g. to avoid collisions. A preliminary result is shown in 
Fig. 14. Furthermore, the suitability for different traffic levels 
and visibility ranges according to Table C-1. Equipment 
evolution for A-SMGCS [8] will be investigated. 

Also notice, that in our scenarios the variability of the 
orientation of the aircraft along the inbound tracks was rather 
limited. In order to study the impact of the orientation on the 
optimal number N* of sampled points, we will enrich the data 
set with additional poses of the aircraft to cover a larger range of 
orientations. 

Finally, we believe that our proposed LiDAR-based 
detection and tracking framework can provide additional 
situational awareness for the controller and is well suited to be 
integrated into established surveillance systems such as surface 
movement radar (SMR) to improve the combined performance. 
To that end, the proposed framework will also be extensively 
validated on real LiDAR scans of the apron under different 
visibility conditions. 

 
Figure 14.  Quantitative motion prediction. The color indicates the probability 

of the future aircraft position from high (yellow) to low (blue). 
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